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Abstract. A real Bott manifold is the total space of iterated RP 1

bundles starting with a point, where each RP 1 bundle is projec-
tivization of a Whitney sum of two real line bundles. We prove
that two real Bott manifolds are diffeomorphic if their cohomology
rings with Z/2 coefficients are isomorphic.

A real Bott manifold is a real toric manifold and admits a flat
riemannian metric invariant under the natural action of an ele-
mentary abelian 2-group. We also prove that the converse is true,
namely a real toric manifold which admits a flat riemannian metric
invariant under the action of an elementary abelian 2-group is a
real Bott manifold.

1. Introduction

A fundamental result in the theory of toric varieties says that the
categories of toric varieties (over the complex numbers C) and fans are
equivalent (see [16]). This reduces the classification of toric varieties
to that of fans. Among toric varieties, compact smooth toric varieties
which we call toric manifolds are well studied and the classification as
varieties is completed for some classes of toric manifolds (see [10], [16],
[18] for example).

However, not much is known for the topological classification of toric
manifolds, and the following problem is addressed in [14] (see also [4],
[13]).

Cohomological rigidity problem for toric manifolds. Are two
toric manifolds diffeomorphic (or homeomorphic) if their cohomology
rings with integer coefficients are isomorphic as graded rings?
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As is well-known, there are many closed smooth manifolds which
are not homeomorphic but have isomorphic cohomology rings. So the
problem above seems unlikely but no counterexample is known and
there are some partial affirmative solutions to the problem (see [4],
[13], [14]).

The set X(R) of real points in a toric manifold X is called a real toric
manifold. It appears as the fixed point set of the complex conjugation
on X. For example, when X is a complex projective space CP n, X(R)
is a real projective space RP n. It is known that

H∗(X(R); Z/2) ∼= H2∗(X; Z) ⊗ Z/2

for any toric manifold X where Z denotes the integers and Z/2 = {0, 1},
and one may ask the same question as the rigidity problem above for
real toric manifolds with Z/2 coefficients, namely

Cohomological rigidity problem for real toric manifolds. Are
two real toric manifolds diffeomorphic (or homeomorphic) if their co-
homology rings with Z/2 coefficients are isomorphic as graded rings?

In this paper we are concerned with a sequence of RP 1 bundles

(1.1) Mn
RP 1

−→ Mn−1
RP 1

−→ · · · RP 1

−→ M1
RP 1

−→ M0 = {a point}
such that Mi → Mi−1 for i = 1, . . . , n is the projective bundle of a
Whitney sum of two real line bundles over Mi−1, where one of the two
line bundles may be assumed to be trivial without loss of generality.
Grossberg-Karshon [8] considered the sequence above in the complex
case and named it a Bott tower of height n. Following them, we call
the sequence above a real Bott tower of height n. The top manifold
Mn of a real Bott tower is a real toric manifold. We call it a real Bott
manifold. The main purpose of this paper is to prove the following
which answers the cohomological rigidity problem affirmatively for real
Bott manifolds.

Theorem 1.1. Two real Bott manifolds are diffeomorphic if their co-
homology rings with Z/2 coefficients are isomorphic as graded rings.

Although real toric manifolds have similar properties to toric man-
ifolds, there is one major difference, that is, a real toric manifold is
not simply connected while a toric manifold is simply connected. Real
toric manifolds provide many examples of aspherical manifolds and real
Bott manifolds are examples of flat riemannian manifolds. In fact, any
real toric manifold of dimension n supports an action of an elementary
abelian 2-group T n(R) of rank n and real Bott manifolds of dimension
n admit a flat riemannian metric invariant under the action of T n(R).
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The following shows that these are the only examples among real toric
manifolds.

Theorem 1.2. A real toric manifold of dimension n which admits a
flat riemannian metric invariant under the action of T n(R) is a real
Bott manifold.

This paper is organized as follows. We describe the cohomology ring
and the fundamental group of a real Bott manifold in Sections 2 and 3.
In Section 4 we find necessary and sufficient conditions for an isomor-
phism between cohomology rings of real Bott manifolds to satisfy in
terms of matrices. Using the conditions, we construct a monomorphism
between the fundamental groups of the real Bott manifolds in Section 5.
It may not be an isomorphism but the existence of the monomorphism
implies that the fundamental groups are isomorphic, which is done in
Section 6 by studying group extensions. Since real Bott manifolds are
flat riemannian manifolds, the isomorphism of the fundamental groups
implies Theorem 1.1 by a theorem of Bieberbach. In Section 7 we
enumerate diffeomorphism classes in real Bott manifolds of dimension
up to 4. This result is obtained in [15] independently by a different
method. Theorem 1.2 is proved in Section 8. In Section 9 we view
real Bott manifolds from a viewpoint of small covers introduced in [5].
In the Appendix, we give a proof on a (probably known) fact used in
Section 6.

2. Cohomology rings

We shall describe the cohomology ring of the real Bott manifold Mn

in the tower (1.1).
We recall a general well-known fact. Let E → X be a real vector

bundle of rank m over a topological space X and let P (E) be the pro-
jectivization of E. As is well-known, H∗(P (E); Z/2) is an algebra over
H∗(X) through the projection map from P (E) to X and the algebra
structure is described as

(2.1) H∗(P (E); Z/2) = H∗(X; Z/2)[x]
/

(
m∑

i=0

wi(E)xm−i)

where wi(E) denotes the i-th Stiefel-Whitney class of E and x is given
by the first Stiefel-Whitney class of the canonical line bundle over
P (E). Moreover, the Stiefel-Whitney class of TfP (E) the tangent bun-
dle along the fibers of P (E) is given by

w(Tf (P (E))) =
m∑

i=0

wi(E)(1 + x)m−i,
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in particular,

(2.2) w1(Tf (P (E))) = w1(E)

when m is even.
Now we return to the tower (1.1). By definition Mj = P (Lj−1 ⊕ R)

with some line bundle Lj−1 over Mj−1 for j = 1, . . . , n , where R
denotes the trivial line bundle. Let γj be the canonical line bundle
over Mj and set xj = w1(γj). We use the same notation γj (resp.
xj) for the pullback of γj (resp. xj) by compositions of projections
Mk → Mk−1 → · · · → Mj where k > j. Then the repeated use of (2.1)
shows
(2.3)

H∗(Mk; Z/2) = Z/2[x1, . . . , xk]
/(

xj(xj + w1(Lj−1)) | j = 1, . . . , k
)
.

Since H1(Mj−1; Z/2) is additively generated by x1, . . . , xj−1 and Lj−1

is a line bundle over Mj−1, one can uniquely write

(2.4) w1(Lj−1) =

j−1∑
i=1

Ai
jxi with Ai

j ∈ Z/2

where j = 2, . . . , n. As is well-known, line bundles are classified by
their first Stiefel-Whitney classes and the first Stiefel-Whitney class
behaves additively for tensor products of line bundles; so it follows
from (2.4) that

(2.5) Lj−1 = γ
A1

j

1 ⊗ · · · ⊗ γ
Aj−1

j

j−1 .

For convenience, we set Ai
j = 0 unless i < j and form a square matrix

A of size n with Ai
j as an (i, j) entry. A is an upper triangular matrix

with zero diagonal entries.
The observation above implies that the tower (1.1) is completely

determined by the matrix A. So we may denote Mn by M(A). For
later use we record the ring structure of H∗(M(A); Z/2) as a lemma
which follows from (2.3) and (2.4).

Lemma 2.1. Let A and M(A) be as above. Then H∗(M(A); Z/2) is
generated by degree one elements x1, . . . , xn as a graded ring with n
relations

x2
j = xj

n∑
i=1

Ai
jxi for j = 1, . . . , n.

We conclude this section with the following lemma.

Lemma 2.2. The real Bott manifold M(A) is orientable if and only if
the sum of entries is zero in Z/2 for each row of A.
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Proof. The repeated use of (2.2) together with (2.4) shows that

w1(M(A)) =
n∑

j=1

w1(Lj−1 ⊕ R) =
n∑

j=1

w1(Lj−1)

=
n∑

j=1

j−1∑
i=1

Ai
jxi =

n∑
i=1

(
n∑

j=1

Ai
j)xi.

Since M(A) is orientable if and only if w1(M(A)) = 0, the lemma
follows from the identity above. ¤

3. Fundamental groups

A general description of the fundamental group of an arbitrary real
toric manifold is given in [19] motivated by the work [5]. In this section,
we shall describe the fundamental group of M(A) in a direct way.

Let si (i = 1, . . . , n) be an Euclidean motion on Rn defined by

si(u1, . . . , un) = (u1, . . . , ui−1, ui +
1

2
, (−1)Ai

i+1ui+1, . . . , (−1)Ai
nun)

= ((−1)Ai
1u1, . . . , (−1)Ai

nun) +
1

2
ei

(3.1)

where e1, . . . , en denote the standard basis of Rn. The group Γ(A) gen-
erated by s1, . . . , sn is a crystallographic group. In fact, the subgroup
generated by s2

1, . . . , s
2
n consists of all translations by Zn. The action

of Γ(A) on Rn is free and the orbit space Rn/Γ(A) is compact.

Lemma 3.1. Rn/Γ(A) is diffeomorphic to M(A). Therefore M(A) is
a riemannian flat manifold with Γ(A) as the fundamental group.

Proof. Let Γk (k = 1, . . . , n) be a subgroup of Γ(A) generated by
s1, . . . , sk. It acts on Rk by restricting the action of Γ(A) on Rn. We
claim that a sequence of projections

Rn/Γn → Rn−1/Γn−1 → · · · → R1/Γ1 → {0}
agrees with the real Bott tower (1.1). The lemma follows from the
claim.

We shall prove the claim by induction on height. It is obviously true
up to height one. Suppose it is true up to height j − 1. We note that
the line bundle γi over Mj−1 for i ≤ j − 1 is obtained as the quotient
of Rj−1 ×R by the diagonal action of Γj−1 where the action of Γj−1 on
the second factor R is given through a homomorphism Γj−1 → {±1}
sending si to −1 and the others s` (` 6= i) to 1. This together with (2.5)
shows that the line bundle Lj−1 in (2.5) is obtained as the quotient of
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Rj−1 × R by the diagonal action of Γj−1 where the action of Γj−1 on
the second factor R is given through a homomorphism Γj−1 → {±1}
sending si to (−1)Ai

j for i ≤ j − 1. Therefore the action of Γj−1 on
Rj−1×R = Rj is nothing but the restriction of the action of Γj to Γj−1

while the action of sj on Rj is trivial on the first (j − 1) coordinates
and translation by 1/2 on the last coordinate.

We consider a map

Rj = Rj−1 × R → (Rj−1 × R)/Γj−1 ⊕ R = Lj−1 ⊕ R;

(x, θ) 7→
(
[x, sin 2πθ], cos 2πθ

)
.

Since si(x, θ) = (six, (−1)Ai
jθ) for i ≤ j − 1 and s2

j(x, θ) = (x, θ + 1),

the map above is invariant under the action of Γj−1 and s2
j and factors

through a diffeomorphism from the orbit space Rj/〈Γj−1, s
2
j〉 onto the

unit circle bundle of Lj−1 ⊕ R. Furthermore, since Γj = 〈Γj−1, sj〉 and
sj(x, θ) = (x, θ + 1

2
), the map induces a diffeomorphism from Rj/Γj

onto the projectivization P (Lj−1 ⊕ R) = Mj. This shows that the
projection Rj/Γj → Rj−1/Γj−1 agrees with the projection Mj → Mj−1,
completing the induction step. ¤

We shall investigate the structure of Γ(A).

Lemma 3.2. For i < `, s`si = sis
(−1)Ai

`

` , i.e.

s`si =

{
sis

−1
` if Ai

` = 1,

sis` if Ai
` = 0.

Proof. Easy to check. ¤
Lemma 3.3. Let G(A) be the group generated by σ1, . . . , σn with the
relations in Lemma 3.2 for σj’s instead of sj’s. Then the homomor-
phism ψ : G(A) → Γ(A) defined by ψ(σj) = sj for j = 1, . . . , n is an
isomorphism.

Proof. Using the relations, one can express an element σ of G(A) as
σa1

1 σa2
2 . . . σan

n with a1, . . . , an ∈ Z. Suppose ψ(σ) = sa1
1 sa2

2 . . . san
n is the

identity element. Then ψ(σ) fixes any element of Rn. But it maps
the origin of Rn to 1

2

∑n
j=1 εjajej, where εj = ±1, and the image must

again be the origin, so we have aj = 0 for any j. This shows that σ is
the identity and ψ is injective. The surjectivity of ψ is trivial. ¤

s2
j is a translation of Rn by ej so that s2

1, . . . , s
2
n commute with each

other and generate a free abelian subgroup N . The images of sj’s in
the quotient Γ(A)/N commute with each other, which easily follows
from Lemma 3.2, so that Γ(A)/N is an elementary abelian 2-group.
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We identify N with Zn and Γ(A)/N with (Z2)
n in a natural way where

Z2 = {±1} and obtain a short exact sequence:

(3.2) 0 → Zn → Γ(A) → (Z2)
n → 1.

One may think of M(A) = Rn/Γ(A) as the orbit space of the torus
Rn/Zn by the induced action of Γ(A)/Zn = (Z2)

n. We shall explicitly
describe the action using complex numbers C. Let S1 denote the unit
circle of C. We identify R/Z with S1 (and hence Rn/Zn with (S1)n)
through the exponential map sending u ∈ R to exp(2π

√
−1u) ∈ C. For

z ∈ S1 and a ∈ Z/2 = {0, 1} we define

z(a) :=

{
z if a = 0,

z̄ if a = 1.

Then the induced action of si defined in (3.1) on (S1)n is given by

(z1, . . . , zn) → (z1, . . . , zi−1,−zi, zi+1(A
i
i+1), . . . , zn(Ai

n)).

4. An isomorphism between cohomology rings

As is described in Lemma 2.1, H∗(M(A); Z/2) = R1 is a graded
algebra over Z/2 generated by degree one elements x1, . . . , xn with n
relations

(4.1) x2
j = xj

n∑
i=1

Ai
jxi (j = 1, . . . , n).

The set V1 of degree one elements in R1 with vanishing squares forms a
vector space over Z/2 of positive dimension. Set n1 = dim V1. Permut-
ing the suffixes of x1, . . . , xn, we may assume that the first n1 elements
x1, . . . , xn1 form a basis of V1. We consider the quotient graded ring
R2 = R1/(V1) where (V1) denotes the ideal in R1 generated by V1. Sim-
ilarly, the set V2 of degree one elements in R2 with vanishing squares
forms a vector space over Z/2 of positive dimension. Set n2 = dim V2.
Permuting the suffixes of xn1+1, . . . , xn, we may assume that the im-
age of xn1+1, . . . , xn1+n2 in the quotient ring R2 forms a basis of V2.
Then consider the quotient graded ring R3 = R2/(V2) and repeat the
same argument, and so on. This procedure will terminate at a finite
steps, say q steps, so that we obtain a sequence of natural numbers
(n1, . . . , nq), which is an invariant of the cohomology ring. We call this
sequence the type of A or H∗(M(A); Z/2). The argument above shows
that through a suitable permutation of suffixes of x1, . . . , xn we may as-
sume that the upper triangular matrix A decomposed into q× q blocks
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according to the type (n1, . . . , nq) has zero matrices of sizes n1, . . . , nq

as the diagonal q blocks, i.e.

(4.2) A =


On1 ∗

On2

. . .
0 Onq


where Om denotes the zero matrix of size m and every column vector in
(i, i+1)-block is non-zero for i = 1, . . . , q− 1. We note that permuting
suffixes of x1, . . . , xn corresponds to conjugating the matrix A by a
permutation matrix.

Let B be an upper triangular matrix of the same type and same form
as (4.2) and let

ϕ : H∗(M(A); Z/2) → H∗(M(B); Z/2)

be an isomorphism as graded rings. We denote by y1, . . . , yn the gen-
erators of H∗(M(B); Z/2). Since ϕ(xi)

2 = ϕ(xi
2) = 0 for 1 ≤ i ≤ n1,

ϕ(xi) is a linear combination of y1, . . . , yn1 . In general, one easily sees
that ϕ(xi) for nj−1 + 1 ≤ i ≤ nj is a linear combination of y1, . . . , ynj

.
This means that if we view P ∈ GL(n; Z/2) defined by

(4.3) (ϕ(x1), . . . , ϕ(xn)) = (y1, . . . , yn)P

as a q×q block matrix of type (n1, . . . , nq), then P is an upper triangular
block matrix. Since P is non-singular, every diagonal block of P is also
non-singular. Therefore, we may assume that the diagonal entries of P
are all one if necessary by permuting the suffixes of the generators yi’s
in each block. With this understood, we have

Lemma 4.1. B = PA and

P `
j B

i
` = P i

jB
`
j + P `

j B
i
j + P `

j B
`
jB

i
` for i < `.

Proof. It follows from (4.3) that

(4.4) ϕ(xk) =
n∑

i=1

P i
kyi for k = 1, . . . , n.

We plug this in (4.1) mapped by ϕ to obtain( n∑
i=1

P i
jyi

)2
=

( n∑
i=1

P i
jyi

)( n∑
k=1

n∑
i=1

Ak
j P

i
kyi

)
=

( n∑
i=1

P i
jyi

)( n∑
i=1

(PA)i
jyi

)(4.5)
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Comparing the coefficients of yiyj for i < j at both sides above and

noting that P j
j = 1 and (PA)j

j = 0, we obtain

Bi
j = (PA)i

j for i < j.

(Note that the term yiyj may appear in yj
2 but not in yi

2 because B
is assumed to be upper triangular.) The identity above holds even for
i ≥ j because the both sides then vanish. Therefore B = PA.

More generally, comparing the coefficients of yiy` for i < ` at the both
sides of (4.5) and replacing PA by B, we obtain the latter identity in
the lemma. ¤

5. A monomorphism between fundamental groups

Let A,B and P be as in Section 4. In this section we construct a
monomorphism between the fundamental groups Γ(B) and Γ(A) using
P .

Any element s ∈ Γ(A) can be expressed uniquely as s = sa1
1 sa2

2 . . . san
n

with integers ai’s by Lemma 3.2. We denote the exponent aj of sj by
Ej(s).

Lemma 5.1. If pi, qi ∈ Z for i = 1, . . . , n, then

Ej((s
p1

1 sp2

2 . . . spn
n )(sq1

1 sq2

2 . . . sqn
n )) = (−1)

Pj−1
k=1 qkBk

j pj + qj

Ej((s
p1

1 sp2

2 . . . spn
n )(s−qn

n . . . s−q2

2 s−q1

1 )) = (−1)
Pj−1

k=1 qkBk
j (pj − qj)

Proof. Using Lemma 3.2, we see

(5.1) sp
`s

q
k = sq

ks
p(−1)qBk

`

` for ` > k, and p, q ∈ Z

and the repeated use of this identity implies the lemma. ¤

We use notation ti’s for Γ(B) in place of si’s for Γ(A). We regard P
as an integer matrix and define

(5.2) ρ(tr) = s
P r

1
1 s

P r
2

2 . . . sP r
n

n (r = 1, . . . , n).

We shall check that ρ preserves the relations in Lemma 3.2 for Γ(B)
so that ρ induces a homomorphism from Γ(B) to Γ(A) by Lemma 3.3.
It follows from Lemma 5.1 that

(5.3) Ej(ρ(t`ti)) = (−1)
Pj−1

k=1 P i
kAk

j P `
j + P i

j = (−1)Bi
jP `

j + P i
j ∈ Z

where we used the fact PA = B and Ak
j = 0 for k ≥ j in the latter

identity. Similarly we have

(5.4) Ej(ρ(tit`)) = (−1)B`
jP i

j + P `
j ∈ Z
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and

(5.5) Ej(ρ(tit
−1
` )) = (−1)B`

j (P i
j − P `

j ) ∈ Z.

Now suppose i < `. When Bi
` = 0, we have t`ti = tit` by Lemma 3.2

for Γ(B) and
P `

j B
i
j = P i

jB
`
j ∈ Z/2

by Lemma 4.1. An elementary case-by-case check (according to the
values of Bi

j and B`
j) shows that the identity above ensures that the

right hand sides at (5.3) and (5.4) coincide. When Bi
` = 1, we have

t`ti = tit
−1
` by Lemma 3.2 for Γ(B) and

P `
j = P i

jB
`
j + P `

j B
i
j + P `

j B
`
j ∈ Z/2 for i < `

by Lemma 4.1. A similar elementary case-by-case check shows that
the identity above ensures that the right hand sides at (5.3) and (5.5)
coincide. In any case the map ρ preserves the relations for Γ(B) and
Γ(A) and hence induces a homomorphism from Γ(B) to Γ(A).

Lemma 5.2. The homomorphism ρ : Γ(B) → Γ(A) is injective and

(1) ρ(Zn) ⊂ Zn and Zn/ρ(Zn) is of order det P (which is odd),
(2) ρ induces an isomorphism from Γ(B)/Zn onto Γ(A)/Zn.

Therefore ρ is an isomorphism if and only if det P = ±1.

Proof. It follows from (5.3) with ` = i that

Ej(ρ(t2i )) =

{
2P i

j if Bi
j = 0,

0 if Bi
j = 1.

Therefore ρ maps the normal subgroup Zn of Γ(B) to that of Γ(A), so
that ρ maps the short exact sequence (3.2) for Γ(B) to that for Γ(A).
The above fact also shows that the map ρ restricted to Zn agrees with
P for i, j with Bi

j = 0, in particular, if we view the restricted map as a
block matrix as before, then it is an upper triangular block matrix and
the diagonal blocks agree with those of P . Therefore the determinant
of the restricted map is equal to det P . This proves (1).

On the other hand, it follows from the definition (5.2) of ρ that the
map induced from ρ on Γ(B)/Zn = (Z/2)n is nothing but P , so it is an
isomorphism, proving (2). These imply that ρ is always injective and
an isomorphism if and only if det P = ±1. ¤

6. Group extension

A square (0, 1)-matrix of size m is in GL(m; Z) if and only if it
is in GL(m; Z/2) when m ≤ 3. Therefore, if ni ≤ 3 for all i, where
(n1, . . . , nq) is the type of A and B, then det P = ±1 and ρ in Lemma 5.2
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is an isomorphism. In general ρ may not be an isomorphism, but we
prove the following using the existence of ρ.

Lemma 6.1. If H∗(M(A); Z/2) is isomorphic to H∗(M(B); Z/2) as
graded rings, then Γ(A) is isomorphic to Γ(B).

We admit the lemma above for the moment and complete the proof
of Theorem 1.1 in the Introduction.

Proof of Theorem 1.1. Real Bott manifolds are compact riemannian
flat manifolds by Lemma 3.1, hence by a theorem of Bieberbach they
are diffeomorphic if and only if their fundamental groups are isomor-
phic (see [20], Theorem 3.3.1 in p.105). Therefore, Theorem 1.1 follows
from Lemma 6.1. ¤

The rest of this section is devoted to the proof of Lemma 6.1. Re-
member the group extension (3.2)

0→Zn→Γ(A)→(Z2)
n→1.

Conjugation action of Γ(A) on Zn induces a homomorphism

φA : (Z2)
n→Aut(Zn).

We remark that the (Z2)
n-module Zn via φA decomposes into sum of

rank one (Z2)
n-modules, which follows from Lemma 3.2. There is a

2-cocycle

fA : (Z2)
n × (Z2)

n→Zn

whose cohomology class [fA] ∈ H2
φA

((Z2)
n; Zn) represents the above

group extension, that is, Γ(A) is the product Zn × (Z2)
n with group

law:

(6.1) (`, α)(m,β) = (` + φA(α)(m) + fA(α, β), αβ).

Similarly we have φB and fB for the group Γ(B).
Lemma 5.2 shows that there is a commutative diagram:

0 −−−→ Zn −−−→ Γ(B) −−−→ (Z2)
n −−−→ 1

ρ

y ρ

y ρ̄

y
0 −−−→ Zn −−−→ Γ(A) −−−→ (Z2)

n −−−→ 1.

where ρ̄ is an isomorphism. We write

ρ(0, α) = (λ(α), ρ̄(α)).
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Then, for (`, α) ∈ Γ(B) we have

ρ(`, α) = ρ((`, 1)(0, α)) = ρ(`, 1)ρ(0, α)

= (ρ(`), 1)(λ(α), ρ̄(α))

= (ρ(`) + λ(α), ρ̄(α)).

(6.2)

Therefore, applying ρ to the both sides of the identity (0, α)(0, β) =
(fB(α, β), αβ), we have

ρ((0,α)(0, β)) = (λ(α), ρ̄(α))(λ(β), ρ̄(β))

= (λ(α) + φA(ρ̄(α))(λ(β)) + fA(ρ̄(α), ρ̄(β)), ρ̄(αβ)),

while we have

ρ(fB(α, β), αβ) = (ρ(fB(α, β)) + λ(αβ), ρ̄(αβ))

by (6.2). It follows that

(6.3) ρ(fB(α, β)) = λ(α) + φA(ρ̄(α))(λ(β)) − λ(αβ) + ρ̄∗fA(α, β).

Similarly, applying ρ to the both sides of the identity (0, α)(`, 1) =
(φB(α)(`), α), we have

ρ((0, α)(`, 1)) = (λ(α), ρ̄(α))(ρ(`), 1)

= (λ(α) + φA(ρ̄(α))(ρ(`)), ρ̄(α)),

while
ρ(φB(α)(`), α) = (ρ(φB(α)(`)) + λ(α), ρ̄(α)).

It follows that
ρ(φB(α)(`)) = φA(ρ̄(α))(ρ(`)).

We regard elements in Zn as column vectors and represent the ho-
momorphism ρ : Zn→Zn by an integral matrix Q. Then the identity
above is equivalent to

Q · φB(α) = φA(ρ̄(α)) · Q.

We note that Q̃ = (det Q)Q−1 is an integral matrix, where det Q that
is the order of Zn/ρ(Zn) is odd by Lemma 5.2. It follows from the
identity above that

(6.4) φB(α) · Q̃ = Q̃ · φA(ρ̄(α)).

Applying Q̃ to the both sides of (6.3), we have

Q̃QfB(α, β)

=Q̃λ(α) + Q̃φA(ρ̄(α))(λ(β)) − Q̃λ(αβ) + Q̃ρ̄∗fA(α, β)

=Q̃λ(α) + φB(α)(Q̃λ(β)) − Q̃λ(αβ) + Q̃ρ̄∗fA(α, β)

=δB(Q̃λ)(α, β) + Q̃ρ̄∗fA(α, β)
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where we used (6.4) at the second identity and the definition of cobound-
ary δB at the last identity. Since Q̃Q is det Q times the identity matrix,
the identity above implies that

[det Q · fB] = [Q̃ρ̄∗fA] ∈ H2
φB

((Z2)
n, Q̃Zn).(6.5)

Here Q̃Zn is viewed as a (Z2)
n-module via φB. It decomposes into the

direct sum of rank one (Z2)-modules because we have (6.4) and the
(Z2)

n-module Zn via φA decomposes into the direct sum of rank one
(Z2)-modules. Therefore

(6.6) H2
φB

((Z2)
n, Q̃Zn) ∼=

n⊕
i=1

H2
φi

((Z2)
n; Z)

where φi : (Z2)
n → Aut(Z) = {±1} is a homomorphism.

Fact. H2
φ((Z2)

n; Z) is an elementary abelian 2-group for any homo-
morphism φ : (Z2)

n → Aut(Z).

(This fact is probably known but since we do not know the literature,
we will give a proof in the Appendix.) It follows from (6.6) and the fact
above that H2

φB
((Z2)

n, Q̃Zn) is an elementary abelian 2-group. Since
det Q is odd as remarked before, the identity (6.5) implies that

(6.7) [fB] = [Q̃ρ̄∗fA] ∈ H2
φB

((Z2)
n, Q̃Zn).

The group Γ corresponding to the cocycle Q̃ρ̄∗fA is the product
Q̃Zn × (Z2)

n with group law:

(Q̃`, α)(Q̃m, β)

=(Q̃` + φB(α)(Q̃m) + Q̃fA(ρ̄(α), ρ̄(β)), αβ)
(6.8)

in which we note that Q̃` + φB(α)(Q̃m) + Q̃fA(ρ̄(α), ρ̄(β)) ∈ Q̃Zn. In
fact, using (6.4)

Q̃` + φB(α)(Q̃m) + Q̃fA(ρ̄(α), ρ̄(β))

=Q̃` + Q̃φA(ρ̄(α))(m) + Q̃fA(ρ̄(α), ρ̄(β))

=Q̃(` + φA(ρ̄(α))(m) + fA(ρ̄(α), ρ̄(β))).

(6.9)

Since Γ(B) is isomorphic to Γ by (6.7), it suffices to prove that Γ is
isomorphic to Γ(A).

Define a map T : Γ(A)→Γ by

T (`, α) = (Q̃`, ρ̄−1(α)).
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This is clearly a bijection. Using (6.8), (6.9) and (6.1), we have

T (`, α)T (m,β)

=(Q̃`, ρ̄−1(α))(Q̃m, ρ̄−1(β))

=(Q̃(` + φA(α)(m) + fA(α, β)), ρ̄−1(αβ))

=T ((` + φA(α)(m) + fA(α, β), αβ))

=T ((`, α)(m,β)).

Hence T is an isomorphism of Γ(A) onto Γ. This completes the proof
of Lemma 6.1.

Remark. The above proof of Lemma 6.1 actually proves that any
subgroup of Γ(A) with odd index is isomorphic to Γ(A).

7. Classification of real Bott manifolds of low dimension

Real Bott manifolds are determined by upper triangular square (0, 1)-
matrices with zero diagonal entries and the diffeomorphism classifica-
tion of real Bott manifolds reduces to the isomorphism classification of
associated cohomology rings with Z/2 coefficients by our main Theo-
rem 1.1. As observed in Section 4, we may assume that our matrices
are of the form (4.2) which we call a normal form. Therefore, it suffices
to check which matrices of normal form produce isomorphic cohomol-
ogy rings and this can be done by an elementary computation when
the size n of matrices, that is the dimension of real Bott manifolds, is
up to 4. We remember that permuting the suffixes of the cohomology
generators x1, . . . , xn in Section 4 corresponds to conjugating our ma-
trices by a permutation matrix. So the cohomology rings associated
with conjugate matrices by permutation matrices are isomorphic. This
decreases necessary computations. Below are the results. The same
results are obtained in [15] independently but the method is different
from ours.

The case n = 2. Real Bott manifolds of dimension 2 are the torus
(S1)2 or the Klein bottle and the corresponding matrices of normal

form are respectively the zero matrix of size 2 and
„

0 1
0 0

«

.

The case n = 3. There are four diffeomorphism classes in real Bott
manifolds of dimension 3 and corresponding matrices of normal form
are distinguished by their types as seen below. The number of an
item below with ? shows that the corresponding real Bott manifold is
orientable (see Lemma 2.2).

1?. Type (3)
The zero matrix of size 3 and the real Bott manifold is (S1)3.
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2. Type (2, 1)
0

@

0 0 0

0 0 1
0 0 0

1

A

0

@

0 0 1

0 0 0
0 0 0

1

A

0

@

0 0 1

0 0 1
0 0 0

1

A

The real Bott manifold is S1 × (Klein bottle).
3?. Type (1, 2)

0

@

0 1 1

0 0 0
0 0 0

1

A

4. Type (1, 1, 1)
0

@

0 1 0
0 0 1

0 0 0

1

A

0

@

0 1 1
0 0 1

0 0 0

1

A

Remark. Compact riemannian flat manifolds of dimension 3 are clas-
sified. There are ten diffeomorphism classes and six of them are ori-
entable ([20, p.117 and p.120]). One can easily check that the real Bott
manifolds in 1? and 3? above are respectively of types G1 and G2 in [20,
Theorem 3.5.5] and those in 2 and 4 above are respectively of types B1

and B3 in [20, Theorem 3.5.9].

The case n = 4. There are twelve diffeomorphism classes in real Bott
manifolds of dimension 4 and corresponding matrices of normal form
are as described below. We list representatives of conjugacy classes
in matrices of normal form by permutation matrices. The suffix of a
matrix below denotes the number of elements in the conjugacy class
represented by the matrix. The number of an item below with ? shows
that the corresponding real Bott manifold is orientable as before.

1?. Type (4)
The zero matrix of size 4 and the real Bott manifold is (S1)4.

2. Type (3, 1)
0

B

B

@

0 0 0 0
0 0 0 0

0 0 0 1
0 0 0 0

1

C

C

A

3

0

B

B

@

0 0 0 0
0 0 0 1

0 0 0 1
0 0 0 0

1

C

C

A

3

0

B

B

@

0 0 0 1
0 0 0 1

0 0 0 1
0 0 0 0

1

C

C

A

1

The real Bott manifold is (S1)2 × (Klein bottle).
3?. Type (2, 2)

0

B

B

@

0 0 0 0
0 0 1 1

0 0 0 0
0 0 0 0

1

C

C

A

2

0

B

B

@

0 0 1 1
0 0 1 1

0 0 0 0
0 0 0 0

1

C

C

A

1

The real Bott manifold is the product of S1 and the 3-dimensional
real Bott manifold of Type (1, 2).
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4. Type (2, 2)
0

B

B

@

0 0 0 1
0 0 1 0
0 0 0 0
0 0 0 0

1

C

C

A

2

0

B

B

@

0 0 1 0
0 0 1 1
0 0 0 0
0 0 0 0

1

C

C

A

4

The real Bott manifold is (Klein bottle)×(Klein bottle).
5. Type (2, 1, 1)

0

B

B

@

0 0 0 0
0 0 1 0
0 0 0 1
0 0 0 0

1

C

C

A

2

0

B

B

@

0 0 0 0
0 0 1 1
0 0 0 1
0 0 0 0

1

C

C

A

2

0

B

B

@

0 0 1 0
0 0 1 0
0 0 0 1
0 0 0 0

1

C

C

A

1

0

B

B

@

0 0 1 1
0 0 1 1
0 0 0 1
0 0 0 0

1

C

C

A

1

The real Bott manifold is the product of S1 and the 3-dimensional
real Bott manifold of Type (1, 1, 1).

6. Type (2, 1, 1)
0

B

B

@

0 0 0 1
0 0 1 0

0 0 0 1
0 0 0 0

1

C

C

A

2

0

B

B

@

0 0 1 0
0 0 1 1

0 0 0 1
0 0 0 0

1

C

C

A

2

0

B

B

@

0 0 0 1
0 0 1 1

0 0 0 1
0 0 0 0

1

C

C

A

2

7. Type (1, 3)
0

B

B

@

0 1 1 1
0 0 0 0
0 0 0 0
0 0 0 0

1

C

C

A

1

8. Type (1, 2, 1)
0

B

B

@

0 1 1 0

0 0 0 0
0 0 0 1
0 0 0 0

1

C

C

A

2

0

B

B

@

0 1 1 0

0 0 0 1
0 0 0 1
0 0 0 0

1

C

C

A

1

0

B

B

@

0 1 1 1

0 0 0 0
0 0 0 1
0 0 0 0

1

C

C

A

2

0

B

B

@

0 1 1 1

0 0 0 1
0 0 0 1
0 0 0 0

1

C

C

A

1

9?. Type (1, 1, 2)
0

B

B

@

0 1 1 0
0 0 1 1
0 0 0 0

0 0 0 0

1

C

C

A

2

10. Type (1, 1, 2)
0

B

B

@

0 1 0 0
0 0 1 1
0 0 0 0
0 0 0 0

1

C

C

A

1

0

B

B

@

0 1 1 1
0 0 1 1
0 0 0 0
0 0 0 0

1

C

C

A

1

11. Type (1, 1, 1, 1)
0

B

B

@

0 1 0 1

0 0 1 0
0 0 0 1
0 0 0 0

1

C

C

A

1

0

B

B

@

0 1 1 0

0 0 1 1
0 0 0 1
0 0 0 0

1

C

C

A

1

0

B

B

@

0 1 1 1

0 0 1 0
0 0 0 1
0 0 0 0

1

C

C

A

1
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12. Type (1, 1, 1, 1)
0

B

B

@

0 1 0 0
0 0 1 0

0 0 0 1
0 0 0 0

1

C

C

A

1

0

B

B

@

0 1 1 0
0 0 1 0

0 0 0 1
0 0 0 0

1

C

C

A

1

0

B

B

@

0 1 0 0
0 0 1 1

0 0 0 1
0 0 0 0

1

C

C

A

1

0

B

B

@

0 1 1 1
0 0 1 1

0 0 0 1
0 0 0 0

1

C

C

A

1

8. Riemannian flat real toric manifolds

A toric manifold X of complex dimension n supports an action of
(C∗)n and its real part X(R) supports an action of (R∗)n, where C∗ =
C\{0} and R∗ = R\{0}. Let T be the maximal compact toral subgroup
of (C∗)n and T n(R) be the maximal elementary abelian 2-subgroup of
(R∗)n. The orbit space X(R)/T n(R) can naturally be identified with
X/T . When X is projective, the orbit space can be identified with a
simple n-polytope via a moment map.

The action of T n(R) on the real Bott manifold M(A) = Rn/Γ(A) is
given as follows. Let rj (j = 1, . . . , n) be an involution on Rn defined
by

rj(x
1, . . . , xn) = (x1, . . . , xj−1,−xj, xj+1, . . . , xn).

As easily checked

rjsi =

{
sirj if i 6= j,

s−1
i rj if i = j,

where si is the Euclidean motion on Rn defined in (3.1), so rj induces
an involution r̄j on M(A) = Rn/Γ(A). Obviously r̄j’s commute with
each other so that they generate an elementary abelian 2-group of rank
n and this gives the action of T n(R).

We remark that the action of T n(R) on M(A) = Rn/Γ(A) preserves
the flat riemannian metric on it. The group generated by si’s and rj’s
agrees with the group generated by rj’s and translations by 1

2
e1, . . . , 1

2
en

where e1, . . . , en are the standard basis of Rn as before. It follows that
the orbit space M(A)/T n(R) can be identified with an n-cube

{(x1, . . . , xn) ∈ Rn | 0 ≤ x1 ≤ 1/2, . . . , 0 ≤ xn ≤ 1/2}.
The purpose of this section is to prove Theorem 1.2 in the Introduc-

tion, that is

Theorem 8.1. A real toric manifold of dimension n which admits a
flat riemannian metric invariant under the action of T n(R) is a real
Bott manifold.

We recall some results for the proof of the theorem above. Let X
be a toric manifold and let Xi (1 ≤ i ≤ m) be a connected complex
codimension-one closed submanifold of X fixed pointwise under some
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circle subgroup Ti of the torus T . We call Xi a characteristic subman-
ifold of X. Then

KX := {I ⊂ {1, . . . ,m} | ∩i∈IXi 6= ∅}
is the underlying abstract simplicial complex of the fan of X.

Let X(R) be the real part of X. The intersection Xi∩X(R) is a con-
nected real codimension-one closed submanifold of X(R) fixed point-
wise under the order two subgroup Ti ∩ T n(R) of T n(R). Conversely
any connected real codimension-one closed submanifold of X(R) fixed
pointwise under an order two subgroup of T n(R) is the intersection of
X(R) with some Xi. We call those closed submanifolds characteristic
submanifolds of X(R) as well. This observation says that there is a
bijective correspondence between characteristic submanifolds of X and
those of X(R). Hence one can also define KX using the characteristic
submanifolds of X(R).

We say that a simplicial complex is a crosscomplex of dimension n−1
if it is the boundary complex of a crosspolytope of dimension n, where
a crosspolytope of dimension n is the dual (or polar) of an n-cube.
We recall two facts from [13]. The first lemma below is stated in [13,
Corollary 3.5] in the complex case but it also holds in the real case as
stated because of the observation above.

Lemma 8.2 (Corollary 3.5 in [13]). A real toric manifold X(R) is a
real Bott manifold if and only if the simplicial complex KX associated
with X(R) is a crosscomplex.

Lemma 8.3 (Lemma 4.7 in [13]). Let K be a connected simplicial
complex of dimension k ≥ 2. If the link of each vertex of K is a
crosscomplex of dimension k − 1, then K is a crosscomplex.

Proof of Theorem 8.1. We shall prove the theorem by induction on the
dimension n. The theorem is obvious when n = 1. A closed surface
which admits a flat riemannian metric is a torus or a Klein bottle and
they are real Bott manifolds, so the theorem also holds when n = 2.

Now suppose the theorem holds for n − 1 ≥ 2 and let X(R) be a
real toric manifold of dimension n which satisfies the assumption in the
theorem. Let X(R)1, . . . , X(R)m be the characteristic submanifolds of
X(R). A vertex of the simplicial complex KX associated with X(R)
corresponds to some X(R)i and the link of the vertex is the simplicial
complex associated with X(R)i. Since X(R) admits a riemannian flat
metric invariant under the action of T n(R), each X(R)i is again a
riemannian flat manifold because it is fixed pointwise under a subgroup
of T n(R). Therefore X(R)i is a real Bott manifold by the inductive
assumption and hence the link of the vertex of KX is crosscomplex by
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Lemma 8.2. Since dim KX = n − 1 ≥ 2, KX is a crosscomplex by
Lemma 8.3 and hence X is a real Bott manifold by Lemma 8.2. This
completes the induction step and the proof of the theorem. ¤

9. Small cover

Let T n(R) be an elementary abelian 2-group of rank n as before.
A closed smooth manifold M of dimension n with a smooth action of
T n(R) is called locally standard if each point of M has an invariant
open neighborhood equivariantly diffeomorphic to an invariant open
subset of a faithful real T n(R)-module of dimension n. The orbit space
of a locally standard T n(R)-manifold M is a manifold with corners
because the orbit space of a faithful T n(R)-module of dimension n is
homeomorphic to the product of n half lines. A convex polytope of
dimension n is called simple if there are exactly n edges meeting at
each vertex, and a simplex convex polytope is a typical example of a
manifold with corners. If M is locally standard and the orbit space is
identified with a simple convex polytope P , then M is called a small
cover over P ([5]).

A real toric manifold X(R) with the natural T n(R)-action is locally
standard and its orbit space is often a simple convex polytope. In fact,
this is the case when X is projective, so a real toric manifold X(R)
is a small cover when X is projective. However there are many small
covers which do not arise this way. For example, every closed surface
becomes a small cover but only the torus S1×S1 is a real toric manifold
among orientable closed surfaces ([17]). We may think of small covers
as a topological counterpart to real toric manifolds and may ask the
same question as in the Introduction for small covers. We remark that
equivariant homeomorphism types of small covers can be distinguished
by their equivariant cohomology algebras with Z/2 coefficients ([12]).

When X(R) is a real Bott manifold, the orbit space is an n-cube as
observed in Section 8; so a real Bott manifold of dimension n becomes
a small cover over an n-cube and the converse is known to be true up
to homeomorphism.

Theorem 9.1 ([13], [3]). A small cover over an n-cube is homeomor-
phic to a real Bott manifold of dimension n.

The number Qn of equivariant homeomorphism classes in small cov-
ers over an n-cube is computed in [2] for any n, e.g.

Q1 = 1, Q2 = 6, Q3 = 259, Q4 = 87360, Q5 = 236240088, . . . .
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However, the number Hn of (non-equivariant) homeomorphism classes
in small covers over an n-cube is unknown although

H1 = 1, H2 = 2, H3 = 4, H4 = 12

as described in Section 7.
As is well-known, regular simple polytopes of dimension n ≥ 3 are

an n-cube and an n-simplex in each dimension n, the dodecahedron in
dimension 3 and the 120-cell in dimension 4. The homeomorphism type
of a small cover over an n-simplex is unique, that is the real projective
space of dimension n. Small covers over the dodecahedron and the
120-cell admit hyperbolic metrics and are studied in [7] from this point
of view. In particular, it is proved in the paper that there are exactly
25 small covers over the dodecahedron up to isometry (equivalently up
to homeomorphism by Mostow rigidity).

Appendix

In this appendix we give a proof of the Fact used in Section 6. In
fact we will prove a more precise statement. It is well-known that
H2

φ((Z2)
n; Z) is isomorphic to (Z/2)n when φ is trivial. We prove

Theorem. If φ is non-trivial, H2
φ((Z2)

n; Z) is isomorphic to (Z/2)n−1.

We recall the following Hochschild-Serre spectral sequence, see [11,
p.355] or [9].

Proposition. Let 1→Γ→Π→Π/Γ→1 be a group extension and let A
be a Π-module through a homomorphism φ : Π→Aut(A). Suppose
m ≥ 1 and Hq

φ(Γ, A) = 0 for 1 < q < m. For 0 < q < m, there is the
exact sequence

0→H1
φ(Π/Γ, AΓ)→H1

φ(Π, A)→H0
φ(Π/Γ, H1

φ(Γ, A))→
· · ·→Hq

φ(Π/Γ, AΓ)→Hq
φ(Π, A)→Hq−1

φ (Π/Γ, H1
φ(Γ, A))

→Hq+1
φ (Π/Γ, AΓ)→Hq+1

φ (Π, A)→· · ·
(A.1)

We take Π = (Z2)
n (n ≥ 2) and A = Z as a Π-module through

φ : Π→Aut(Z) = {±1}. Choose an order two subgroup Γ ⊂ (Z2)
n

such that φ(Γ) = {±1}. Clearly

Π = Γ × Ker φ.

It is known and easy to check that H2
φ(Γ, A) = 0, so the assumption

in the proposition above is satisfied for m = 3. As AΓ = 0 by our
condition, Hr

φ(Π/Γ, AΓ) = 0 for any r ≥ 0. Then the exact sequence
(A.1) becomes

(A.2) 0→H2
φ(Π, A)→H1

φ(Π/Γ, H1
φ(Γ, A))→0.
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On the other hand, it is also known and easy to check that H1
φ(Γ, A) ∼=

Z/2, so the action of Π/Γ on H1
φ(Γ, A) must be trivial. It follows that

H1
φ(Π/Γ, H1

φ(Γ, A)) ∼= H1(Π/Γ, Z/2)

∼= H1((Z2)
n−1, Z/2)

∼= (Z/2)n−1.

This together with (A.2) implies the theorem.
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