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ABSTRACT. In this paper we will consider a holomorphic family
of closed Riemann surfaces of genus two which is constructed by
Riera. The goal of this paper is to estimate the number of holo-
morphic sections of this family.

1. INTRODUCTION

1.1. Holomorphic family of Riemann surfaces and its sections.
Let M be a two-dimensional complex manifold and B be a Riemann
surface. We assume that a proper holomorphic mapping 7 : M — B
satisfies the following two conditions:

(i) The Jacobi matrix of 7 has rank one at every point of M.
(ii) The fiber S, = 7' (b) over each point b of B is a closed Riemann
surface of genus gy.

We call such a triple (M, w, B) a holomorphic family of closed Riemann
surfaces of genus go over B.

A holomorphic mapping s : B — M is said to be a holomorphic
section of a holomorphic family (M, 7, B) of Riemann surfaces if 7 o s
is the identity mapping on B.

Let S be the set of all holomorphic sections of (M, 7, B). Denote by
£S the number of all holomorphic sections of S. Next result is called
Mordell conjecture in the functional field case.

Theorem 1.1 (Manin [13],Grauert [5], Imayoshi and Shiga [8], Noguchi
[14]). The number of all holomorphic sections of S is finite.

We remark that Shioda [17] has discussed holomorphic sections of a
rational elliptic surface (S, f, P') by using and developing his theory of
Mordell-Weil lattice.

Hence next it is important to estimate §S for (M, 7, B).

1.2. Kodaira surfaces. Kodaira constructed a holomorphic family

(M, 7, B) whose base surface and fiber are both compact Riemann
1
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surfaces. We briefly review its construction (c.f. Atiyah [1], Kas [10],
Kodaira [12]).

Let (C,7) be a compact Riemann surface of genus gy > 2 with fixed
point free involution 7 : C' — C. Let f : D — C be a (Z/2Z)%-
unbranched covering corresponding to

7T1(C) — Hl(C,Z) — Hl(C, Z/QZ)

The genus of D is g; = 2290 (go — 1) + 1.
We consider the product D x C' and the graphs of f and 7o f,

Ty ={(u, f(u)) e DxC|ue D},

L;p={(u,7of(u)) € DxC |ue D}.

As 7 is fixed point free, Iy N T,y =0 in D x C. Because I'y + I';;
is 2-divisible in Hy(D x C,Z), we can find a square root L of the
holomorphic line bundle O(T'y 4+ T';;), i.e., L¥2 = O(T; + T,y).

Let s be a section of O(I'y+T1') vanishing at I'y+T';;, and M be the
inverse image of s(D x C') under the square mapping L — O(T';+T;/).
Then the natural mapping 7 : M — D induces the following diagram.

McCL

/}D%Q)&XO(W +T'ry)

D+—DxC—C

Therefore (M, 7, D) is a holomorphic family whose fiber 7 1(u) is a
two-sheeted branched covering of C' = {u} x C'in D x C branched at

(u, f(u)) and (u, 7 o f(u)).

1.3. Estimation of {S for Kodaira surface (M, 7, D). For a Ko-
daira surface, we have an explicit estimation of {S as follows.

First of all, a Kodaira surface has “trivial” sections s; and s..¢
defined by s;(u) and s;op(u), where sp(u) is the branched point of
7~ (u) over (u, f(u)) and s,o7(u) is the branched point of 77" (u) over
(u, 7o f(u)). Therefore

1S > 2.

Next, we estimate S from above by considering the canonical map-
ping S to the set Hol(D,C) of all holomorphic mappings from D to
C,

®:S — Hol(D,C)

s+ 7 os.
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Since the involution 7 : €' — C' induces the covering transformation of
M — D x C, ®is 2 to 1 except for sy and s;of.
Thus we have
1S = 249(S) — 2.
We denote the set of all non-constant holomorphic mappings from D to
C by Hol,,.(D, C). Then the next claim is a key idea. (See Proposition
3.1)

Proposition 1.1. ®(S) C Hol, . (D, C).

It is well known that §Hol,. (D, C) is finite, for example, Tanabe
[18] gave an explicit estimation of §Hol, . (D, C),

tHol,..(D,C) < (4g1 — 3)*" x 6(g; — 1),
where g; is the genus of D. Since g; = 2%%°(gy — 1) + 1, we have
¢Hol, (D, C) < {2290+2(g0 —1)+ 1}2290+1(90—1)+2 % 3. 2290+1(go —1).
Therefore we have the following theorem.

Theorem 1.2. The number §S of holomorphic sections can be esti-
mated as follows.

2<HS = 2P(S) -2
< 2fHol,(D,C) — 2
S {2290+2(go o 1) + 1}22g0+1(90*1)+2 % 3 i 2290+2(90 . 1) -9

1.4. A Certain Kodaira Surface due to Riera. In [15], Riera gave
a holomorphic universal covering D of a Kodaira surface. In particular,
D C C? is a Bergman domain and there exist discontinuous subgroups
E and F of Aut(D) such that

D CC

J

D/E = M

Lo

D/E =D xC.

Moreover, he gave a “kind” of Kodaira surface whose base surface is a
forth-punctured torus and fiber is a closed Riemann surface of genus
two. This is our subject in this paper. We remark that for a Kodaira
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surface, the genus of the base surface must be greater than one (Kas
[10], Theorem 1.1).  We will estimate £S for this surface. The detail
construction will be reviewed in §2. Here we explain his idea concisely
to show it is a “certain” Kodaira surface. L

Let (7',0) be a flat torus with the marked point 0 and let 5 : R — T
be a (Z/2Z)*unbranched covering corresponding to

m(T) — H\(T,Z) — H\(T,Z/27).

We also consider the constant mapping O : R — T r— 0. Slnce two
graphs I'; of p and I’y of 0 intersect at four points in R x T we can

take R = R\ 7 1(0) and p = AR, and consider I',and Iy in R x T
where I', and I'y do not intersect.

Riera constructed a two-sheeted covering M — R x T\ (T, +To)
which induces the next diagram.

I
R<— RxT — T

Then (M, R) is a holomorphic family whose fiber 7 “r) is a two-
sheeted branched covering of T 2 {r} x T in R x T branched at (r,0)
and (r, p(r)).

1.5. Estimation of S for Riera’s example (M, r, R). For the es-
timation of 4S5, we make the following strategy which is the same as in
§1.2. We have “trivial” sections s, and s, coming from pand 0 : R — T\,
hence

1S > 2.

Also we have the natural mapping
® : S — Hol(R, T)

s+ fos

and the equality £S = 2§®(S) — 2. Moreover, we will prove in §3.1 the
following:
Proposition 3.1. ®(S) \ {0} C Hol,. (R, T).

But we can not go further because T is not hyperbolic,
tHoly . (R, T) = oo

hence the explicit estimation of S does not come from the idea in §1.3.
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So we need another idea. First we show the following key theorem.
Theorem 3.1. For any g € ®(S) \ {p, 0}, the mapping g has a holo-
morphic extension g: R — T.

As a consequence, we show in §3.1 that
Proposition 3.2. For any g € ®(S) \ {p,0}, the mapping g satisfies
r,NnT,=0andTyNTy=10.

Let us denote by Holgis(R, T) the set of all non-constant holomorphic

mappings g : R — T which extend to the mappings ¢ : R — T and
satisfy T, N T, =0 and ', N Ty = 0.

Then Proposition 3.2 implies that ®(S) C Holqis(R, T)u{p,0}. Now
we set 71 = i, 7 = ¢2™/% and put Tj = C, /T1s (7 =1,2). The main
result of this paper is as follows.

Main Theorem . The number fHolg;s(R, f) satisfies the equality
(a) tHolgs(R, T) = 4, if T £ T, Ty.
Moreover,

(b) #Holgis(R, T;) = 12 for j = 1,2,

Since {p,0} C ®(S) C Holg;s(R, T) U {p, 0}, we have the following:
Corollary 3.1.
() 2<tB(S) <6, f T £ T, To.
(b) 2<40(S) <14, if T=T, or T =T,

Since §S = 2£®(S) — 2, we can estimate £S as
Corollary 3.2. The number §S of holomorphic sections can be esti-
mated as follows.
(a) S =2.4,...,8 or 10, if T 2 Ty, To.
(b) t§=2,4,...,24, or 26, if T =Ty or T =T,.

The authors thank the referee for his (or her) hearty comments and
advices: The first and the third authors considered ®(S) = {p,0} in
the first version of this paper. That is, Riera’s example (M, 7, R) has
exactly two holomorphic sections. In the referee comments, he (or she)
suggested them to reconsider the complex structure on M carefully.
After discussing with the second author, finally they had an idea to
consider Holgis(R, T) and proved that ®(8) C Holgis(R, T)U{p,0} and
tHolg;s( R, f) = 1 in general. But they could not determine whether
®(S) = Holgis(R, T) U {p, 0} or not, in other words, there is “another”
holomorphic section for our case, which is our next problem.
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2. CONSTRUCTION OF A HoLOMORPHIC FAMILY DUE TO RIERA

In [15], Riera explained how to construct the holomorphic universal
covering of a Kodaira surface whose fibers are branched over hyperbolic
Riemann surfaces.

Since we consider a certain Kodaira surface whose fibers are branched
over flat tori, we must modify his construction as follows.

2.1. Fiber as a Two-sheeted Branched Covering Surface of T.
Take a point 7 in the upper half-plane H. Let I';; be the discrete
subgroup of Aut(C,) generated by w — w + 1, w — w + 7. Let
a; : C, — C, /T, be the canonical projection. We denote the pair
(Cy/T1r,a1(0)) by (T,0) and set T =T \ {0}.

For any point ¢t € T', we cut T along a simple curve from 0 to ¢t. Next
we take two replicas of the torus 7" with the cut and call them sheet I
and sheet II. The cut on each sheet has two sides, which are labeled +
side and — side. We attach the + side of the cut on I to the — side of
the cut on II, and attach the — side of the cut on I to the + side of the
cut on II. Now we obtain a closed Riemann surface S; of genus two,
which is the two-sheeted branched covering surface S; — T branched
over 0 and ¢.

Note that the complex structure on S; depends not only on the point
t but also on the cut locus from 0 to ¢. Essentially there are four cuts
as in Figure 1 which determine different complex structures on S;.

FiGure 1. Four cuts on T
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Hence we can not construct a family whose fibers are S; over T. We
construct a holomorphic family with fibers S;. Let I'y o, be the discrete
subgroup of Aut(C,) generated by z — 2z + 2, 2z — 2z + 27. Let
5+ C, = C,/I'y9, be the canonical projection and denote the pair
(C. /T22r, 2(0)) by (R,0).
Define p : C, — C, by p(z) = z. Then p induces a (Z/27Z)*
unbranched covering p : R — T which corresponds to

1 — p(m(R)) — m(T) — (Z/27.)* —> 1.

Set R = R\ p~'(0) and p = p|R. For any point r € R, we take a
simple curve C' from 0 to 7 such that 5(C) is a cut from 0 to p(r). By
using this cut, we construct a two-sheeted covering S, := S,,) — T.
Now S, is uniquely determined by r € R not depending on the cut C.

Hence we have a family whose fibers are S, over R as a set.
Next we introduce a complex structure in this family.

2.2. Quasi-conformal Deformation. We fix a point 7y € R and a
simple arc from 0 to rg in R. The image of this under p is a curve C'
on T from 0 to p(ro). Cutting T along C, we have a closed Riemann
surface S,, of genus two. We realize this two-sheeted branched covering
Sro — T in terms of Fuchsian groups as follows.

We choose a Fuchsian group G C PSL(2,R) which satisfies the
following conditions:

(i) there exist two elliptic elements ¢; and g, in G such that each
gj(7 = 1,2) has the fixed point z; in H,
(ii) H/G is biholomorphically equivalent to T,
(iii) The canonical projection H — H/G sends z; and 2 to 0 and
p(ro) under a biholomorphical mapping from ]HI/G to T respec-
tively.

Then we can find an index 2 normal subgroup G; of G such that
H/G, — ]I-]I/G realizes S,, — T. From the definition of as,p:C, —» C,
defined by p(z) = z is a lift of p: R — T to the universal coverings C,
of R and C, of T\, and let 7o be a point 7y = ay (7).

Let V : H — C, be the mapping with V(z;) = 0 which makes the
next diagram commutative. Then V' becomes a two-sheeted branched
covering with V(Gzl) =T,,0 and V(ng) = T'y,p(r0), where sz is
the orbit under G of z;, and 'y ;p(79) and Ty ;0 are the orbits under
'y, of p(ro) for 7y € C, and 0, respectively.
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]I-]IL>(CU,

J |

H/G —— T

We construct for z € C,, a quasi-conformal mapping w, : C, — C,

satisfying the following conditions:
(i) w:(p(7T0)) = p(2),
(ii) w,0ogow, ' =g forall g €T,

In order to construct such a quasi-conformal mapping w,, we make
the following observations:

First, let v(¢),0 < ¢t < 1 be a path from p(7y) to p(z) in C, which
contains no points of L(1,7) = {m +n7 € C | m,n € Z}. For each
t, there exists a Dirichlet fundamental region D, for I'y ; centered at
v(t). Choose an Euclidean disk B; centered at +(t) sufficiently small
that the closure B; is contained in D; and has no points of L(1,7).
Moreover we take a finite covering of v, say By,,..., B, ,,, such that
v(t1) = p(ro) and Y(tni1) = p(z) and y(tj41) € By, -

Next, we set

CHaltyn) = 27(_%) —— +7(t;), on B,
wi(€) = 1+ 7 (0(E1) = 7(E))(C = (1) . '
G, on Dy, \ By,.

where 7; is the radius of B;;. Moreover put w; = gow;og~" on g(Dy,)
forallge I'y ;.

A simple calculation shows that w; : C, — C, is a quasi-conformal
mapping with the Beltrami coefficient

() = {;é(v(tm) — () (w;(¢) =(t;)), on By,

We remark that |[y(t;41) — v(¢;)| < r; and |w;(¢) — v(¢;)| < r; imply
||7i]loc < 1. Moreover since y(t,+1) = p(z), 7; depends holomorphically
on z in By .

Finally, we set w, = w, ow,_10---ow;. By the construction of each
wj, we see that w, satisfies the conditions (i), and (ii). Hence we have
the desired quasi-conformal mapping w,.

2.3. Construction of D. For z € C,, we put

V(<)
VI(¢)’

1:(¢) = =(V(C))
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then s, is the Beltrami coefficient for G. We define W,. as a unique
quasi-conformal mapping of H which has the complex dilatation ., and
leaves 0, 1, and oo fixed, respectively. Set

o Jee(Q), ¢eH
(2.1) W@)_{Q (eC\H

Then there exists a unique quasi-conformal mapping W#= of C which
has the complex dilatation i, and leaves 0, 1, and oo fixed, respectively.
Now put D(p,) = WH=(H). Then we have the following commutative
diagrams:

Wy, Wk

H —— H H — D(u)
VJ{ V. 14 Vzl
cC =25 C C =5 C

where V, = w, 0V o (W,,)"" and V* = w, o Vo (W#)~! are branched
coverings branched over the orbits I'y ;w and I'y ;0.

Since u, depends holomorphically on z, it is known that W#: also
depends holomorphically on z. Thus we set

D={(20) [ z€H (e D(u.)}

Then D becomes a domain in C?, so called a Bergman domain.

2.4. Construction of F. Next we construct a subgroup F of automor-
phisms of D which acts properly discontinuously without fixed points.
Let H be the covering transformation group of a four punctured torus
R, that is R = H/H. Denote by mod(G;) the set of all equivalence
classes (w) of quasi-conformal mapping w : H — H with wGw™! =
GGy, where two quasi-conformal mappings w; and ws are said to be
equivalent if w; = wy on R. Then there exists a homomorphism 0 :
H — mod(G) such that
(2.2) W,

Kh(z)

= aoW, od(h)" (2 € H,h € H)

where o € Aut(H) is chosen so that co W, o d(h)~" fixes each of 0,1,
and oo.

It should be remarked that we have a homomorphism 6, : H —
Aut(G4) given by 0y(h)(g) = §(h)ogod(h)!. By using this homomor-
phism, we define F to be the semidirect product of H and G;. In order
to define the action of F on D, we make the following observations:

First, we need the following result.
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Proposition 2.1 (Bers [2], Lemma 3.1). Let [u] € T(G) and (w) €
mod(G). Define a quasi-conformal mapping W, by the formula
W, :aowuow’l,
where a € Aut(H) such that « o W, 0w " fizes each of 0,1, and oc.
Then the mapping ¢ — ( given by
C=W"owo (WH)(C)

is a conformal bijection from D(u) onto D(v).

Moreover if [u| varies holomorphically according to a parameter, so

does C for a fized value of C.
By (2.2) and Theorem 2.1, the mapping
¢ =W od(h) o (WH)7'(C)
is a conformal bijection from D(uﬁ) onto D(fip(»)). It follows from the

second part of Theorem 2.1 that ¢ depends holomorphically on z.
Thus we define the action of £ on D by

(h, 91)(2,¢) = (h(2), W) 0 gy o (W")~1(())
= (h(2), W' 0 g1 0 6(h) o (WH)7(()),
where (z,() € D and (h,g1) € H x G;. We can check this is a group
action.

Let F(G1) be the Bers fiber space over the Teichmiiller space T'(G1)
defined by F(G1) = {([1],¢) | [] € T(G1),C € D(n.)}. Every
element (w) of mod(Gy) acts on F(Gy) by

([12], Q) = ([, W™ 0w o (W) 7H(C)).

We set

A={(z ([, Q) [ z € B, ([1:], ) € F(Gh)}-
Then D is identified with A under the mapping

(2,0) = (2, ([, ©),

and the action of £ on A = D can be written as

(h: 91) (2, ([12], ©)) = (h(2); g1 0 6(h)([11:]; €));

where g; o §(h) is an element of mod(Gy).

Theorem 2.1 (Bers [2], Theorem 7). If dim¢T(G) < oo, then mod(G)
acts properly discontinuously on F(G).

Hence E acts properly discontinuously on D as dimc7T(G) = 3.
Moreover the action of E on D is fixed point free since H and G, are
fixed point free.
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2.5. Holomorphic Family (M, r, R). The quotient space D/E be-
comes a 2-dimensional complex manifold. We set M = D/FE.

The group E = H x G also acts on D and the quotient space D/E
is biholomorphically equivalent to R x T. Therefore we have a two-
sheeted branched covering IT: M — R X T branched over two graphs
[y and T',,.

We define 7 to be the composite Pr o Il of the covering mapping
IT and the projection Pg : R X T = R, and (3 to be Pz oIl, where
Ps: R x T — T. Then the triple (M, m, R) is a holomorphic family
such that for any point r € R, 8|S, : S, = 7 '(r) — T is a two-sheeted
branched covering.

3. PROOF OF MAIN THEOREM

Let us recall Holgs(R, T) is the set of all holomorphic mappings ¢ :
R — T which extend to the mappings g : R— T and satisfy I',NI", = 0)
and T,NTy = (). Set 7, =i, 7o = €*/3 and put T] = CZ/FLTJ,,] =1,2.

)

]
[y
U
’

.
I C I
’

N |—

FIGURE 2

Main Theorem . The number fHolg;s(R, T\) satisfies the equality
(a) tHolgs(R, T) =4, if T 2 Ty, Ty.
Moreover,
(b) #Holgis(R, T;) = 12 for j = 1,2,
Since {p,0} C ®(S) C Holg;s(R, T) U {p, 0}, we have the following:
Corollary 3.1. (a) 2 < 10(S) <6, if T 2Ty, Ts.
(b) 2 <t®(S) <14, if T=T, or T=Th.
Since §S = 2£®(S) — 2, we can estimate £S as
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Corollary 3.2. The number £S of holomorphic sections can be esti-
mated as follows.

(a) 88 =2,4,...,8, or 10, if T 2 Ty, T>.

(b) 8§ =2,4,...,24, or 26, if T =Ty or T = T,.

3.1. Key Theorem.
Proposition 3.1. ®(S) \ {0} C Hol,. (R, T).

Proof of Proposition 3.1. Assume there exists a constant mapping
g € ®(S) \ {0} which is written as g(r) = ¢, where ¢ is not equal to
0. Since p : R — T is surjective, there exists a point ry such that
p(ro) = ¢, hence p(ry) = ¢. Since p(z) = z is a lift of p, we can find
2o € C, \ L(1,7) such that as(z) = ro and
(3.1) 2y = C.
For sufficiently small € > 0, A(zg,€¢) = {z € C, | |z — 2| < €} and
Afc,e) ={w € Cy | |w—c| <€} can be taken as local charts at ro € R
and ¢ € T, respectively. Then the graph Iy={(r,c)|r € R}in Rx T
can be locally written as
w=rc
in A(zp,€) X A(e,€). Thus M is locally represented as
w=w—c
in C, x A(zp, €) x A(c, €) (see Wavrik [19], Theorem in Appendix). Take
¢ > 0 with € < ¢, and set z = 2 + €'¢”?. By using (3.1), we have
w=w—c

=2 + e — ¢

:660.

When 6 goes from 0 to 27, u = u(f) becomes two-valued which means
that s = s(0) is two-valued. We have a contradiction. n

Theorem 3.1. For any g € ®(S) \ {p, 0}, the mapping g has a holo-
morphic extension g: R — T.

Proof of Theorem 3.1. First, we use the following theorem about the
canonical extension of holomorphic families:

Theorem 3.2 (Imayoshi [6], Theorem 4 and Theorem 5). Let (N, 7, A—
{0}) be a holomorphic family of compact Riemann surfaces of genus g
over the punctured disk. If the homotopical monodromy is of infinite
order, then (N, 7, A —{0}) can be canonically completed in the holo-

morphic family (N, 7, A) with a singular fiber over the origin, where
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N is a two-dimensional normal complex space. Moreover any holomor-
phic section s : A — {0} — N has a unique holomorphic extension
s:A— N.

To use this result, we need to show the following claim.

Claim 1. For any puncture p of R, the homotopical monodromy M,
of (M, m, R) around p is of infinite order.

Proof. First, we consider the case where p is 0. Fix a point r( in
a neighborhood of 0 in R and fix rg. When a point r moves from 7,
and turns around 0 once, and comes back to ry, the cut between 0 and
p(ro) on T as in Figure 3 also turns around 0 once. Thus the curve ¢
on T as in Figure 3 changes to {'. When the point 7 moves as above,
by the construction of the fiber S, , the curve £ on S,, as in Figure 4
changes to /.

Hence the monodromy M is the twice product of a negative Dehn
twist about the simple closed curve C, where C is a separating curve
as in Figure 5. Therefore M, is of infinite order.

Similarly, for another puncture p of R with p # 0, we see that mon-
odromy M, is the twice product of a negative Dehn twist about the
simple closed curve Cy, where (5 is a non-separating curve as in Figure
5. Therefore M, is of infinite order. ]

T T

p(ro) .. 0 plro) &> 0

FIGURE 3

By means of Theorem 3.2, we see that our family (M, n, R) can be
canonically completed in the degenerated family (]/\4\,7?, ]/i;), where M
is a compact two dimensional normal complex space. Moreover every
holomorphlc section s : R — M has a unique holomorphic extension

‘R — M. Let 5 S0 - R — M be the holomorphlc extension of the
zero section so. Since R is compact, two tori S(R) and SO(R) intersects
each other at most finitely many times on M. Then the set S = g 1(0)
is a finite subset of R, hence the restriction of g to R\ S induces the
holomorphic mapping R\ S — T \ {0} between hyperbolic Riemann
surfaces. Now we recall a generalization of the “big” Picard Theorem:



14 YOICHI IMAYOSHI, YOHEI KOMORI AND TOSHIHIRO NOGI

Sro Srg

. ‘

FIGURE 4

FIGURE 5

Theorem 3.3 (Royden [16]). Let f be a holomorphic mapping of the
punctured disk A* into a hyperbolic Riemann surface W. Then either
f extends to a holomorphic mapping of the disk A into W or else W
is contained in a Riemann surface W* = W U {p}, so that f extends
to a holomorphic mapping of A into W*.

From this result, the mapping R\ S — T\ {0} extends uniquely to
a holomorphic mapping g: R — T. [

Proposition 3.2. For any g € ®(S) \ {p,0}, the mapping g satisfies
I,NnT,=0andTyNTy=0.

Proof of Proposition 3.2. Every element g in ®(S)\ {p, 0} is extended
to a holomorphic mapping g from RtoT by Theorem 3.1. We remark
that g becomes an unbranched covering from Ronto T by Riemann-
Hurwitz formula. Let g : C, — C, be a lift of g to the universal
coverings of R and T which satisfies a; o g = goay. Since g is non-
constant, ¢ must be an automorphism of C, hence ¢ is written as

g9(z) = Az + B,

where A and B are complex numbers and A # 0. It should be remarked
that ¢ is not unique, because we may replace g by 7, o g o 75, where
v € FI,T and Yo € F2,2T'
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Czi)(cw
O{ZL § Lal
R — T
J 9

R

For three graphs I'y, g and I, in R x f, we consider the following two
cases:

Case (1) [, N[y # 0.

Case (2) I, N T, #0.

\/Tg
\F

R

N)

FIGURE 6. Case (1)

Case (1) In this case, there exists a point rg € R such that g(rg) =
0, hence g(rg) = 0. Then we can find 2o € C, \ L(1,7) such that
a(z9) = ro and

(3.2) Az + B =0.

For sufficiently small € > 0, A(zp,¢) = {2z € C, | |z — 20| < €} and
A0,) ={w € Cy | [w] < e} can be taken as local charts at 7o € R

and 0 € T, respectively. Then the graph Ty = {(r,0) | r € R} in Rx T
can be locally written as

w=>0

in A(zg,€) X A(0,€). Thus M is locally represented as

u =w
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in C, x A(z9,€) x A(0,¢). Take € > 0 with € < ¢, and set z = 2y +¢€'e'’.
By using (3.2), we have
u?=Az+ B
= Az +€e’)+ B
— Aeleiﬂ
By the same argument as in the proof of Proposition 3.1, we have a

contradiction.

Case (2) In this case, there exists a point ry € R such that g(ry) =
p(ro), hence g(rg) = p(re). Since p(z) = z is a lift of p, we can find
2o € C, \ L(1,7) such that as(z) = ro and

(33) AZO + B = 20-
For sufficiently small € > 0, A(zg,€) and A(wy,€) can be taken as

local charts at rg € R and p(rg) € T, respectively.
Then T') = {(r,p(r)) | r € R} in R x T can be locally written as

w =z
in A(zg,€) X A(wg, €). Thus M is locally represented as
u?=w— 2
in C, x A(wp,€) X A(zg,€). Take ¢ > 0 with € < ¢, set 2 = 25 + €'e®.
By using (3.3), we have
w=Az+ B~z
= Az + €e?) + B — (2 + €e”)
= (A —1)e”.
By the same argument as in the proof of Proposition 3.1, we have a

contradiction. Thus we have the assertion. ]

3.2. Proof of Main Theorem. From now on, we assume 7 is in the

domain F in C defined by the following four conditions : (i) Im7 > 0

(ii) —1/2 < Rer < 1/2, (iii) || > 1, (iv) Rer < 0 if |7| = 1, since any

flat torus is biholomorphically equivalent to C/T'y ; for some 7 € F.
We recall

L(l,7)={m+nt€C|m,neZ}

and call an element of L(1,7) a lattice point, and set

L(2,21)={2m+2nTt € C | m,n € Z}.
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Every element g of Holgs(R, T\) has a holomorphic extension g : R—
T. A lift g be of g is written as

g(z) = Az + B,

where A and B are complex numbers and A # 0.
We need two lemmas.

Lemma 3.1. A # 1.

Proof of Lemma 3.1. Suppose A = 1. If B = 0 modulo ATy, +
Iy, =T ., then g is a lift of p, while p is not an element of Holy;s(R, f),
a contradiction. Hence B is not equal to 0 modulo I'; ;. Put 2y = —B
then we have as(z)) € R and g(as(z9)) = 0, since a; 0 g = g o as.

Therefore the graphs of g and 0 in R x T intersects each other, which
contradicts the assumption that ¢ is contained in Holgs(R, T'). [ ]

From now on, we may assume that A # 1.

Lemma 3.2. g can be written as §(z) = A(z + w) where w = 0,1, 7
and 1+ 7.

Proof of Lemma 3.2. Take the point zg = —B/(A—1). Then g(zy) =
29. If zp € C\T'y,, we see that [, N T, # (), a contradiction. Hence
2o € 'y ;. Then there exist integers m, n such that zp = —B/(A—1) =
—m — n7. The result follows. [

To determine A, we may assume g(z) = Az. Since g(L(2,27)) C
L(1,7), we have

(3.4) 2A = p+qr,
(3.5) 2AT = u + T,

where p, ¢, u, and v are integers. The Euclidean areas of R and T\, and
deg(g) < 4 implies that

(3.6) 1 <pv—qu<A4

and

(3.7) 2A4] = |p+q7| < 2.
By (3.4) and (3.5), we get

(3.8) qr* + (p—v)T —u = 0.

Since the assumption 7 € F implies that the discriminant is negative,
we have

(3.9) (p+v)* < 4(pv — qu).
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The root 7 of (3.8) with Im(7) > 0 is given by
v—p+ Apv —qu) — (p+v)% i
_ 2q
(3.10) " e VA —qw) - (o)
2q ’

First by the assumption 7 € F and (3.7), we see that the possibilities
of p and ¢ are follows.

(i) If ¢ = 0, then p = +1, +2.
(ii) If ¢ = 1, then p = 0, £1, +2.

(iii) If ¢ = 2, then p = 0, +1, +2.

When ¢ = 0, from (3.8) and 7 € F, we have (p, ¢, u,v) = (£1,0,0,+1),
(£2,0,0, £2).

When ¢ # 0, for each (p, q), we get v satisfying —1/2 < Re(7) < 1/2.
Next for each (p, ¢, v) we obtain u with (3.6). Finally, finding (p, ¢, u,v)
in these p,q, u, v such that 7 represented in (3.10) is an element of F,
we have the list of p, ¢, u, v, 7,2A and a fixed point of ¢ in the following
Table 1 and 2.

In these Tables, when some lift ¢ has a fixed point which is not
contained in L(1,7), we see that Ty intersects I',, a contradiction.

Next when (p, ¢, u,v) = (1,—-1,1,2),(1,-1,2,2),(2,1,-1,1), (2,1, -2, 1),
we see that I'y intersects Iy, a contradiction. Finally when (p, ¢, u,v) =
(2,0,0,2), g is a lift of p, a contradiction. Consequently, we have the
following

(a) $Holyis(R,T) = 4, if T # i, e2™i/3.
(b) #Holgis(R, T) =3 x 4 =12, if 7 =i or ¢>™/3,
Thefefore we have the assertion. ]

, if ¢ >0,

if ¢ < 0.
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p|l g ul v | T | 2A=p+gr | fixed point |
0 1 ]-1]0 i i (4+20)/5
0 1 {-210 V/2i \V/2i (2 ++/2i)/3
0| 1 [-3]0 V/3i V/3i (2 +/30)/7
0 1 ]—4]0 2i 2i (1+1)/2
0| 1 |—-1[-1 23 e?mi/3 (5+/34)/7
0| 1 [=2|—=1] (=14+V7)/2 | (=1+Ti)/2 | (5+Ti)/8
0 1T | =3|—1](=1+V113)/2| (=1 +113)/2| (5++/11i)/9
0 1 | —4|—1](=1+150)/2| (=1 +150)/2 | (5 + V15i)/10
0 —1] 170 i —i 2(1+2i)/5
0|-1] 210 V/2i —\/2i 2(1+/2i)/3
0|—-1{ 3]0 V/3i —/3i 2(3 4 2v/3i)/7
0[-1] 470 2i —2i (1++/30)/2
0| -1 1|1 e?mi/3 —e?mi/3 (3 —/3i)/3
0 =12 | 1| (=14+V7)/2| 1-VT)/2 | 5+/Ti)/4
0| —1] 3 | 1 [(=1+V11)/2] (1 —+113)/2 | (3 —+/11i)/5
0| —1] 4 | 1 [(=1+V150)/2| (1 =+/15i)/2 | (3 —/15i)/6
0] 2 [-2]0 i 2i (1+1)/2
0 2 [ =2|—=1{(=1+V150)/4| (=14 150)/2 | (54 /154)/10
0| 2 |—2]-2 e?mi/3 2e2mi/3 V/3i/3
0212710 i —2i (1T+1)/2
0—=2[2 | 1 [(=1+V15)/4| (1—-+/15i)/2 | (3 —+/15i)/6
0]—-2] 2|2 e?mi/3 —2¢2m/3 lattice point
1101] 0|1 any 1 lattice point
11 ]|-1]1 e?mi/3 1 + 2mi/3 (3++/31)/3
1)1 [ =210 (=1+VvT)/2| (1+V7)/2 | 3+VTi)/4
L1 ]=3]0 [(=1+V11)/2| (1+V11i)/2 | (5+/114)/5
L1 | —=4] 0 [(=1+V15)/2] (14+150)/2 | (3+/15i)/6
111 (-1]1 1 1+ lattice point
11 ]|-2]1 V/2i 1+/2i (1++/2i)/3
1)1 [-3]1 V/3i 1++/3i (1++/36)/2
1(-1|1 1 1 1—1 lattice point
1 -1]2]1 V/2i 1 — /2 2(1 —/2i)/3
1| -1 3|1 V/3i 1 — /3 (1 —/3i)/2
1]-1] 1712 e2mi/3 1 — >3 lattice point
L =1 2] 2 | (=1+V7)/2 | (3—+/Ti)/2 | lattice point
12 ]-2]-1 23 142623 | 2(24++/30)/7
12 ] =2] 0 [(=14+V15))/4] (1+/15i)/2 | (3+/156)/6

TABLE 1.

p=20,1
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lp]qg]ulv] T | 2A | fixed point |
-1/ 0|0 |-1 any -1 2(14+71)/3
—1| 1 |-1]-2 e?mi/3 —1 + e?m/3 (7+/3i)/13
—1] 1 | =2 =2] (=1+V7)/2 | (=3+V70)/2 | (7T+/Ti)/14
1] 1 |-1]-1 i —1+1 (3+14)/5
—1l 1 [-2]-1 V/2i —1+2i 2(3 ++/2i)/11
—1] 1 [=3|-1 V/3i —1 ++/3i (3++/3i)/6
—1|-1]1 -1 i —1—i 22 +14)/5
—1|—=1] 2 |~1 V/2i —1—v2i |22+ 3V2i)/11
—1|-1]3 |-1 V3i —1—/3i (1++/36)/2
~1]-1[17]0 e?mi/3 —1 — e?™/3 (5 —/3i)/7
—1 =120 | (=14+V7)/2 | —A+VT))/2 | (5—-Ti)/8
—1[ =1 3]0 |[(—1+V11)/2] -(1+113))/2] (5—V11i)/9
—1[—=1{ 4 | 0 [(=14+V15)/2 | —(1+150)/2| (5 —+/15i)/10
—1] =2 2|0 [ (=1++15i)/4 | —(1++/15i)/2| (5—/154)/10
—1]-22 |1 e?i/3 —1—2e?™/3 | 2(2 —/30)/7
210102 any 2 lattice point
2 |1 |—-1]|1 e?mi/3 2 4 e2mi/3 lattice point
2 | 1| =2 1| (=1+V7)/2 | 3+V7)/2 lattice point
2 12 1-2|0 e2mi/3 2 + 2¢2m/3 lattice point
-2 01]0 |-2 any -2 1/2
2| —1[ 1 |—-1 e?i/3 —2 — ¢?m/3 (7—/3i)/13
—2—1| 2 | =1] (=14+V7)/2 | —=(3+V7i)/2 | (T—/Ti)/14
—2(-2[2 10 e?mi/3 —2 — 2¢?™/3 (3+/3)/6

TABLE 2. p=—1,+2
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