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1 Finite dimensional symmetric spaces and
their isotropy representations.

Abstract

We review basic properties of finite dimensional Riemannian sym-
metric spaces and consider their isotropy representations. We show
that they are polar and that principal orbits of polar representations
are isoparametric. By results of Dadok, Palais, Terng, and Thorbergs-
son, “symmetric spaces,” “polar representations” and “isoparametric
submanifolds” of R” are essentially in bijection to each other.
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Symmetric spaces (of compact type)

X is a symmetric space, if X is a Riemannian manifold with isometry S, :
X — X such that S,(p) = p and (S,)., = —id.



Examples.

1. R? Sy(z) = —x + 2p.
2. 5" Sp(z) = —x + 2(x, p)p.
3. Gr(R™) Sw(V)=p(V) for V,W € Gi(R"), where
p:RP= WoWt — WoWt
w w
rT+y > T —1.
Properties:

1. VR = 0. Because

YSP*XI R(Sp*XZa Sp*XS)Sp*Xélj - Sp*leR(X2a X3)X4

Vx, R(X2,X3)X4=—Vx, R(X2,X3)X4

for VX; € T, M.

2. M is complete because all geodesics can always be extended.

X//qu
p -

q1

Sp(Ql) = Q2.

3. M is homogeneous.

— M =G/K, G =1)(M), K =G,
I
{gK|geG} — M
gK = gPo-

4. pp € M and 0 : G — G is defined by g — sp, - g - 5!
— 0% = id (involution) and (G°)y C K C G° = {g € G | o(g) = g}.



Vice versa if M = G/K and K is as above (for some involution o), then
M = G/K is a symmetric space with respect to any G-invariant metric
(assuming K compact).

Polar representations
Isoparametric submanifolds

Symmetric spaces =
—

L

Let M = G/K, K = G, and o be the involution with o(py) = po.
K acts on T, M (isotropy representation)

G- G/K=M
g=t+p 5 T,M & p=T,M.
o, id -id
Isotropy representation = Adjoint representation Adg(K) restricted to p.

Proposition 1.1. The isotropy representation of a symmetric space is polar,
that is, there exists a linear subspace ¥ C p which meets every orbit and
always orthogonally. In fact, one can take X any maximal abelian subspace
acCp.

Proof. (for the group case)
M = G, compact with biinvariant metric.

G=GxG/A, A={(9,9) | g€ G} =G, 0o(g1,92) = (92,91)
biinvariant metric on g: ([X,Y], Z) = (X, [V, Z]).
gtg=A0+24
— {(X,X) | X € g} +{(X,—X) | X € g}

-

~”

I
g p=g
I[sotropy representation ~ Adjoint representation of G' on g.
(i) Let t C g be a maximal abelian subalgebra.

Fix X € g.
’ Tx(Ad(G)X) = [g, X].



Because

d

- 0 Xg ' =YX - XY =[X,Y],

t=0

d
Ad, X = —
gt dt

t=0
where %‘t:o g =Y with gy = e.
vx(Ad(G)X) = ¢x centralizer.

Because
Y 1 [g, X] 0= (g, X].Y) = (g,[X,Y]).

(ii) X is regular (AdG(X) is principal)
(= Gx acts trivially on vy)

= [cx,vx] =0 = vy is abelian.
Let t be a maximal abelian subalgebra containing vx.

:>VXct8VX

— vy =1t.



(iii) If G is compact and acts isometric = exp (v,(G(p))) meets all orbits.

l/X:t

— dg € G s.t. g7 = p.

O
Corollary 1.1. Mazimal tori in compact connected Lie groups are conjugate.

Proof. (i) Let the action of G on M (any Riemannian manifold) be polar.
¥ is a section = {¢gX | g € G} is the set of sections
(3 is another section and p € ¥ is regular = Jg € G s.t. gp € X' UgX.
gpis regular, and hence a section through gp is unique because it is equal

to exp vy, (Gyp))-

i) G T <«+— tcC g

max. torus max. abelian

T +—
Ty — 1

Proposition 1.2. g € G s.t. t, = (Adg)ty = T, = gT1g™".

Vo={AeMmnxnR) | A'= A trA =0}
U
Y={Ael, | Adiag}



SO(n) acts on Vj by conjugate.
SU(n)/SO(n) su(n) = so(n) + v/ —1V
oA = A.

Dadok (1985) Any irreducible polar representation is orbit equivalent to
the isotropy representation of a symmetric space.

} are orbit equivalent, if there is a linear isometry
0 Vi — Vo st o(Givy) = Go(pvy) for Vv, € V3.

Proof. (J. Eschenberg-E. Heintze) (cohomog. # 2)
Let K be a group which acts polarly on V' and irreducibly:
(K ={g€0(V) | gleaves the K-orbits invariant}).

gi=t+V (as vector space).
T

Lie(K)
bracket For A,B € tand X,Y €V,
[A, B] is the given one,
[A, X] := A(X),
[X,Y] € tis the element with (A, [X,Y])e = (A(X),Y)y.
7

the given invariant inner product

Herea <A7 B>E = _BE(A,B) - tr(A -B:V — V)

Problem: Prove Jacobi identity
(X, [V, Z]|+ [V, [Z,X]]+ [Z,[X,Y]] =0 (not so simple !)

O



Geometric Implications of Polarity:

Proposition 1.3. Suppose that G C I(R™) acts polarly on R™. Let G(p) be
a principal orbit and &, € v,(G(p)). Then &, extends to a global normal field
by the group action and thus parallel in v(G,).

Proof.

& (%‘tzo &) 1s a tangent vector)

G(p)=H
G, acts trivially on v, = 1,(G(p))
= {gp = 9.&p defines a global normal field.

______________________ D + gp

’Y(t) =gip, go =€

—|  gp Ly,
t=0 :>

- gp(p + fp) 1 v
t=0

O

Corollary 1.2. Principal orbits of a polar representation (linear or affine)
are isoparametric, that is, vM 1is flat and A¢ has constant eigenvalues for
any parallel &.



Proof. vM is flat by the Proposition. If ¢ is parallel in v M, then

Eop = 9:Ep = Ag,, = Age, = g*Agpg*_l.

E. Cartan: Isoparametric hypersurfaces of R*, 5™, H" = X.

M=fY), f:X—R
f is isoparametric, if || gradf || and Af are constant along level surfaces.

Noog

parameter

| gradf ||= a(f) N

Af = b(f)

level surfaces are parallel.
level surfaces have constant mean curvatures.
(= principal curvatures are constant).

e [soparametric submanifolds of R have a rich geometry.
Let M C R"™ be isoparametric and & a parallel vector field.
Then My ={p+¢&, | p € M} is a parallel submanifold.

M <— isoparametric

M
M ~~ isoparametric foliation
(singular foliation)

F = focal submanifold

Ricci equation: [Ag,, Ag,] =0 for Y&, & € v, M.

8



where ny, -+, n, are normal fields (curvature normals).
Let a = 2" be the fundamental form.

(a(X,Y),6) = (AX,)Y) = o(X,,Y) = (X;, V),

VoY, Zi) = (Vx,Yj, Z) (nj — ny)

Codazzi : This is symmetric in ¢, j, k.
FOI'XZ'EEi,Y}'EEj, Z, € By, Wlch:j%k,
0
(Vx.Yj, Zi) (nj — ni) = (V 2, X5, X (nj—15)
—= Vx.Y; LE, "k#i,j
- VXZY; e FE;

— Fj; is integrable and its leaves are totally geodesic

(actually an around sphere).

2 Affine Kac-Moody groups and correspond-
ing infinite dimensional symmetric spaces

Abstract

A compact Lie group with biinvariant metric is one of the simplest
examples of a finite dimensional symmetric space. Probably the most
direct generalization to infinite dimensions is an affine Kac-Moody
group. We describe affine Kac-Moody algebras and their correspond-
ing groups and show that they can be viewed as symmetric spaces.
More generally we consider symmetric spaces G/K where G is an
affine Kac-Moody group. We show that their isotropy representations
are polar and are closely related to Terng’s P(G, H)-actions on Hilbert
space by gauge transformations.

g : finite dim. complex, semi-simple Lie alg..
V)
b : Cartan subalg.—that is,

b is abelian & VX € b, ad X : g — g diagonal..
g=b+> ,cA08a : root-space decomposition w.r.t. A C h*.
Qi 0, €A : basis



Remark that Yoo € A can be described as follows: a = > msq;, either
m; > 0orm; <0, m; €Z.

A = (a;;) Cartan Matrix:

(O‘i’ aj)

€ 7.
(o, )

CLZ'jZQ

. 1:1 . .
Cartan matrix <— Dynkin diagram
where aq,--- , ay
o, a; are connected by a;; - aj; edges

(O‘i’ aj)2

0<a-a;=4 < 4.
=T s ) - (ag,ay)
2 -1
—1
An 0—0---0—0 A =
—1
-1 2
2 -1
B; ©o—o=0 A=|-1 2 =2
-1 2
Gy, ©=0° A:<_21 _23>

3 RECIPE (due to Serre) to construct g from Cartan matrix A (n x n-
matrix): H;, E;, F;, 1 <i<n

[Hi, H;] =0, [H;, Ej] = a;;E}, [H;, Fj] = —aji Fj,

|E;, Fj) = 2H;, (ad E;)'~%i(E;) =0, (ad F;)'"%(F;) =0.
Properties of Cartan matrix:
(C1) @i =2, a € Z.
(C2) a;j =0 <= a;; =0.

(C3) a;; <0 for Vi # 5.

10



(C4) det (aij); o, >0 for V.J' C J.

ije
Kac-Moody: If (C4) is dropped, then A is called a generalized Cartan matrix.
The corresponding Lie algebra is called a Kac-Moody algebra.
Borderline case: replace (C4) by
(C4I) det (aij)i’jgj’ > 0 for ".J’' ; J
det A =0
— affine Kac-Moody alg. (co-dim., but very close to finite dim. ones).

n=2

2 -1 2 =2
affine <_4 5 ) (_2 5 >
An affine Cartan matrix.

Realization of corresponding Kac-Moody algebra.

g: complex, simple, o € Autg, o' = id.
Lag(g,0) :={u:R—g | u(t+27) =ou(t)}.

u(t) = Z eV, € g.
In|<N

(w(t) = u(lt))

[-,-]o pointwise

27
[u, v] == [u,v]o + (¢, v) - ¢, where (u,v) := / (u(t),v(t))odt
 Killing 4
[z,c] = 0 for Y, [d,u] = u'
— Zalg(g, o) is an affine Kac-Moody algebra.

Conversely, any affine Kac-Moody algebra is isomorphic to some Zalg(g, o).

11



(g,0) ={u:R—g | u(t+2r)=ou(t)}, o € Autg.

L
L(g,0) = L(g,0) +C-c+R-d.

Lalg(ga U) = Lalg(ga a:) — Lalg(ga U) = Lalg(ga a:)
< [o],[0] € Aut g/ Int g are

conjugate (have the same order)

Alltg/ Intg = ]_, ZQ, Zg.

O—O< Dy (s0(8)).

g®) = Lag(g,0) 1<k<3.

k = order of [o]

AP, BY, Cl, AP, DY EP, DY

¢

L(su(n +1),id)

g: compact simple Lie algebra, o € Aut g.

E(ga U) - E(gCa UC)
[

“compact real form”

~

Groups associated to L(g,o).

G: compact, simply connected Lie group with Lie algebra g, 0 : G — G.

L(G,0)={g:R—>G | g(t+2r) = ag(t), g € C=}
pointwise multiplication

Pressly-Segal: Loop Groups
~ ideal ~
L(g,0) :=L(g,0) +Re < L(g,0)

I
derived algebra

[u, v] = [u,v]p + (v, v) - ¢

12



L(g, o) = semi-direct product of L(g,o) and R,

AIM : Find the group corresponding to z(g, o).

L(g,0) = central extension of L(g,0);
0= R-¢— L(g,0) = L(g,0) — 0.
In general, a is a 1-dim. central extension of a Lie algebra a, if
0-R3a—a—0

is exact and «a(R) C center of .
— a = a+ R (as vector spaces): for z,y € a

[z,y] =[x, y]o + w(z,y) - ¢ necessarily.
Here, w : a x a — R with
(i) w(z,y) = —w(y,z)
(i) w(lz, ylo, 2) + w([y, zlo, 2) + w((z, 2]o,y) = 0
central extension <— cocycle.

In our case,

wa(u,v) = A, v) (: /0 2W(u’(t),v(t))0dt>.

This wy is a cocycle on L(g, o). It extends by left translation to a 2-form wy
on L(G, o). This is closed (by (i) and (ii)).

Nw] = [wi] € H*(L(G,0),R) D H*(L(G,0),7Z)
2l 2l
R Z
= I\ s.t. [wy] € HA(L(G,0),Z) iff A = k), for some k € Z.

To [wk,,] corresponds on S'-bundle L(G, o)k LN L(G,0).
k=1 L(G,0) := L(G, o), LN L(G,o0) (simply connected).

18" = L(G,0) = L(G,0) = 1

13



central extension.

L(G,0) = L(G,0) x S*  (semi-direct)
affine Kac-Moody group.

L(g.0) =L(g,0)+R-c+R-d,

Lcompact, simple
ocAut(g)

U,V

LG, 0) 5 LG, 0)

biinvariant metric on L(g, o):

(u,v) = /ZW(u(t),y(t))Odt, c,d L L(G,0)
" Killing * (c;0) = (d’ d)=0
L?-inner product (c,d) =
Lorentz metric (c+d,c+d)=2
(c—d,c—d)= -2

biinvariance: e.g.

Adjoint action:

{x e L(g,0) ‘ (z,x) = —1}

two sheeted hyperboloid is invariant under AdL(G, o) and

Hor := {x e (g, 0) ‘ (2,2) = -1, (z,¢) = 1}

211
:{u+d—%c‘uEL(g,U)}

«——u € L(g,0).

14



_ 0ij
9ij = 3=

n

R*! = Hor (flat)

Proposition 2.1. The adjoint action of L(G,0) (C L(G,0)) restricted to
Hor induces on L(g,0) the following affine action:
Let m: L(G,0) — L(G,0) and n(g) = g
— Ad(g)u=gug™' —g'g""  (9,G C End(R")).
Proof. We compute modulo R-¢, i.e. we work in L(g, 0)/R-c = L(g, o) +R-d.

Let g,G C End(R") and V = {v: R — R" |v € C*}. Then L(g,0) +R -d
embeds into End(V): for u € L(g,0) and v € V'

{( u(v))(t) = u() (1),
(dv)(t) =
= Adg(u) = gug™', Ad §(d) = gdg~",
gdg ' (v) = g(g~v)' = —gg~'g'g v+ g9V = (=g'g"" + d)v.
Hence, Adg(d) =d — ¢'g "

Ad g (u +d— ‘“” s ) =gug™' — ¢ g7 +d+ Ac
—_

€ Hor

gug™' —¢'g"' € L(g,0)
<~

€ L(g,
Y (g 0) constant

15



AIM This action is polar.
But first take completion of L(g,o) and L(G, o). L*([0,27],g) is the com-
pletion of L(g,0) w.r.t. (-, ).

Ly (G,o0):={g:R— G|gt+2r)=0g(t),g€ H (4 € L*)}.
The action Ad g of L(G, o) on L(g, o) extends to the action of Lyi(G, o) on
L*([0, 27], g).

Proposition 2.2. This action is polar. In fact, if a C g% is mazximal abelian
= a (consent curve in a) is section.

Proof. a) a meets orbits always orthogonally. Let u € a and @ be the corre-
sponding consent curve.

a4
ds

(9sugs" — gi95") = Xu—uX — X'(t) = [X,u] - X',
5=0
where g,(t) € Ly (G, 0) with go(t) = e and Lg,(t) = X(t). For Yo € a,
([X,u] = X', 0) = (X, [a,0]) — (X', 0) = =(X(27) — X(0),v) = 0.

~

a

g3

C. L. Terng: b) a meets every orbit (o =id, a = A C g: maximal torus).
Let u € L*([0,27], g) with u = —¢g’¢g~" and g(0) = ¢

= g(27) = Xpexp(—2ma)X, * for some a € a= A and X € G.

Let X (t) := g(t)Xpexpta = XaX ' - X'X ! =u. O

O

3 Classification and geometry of Kac-Moody
symmetric spaces

Abstract

16



We show that these spaces are classified by pairs of automorphisms
of order less or equal two of finite dimensional simple Lie algebras
(up to a certain equivalence relation) and indicate that several basic
geometric properties of finite dimensional symmetric spaces carry over
to this new situation. We conjecture that these spaces, polar actions
on Hilbert spaces and isoparametric submanifolds of Hilbert spaces
are essentially also in bijection to each other. Finally we address some
of the unsolved problems in this theory.

Let L(G,0) be an affine Kac-Moody group with (Lorentz) biinvariant
metric. In Group Case, Sa(§) := § ' is the symmetry w.r.t. é € L(G,0),
and Isotropy representation induces an affine polar action on a Hilbert space.
Let G := L(G,0) and K := G?, where p is an involution of G. Today, we

investigate the isotropy representation of G / K.

Theorem 3.1. (i) Let ¢ be an autom. of L(g, o). Then, % € {£1}, 7y € R,
Fugs € L(g,0) and an isom. 3¢ : L(g,0) — L(g,0),

d(c) = ec,

o(d) = ed + ug + ve,

$(u) = d(u) — £(ug, u)e.

Here, 15¢ (resp. Qnd) kind if e = +1 (resp. —1).
(ii) There exist ¢y € Aut(g) and ty € R, s.t. (¢pu)(t) = ¢(u(et +ty)) for
LER, t s ¢y is C%, and ¢yron = oo © (& (du)(t + 27) = o(pu(t))).
(iii) ad(ug(t)) = —d}¢; ' (€ Lie(Aut(g)) = Der g).

Remark 3.1. Let us comment on correspondence: b — (¢, V).
If ¢ is of finite order, then v = —¢||uy||?/2. Hence, ¢ <= ¢ in this case.

(iv) Conversely: Any smooth curve ¢, in Aut(g), € € {1}, to, v € R with
Grror = 0o~ determines an autom. of L(g, o).

Simplest Case: ¢, = ¢o € Aut(g) (& uy = 0)
—  ¢(c) = ec,
¢(d) =ed+ve <« v=0Iif ¢ is of finite order.

~

o(u) = du, ou(t) = ¢o(u(et +to)).

17



Theorem 3.2. (i) Not every é is conjugate on Z(g,a) to one with ¢; = ¢q
constant (Even not true for involutions).
(ii) For any autom. ¢ of finite order, there exists & € Aut(g) and an isom.

V1 L(g,0) = L(g,5) s.t. X := 0! has xi = xo (¢, X quasi conjugate).

Let p : g — g be an involution, where g := L(g,a). Then, one may
assume that p(c) = ec, p(d) = ed and ﬁu( ) = po(u(et +tp)). Let us denote
the canonical decomposition by g= E—i— p.

CASE e =1: ¢,d € t and L(G,0)/L(G,0)? ~ L(G,0)/L(G, o)".

CASE e = —1: ¢,d € p.

plc) = —c,
pu(t) = po(u(—t))  (to = 0 after a certain conjug.).
=1id and py = opgo. Let py := pp and p_ := pyo ' = pL =1id.
Theorem 3.3. Let py € Aut(g) with p?. = id, and let o := p_p,. Then, p
with p(c) = —c, p(d) = —d and pu(t) = py(u(—t)) defines an involution on
E(g,a). Up to conjugation, these are all involutions of the second kind on
the various L(g, o) (g :fized, o tvaries).

Remark 3.2. Conjugacy classes of involutions of the second kind correspond
to equivalence classes of pair (pi,p_) with py € Aut(g) and p% = id.

(P15 p=) ~ (=, p+);
(p1sp-) ~ (apra, Bp_B") for Ya, B € Aut(g) with o' 8 € Int(g).

(Corollary) All symm. sp. of K-M type thus correspond to pairs (G/K,,G/K_)
of symm. sp., where K, := GP+.

p+: given, ¢ = —1.
Define o by o := p,p,, and suppose that p satisfies pu(t) = p; (u(—t)).
L(G,0) ~ L(G,0)" = {g : R — G | g(t +27) = og(t), prg(—1) = g(t)}.
Ly (G,0)? ~{g:[0,7] = G|g(0) € G’*, g(7) € G~} ~ P(G, K; x K_).

Here Ky := G** and P(G,H) :={g:[0,1] = G |g € H', (9(0),9(1)) € H}.
Terng: The P(G, K, x K_) action on Hilbert sp. is polar and is induced
from the isotropy representation.

Theorem 3.4. Any symm. sp. of affine Kac-Moody type induces an affine
polar action on a Hilbert space. The principal orbits are isoparametric sub-
manifolds.

18



V= L*([0,1],9)

Riemannian submersion

by

Y

T Hom GO

Geometry of these infinite dim. symm. sp.

Problem: e.g.

L(G, o) is only a Fréchet manifold modelled on L(g, o), which is a Fréchet
vector sp..

The topology causes from a family of norms: ||u|l, := > p_; [Ju®||w,
where u®) denotes the k-th derivative.

Inverse function theorem does not hold for Fréchet manifolds.

R. Hamilton: Tame Fréchet manifolds.

Proposition 3.1 (B. Popescu). Let G := L(G,0) and K := G?. Then, G
and G/K are tame Fréchet manifolds, and G — G/K is a submersion.

L(G,0) has a biinvariant metric and L(G, o) has a biinvariant metric
(= L? metric). But the tangent sp. (= L(g, o)) is not complete w.r.t. weak
metric.

Theorem 3.5 (B. Popescu).

(i) G and G/K are symm. sp., and G — G/K is (pseudo) Riem. submer-
S10M.

(ii) The Levi-Civita connection exists, and its curvature and geodesics are
computed as in the finite dim. case, e.g.

(a) R(X,Y)Z = —[[X,Y],Z] forVX,Y,Z € p (§ =t +p).
(b) (R(X, Y)Y, X) = ([X,Y][X,Y]) > 0.

(ili) VR = 0.

Let X = G/K be a finite dim. symm. sp.. Then, a submanifold F C X
is called flat, if F' is totally geodesic and flat.

rank X := max{dim F' | F' is flat}.
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Theorem 3.6 (B. Popescu). In G and CA?/IA(, there exist mazimal flat, totally
geod. submfds of finite dim. (Falso infinite dim. flat totally geod. submflds).

These finite dim. maz. flat are all conjugate to each other (rank E(G,O’) =
rank G + 2). They are compact.

Problem: Duality

g=¢t+p — g-=Et+1p

G/K G*/K (dual symm. sp.)
compact non-compact

sec. curv. > 0 sec. curv. <0

Hadamard-Cartan
(G*/K is diffeom. to R™)

e.g.
G=(GxG)/A — Gc/G
A ~G

Mostow Rigidity Theorem: Let X := G*/K and X := G*/K (X, X
contain no 2-dim. factor), and let X /T" and )E'/f‘ be compact quotients, where
I' ¢ I(X). Then, I' ~ T' = X/T and X/T are isometric to each other.
(Proof in the higher rank case: Tits building).
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