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INTRODUCTION

This article is based on my joint works with Associate Professor Hui
Ma (Tsinghua University, Beijing).

A Lagrangian submanifold L is an n-dimensional submanifold im-
mersed or embedded in a symplectic manifold (M?",w) on which the
symplectic form w vanishes, and it is the most fundamental object
in symplectic geometry. The study of Lagrangian submanifolds L in
Kéhler manifolds (M"™ w, J, g) is a fruitful area in differential geom-
etry of submanifolds. From various viewpoints of Riemannian geom-
etry and symplectic geometry, there appear many interesting works
on Lagrangian submanifolds in specific Kéhler manifolds such as com-
plex Euclidean spaces, complex projective spaces, complex space forms,
Hermitian symmetric spaces, generalized flag manifolds and so on.
Throughout this article, we treat compact immersed or embedded La-
grangian submanifolds without boundary.

In this article we shall explain our recent works on Lagrangian sub-
manifolds in complex hyperquadrics M?" = Q,,(C) and their environs.
The complex hyperquadric M?" = @,,(C) is a compact Hermitian sym-
metric space of rank 2. There is a relationship between Lagrangian
geoemtry in the complex hyperquadrics @,(C) and hypersurface ge-
ometry in the standard unit sphere S™*!(1). Via the “Gauss maps
"oriented hypersurfaces in S"*!(1) give Lagrangian submanifolds in
Q.(C). Especially the Gauss images of oriented hypersurfaces with
constant principal curvatures, so called “isoparametric hypersurfaces”,
in S"1(1) constitute a nice class of compact minimal Lagrangian sub-
manifolds embedded in @,(C). By using the results of isoparametric
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hypersurface theory, we shall discuss (1) the properties of such La-
grangian submanifolds, (2) a classification of compact homogeneous
Lagrangian submanifolds and (3) the Hamiltonian stability/instability
of the Gauss images of homogeneous isoparametric hypersurfaces, in
the complex hyperquadrics.

This article is a report of my talk at the RIMS Meeting “Differential
Geometry of Submanifolds and Related Topics” (June 23-25, 2008) .
The author would like to thank Professor Takashi Okayasu for inviting
me to give a talk there and his nice organization of the RIMS Meeting.

1. LAGRANGIAN SUBMANIFOLDS IN SYMPLECTIC MANIFOLDS AND
HAMILTONIAN DEFORMATIONS

1.1. Lagrangian submanifolds and Hamiltonian deformations.
Let
(M?",w) be a 2n-dimensional symplectic manifold with symplectic
form w. By the definition a Lagrangian immersion ¢ : L — M?" is a
smooth immersion of an n-dimensional (maximal dimensional) smooth
manifold L into M satisfying the condition p*w = 0. If ¢ : L — M?"
is a Lagrangian immersion, then by the non-degeneracy of w the nat-
ural linear bundle map ¢ 'TM/p. TL 3 v — a, := w(v, p.(-)) € T*L
becomes a linear bundle isomorphism and thus we have a linear iso-
morphism C®(p~'TM/p, TL) — Q'(L).

Suppose that ¢; : L — (M?*",w) is a one-parameter smooth family
of smooth immersions with ¢y = ¢. Let V; := % € C®(p; ' TM).

Then we define

{¢¢} : Lagrangian deformation = is Lagr. imm. for each ¢

<= ay, € Z'(L) closed for each t.
{¢¢} : Hamiltonian deformation = ay, € BY(L) exact for each t.

Hamiltonian deformations are Lagrangian deformations. The differ-
ence between Lagrangian deformations and Hamiltonian deformations
is equal to H'(L;R) = Z*(L)/B*(L). Particularly if b;(L) = 0, then
any Lagrangian deformation of L is a Hamiltonian deformation.

There is a characterization of a Hamiltonian deformation in terms

of “isomonodromy deformation”as follows : Suppose that Py [w] €
m

H?*(M,R) is an integral class. Then we know that there is a complex
line bundle £ over M with a U(1)-connection V in £ whose curvature
coincides with v/—1w. Let ¢, : L — M be a Lagrangian deformation.

For each t, we take the pull-back complex line bundle ¢; *£ over L with
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the pull-back connection ¢; 'V through ¢, and thus we have a family
of flat connections {¢; 'V}. Then

Lemma 1.1 (cf. [17], [25]). {¢:} is a Hamiltonian deformation if and
only if a family of flat connections {©; 'V} has same holonomy homo-
morphism py : m (L) — U(1).

1.2. Lagrangian orbits and moment maps.

Proposition 1.1. All Lagrangian orbits of Hamiltonian group action
G on a symplectic manifold (M,w) with moment map [ appears as
components of the level set () for some o € 3(g*), where g* is the
dual space of Lie algebra g of G and

3(g") ={aeg" | Ad*(a)a =« for all a € G}.
If M and G are compact and connected, then each Lagrangian orbit

coincides with the level set = (a) for some o € 3(g*) = ¢(g) the center
of g.

2. LAGRANGIAN SUBMANIFOLDS IN KAHLER MANIFOLDS

2.1. Hamiltonian minimality and Hamiltonian stability. Let
(M,w, J,g) be a Kdhler manifold with complex structure J and Kéhler
metric g and ¢ : L — M be a Lagrangian immersion. Let B denote
the second fundamental form of L in (M, g).

H : mean curvature vector field of ¢

!

ap mean curvature form of ¢

It is known ([11]) that the mean curvature form of a Lagrangian
immersion always satisfies the identity

doy = ¢"pu
where pjs denotes the Ricci form of M defined by py(X,Y) = Ric™ (JX,Y)

and Ric™ denotes the Ricci tensor field of (M,w,.J,g). Thus if M is
Einstein-Kahler, then ay is closed.

The notions of Hamiltonian minimality and Hamiltonian stability
were introduced and investigated first by Y. G. Oh (1990) [22]. For the
simplicity throughout this article we assume that L is compact without
boundary.

¢ : Hamiltonian minimal (or “H-minimal )

ﬁ VSOt : L — M Hamil. deform. with ¢y = ¢,

d *
a\/bl (L, @tg)‘tzo =0



<— dag=0

Moreover assume that ¢ is H-minimal. Then ¢ is called Hamiltonian
stable if and only if for each Hamiltonian deformation {¢;} of vy = ¢,

2

d )
ﬁ\/bl (Lv ‘ptg)|t:0 Z 0.

Lemma 2.1 (Hamiltonian Version of The Second Variational Formula
23]).
2

d *
@VOI (L, (ptg)’tzo

:/L ((ALa,a) — (R(a),a) —2{a @ a ® ay, S) + {ag, a)®) dv

where A} denotes the Laplace operator of (L, p*g) acting on the vector
space QY(L) of smooth 1-forms on L and
0ad
e a:=as, € BYL)

ot |t=0

e (R(a),a) = Z RicM (e, ej)ales)ale;), {e} - o.n.b. of T,L

ij=1
e S(X,Y,Z):=w(B(X,Y),Z) symmetric 3-tensor field on L

Suppose that X is a holomorphic Killing vector field defined on
M. Then the corresponding 1-form ay = w(X,:) on M is closed.
If H'(M,R) = {0}, then ax = w(X, ") is exact, i.e. X is a Hamilton-
ian vector field on M. Hence we see that if M is simply connected,
more generally H!'(M,R) = {0}, then each holomorphic Killing vector
field of M generates a volume-preserving Hamiltonian deformation of

@Y.

Definition 2.1. Such a Hamiltonian deformation of ¢ is called trivial.

Definition 2.2. Assume that ¢ is H-minimal. Then ¢ is called strictly
Hamiltonian stable if the following two conditions are satisfied :

(i) o is Hamiltonian stable.

(ii) The null space of the second variation on Hamiltonian deforma-
tions coincides with the vector subspace consisting of infinitesi-
mal deformations induced by trivial Hamiltonian deformations
of p.

If L is strictly Hamiltonian stable, then L has local minimum volume

under each Hamiltonian deformation.
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Definition 2.3. Assume that (M,w, J, g) is a Kéhler manifold and G
is an analytic subgroup of its automorphism group Aut(M,w, J, g). We

call a Lagrangian orbit L = G-x C M of K a homogeneous Lagrangian
submanifold of M.

Proposition 2.1. Any compact homogeneous Lagrangian submanifold
in a Kdahler manifold is Hamiltonian minimal.

Proof. Since ay is an invariant 1-form on L, day is a constant function
on L. Hence by the divergence theorem we obtain day = 0. U

2.2. First eigenvalue of minimal Lagrangian submanifolds in
Einstein-Kahler manifolds. By the Lagrangian version of the sec-
ond variational formula, in the case of minimal Lagrangian submani-
folds in Einstein-Kéhler manifolds the Hamiltonian stability condition
is simplified as follow :

Corollary 2.1 (B. Y. Chen - T. Nagano - P. F. Leung [9], Y. G. Oh
22]). Assume M is an Einstein-Kdhler manifold of Einstein constant
k and ¢ : L — M s a minimal Lagrangian immersion of a compact
smooth manifold L into M (i.e. ag = 0). Then L is Hamiltonian
stable if and only if

)\12’%7

where \; denotes the first (positive) eigenvalue of the Laplacian of L
acting on Q°(L) = C>=(L).

Theorem 2.1 ([26], [27], [4]). Assume that M is a compact homo-
geneous FEinstein-Kahler manifold with Einstein constant k > 0. Let
L — M be a compact minimal Lagrangian submanifold immersed in
M. Then

)\1§/€.

Question. What compact minimal Lagrangian submanifolds in a com-
pact homogeneous Einstein-Kahler manifold M with x > 0 attain the
equality of the inequality \; < k 7

A =k <= L is Hamiltonian stable.

2.3. Examples of Hamiltonian stable Lagrangian submanifolds.

Question. What compact Lagrangian submanifolds in a Kéhler mani-
fold is a Hamiltonian stable H-minimal Lagrangian submanifold 7

Example 2.1. (1) S' cR*?~C, S' c 8?2 CP!, St c H? =
CH!, circles
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(2) L — M = CP" embedded cpt. min. Lagr. submfd.
L pum

e RP" (Y. G.Oh [22]), S=0.

e SU(p)/SO(p)-Z,, SU(p)/Z,, SU(2p)/Sp(p)-Zsp, Es/F}-
Z
(A3marzaya—0hnita [4]), S#0,VS=0

e p3(SU(2))[z8 + 23] € CP? (L. Bedulli-A. Gori [6], Ohnita
21]), VS 40

—> L is strictly Hamil. stable
(3) M : cpt. irred. Herm. sym. sp. of rank > 2
L : cpt. totally geodesic Lagrangian submanifold embedded in

M.
Then
(Qpq(R) = (SP71 x S171) [ Zs,
(L,M) = Qp+q—2(c)>(q —-p=>3)
oot seod. (U(2p)/Sp(p), SO4p)/U(p))(p = 3),
Lagr. submfd. (T . EG/F47 E7/T . EG)

<= L is NOT Hamil. stable.
(Masaru Takeuchi [32], Y. G. Oh [22], Amarzaya-Ohnita [4],
cf. [17])

Theorem 2.2 (Amarzaya-Ohnita [2], [5]). Let L™ — ]\7(0) be a com-
pact embedded Lagrangian submanifold with V.S = 0 in a simply con-
nected complete complex space form M(c)(= C",CP",CH"). Then L
15 Hamiltonian stable.

Problem. Let L — CP"™ be a compact minimal Lagrangian subman-
ifold embedded in a complex projective space. Is it true that \; = &
? that is, L is Hamiltonian stable 7 (At present I do not know any
counter example yet.)

3. LAGRANGIAN SUBMANIFOLDS IN COMPLEX HYPERQUADRICS

3.1. Complex hyperquadrics and real Grassmannian manifolds
of oriented 2-planes. The complex hyperquadric

Qn(C) = Gry(R™?) = SO(n + 2)/SO(2) x SO(n)
6



is a compact Hermitian symmetric space of rank 2, where
Qn(C) =={[2] € CP""" | 25+ 21 + - + 20,y = 0},
Gra(R"2) := {W | oriented 2-dimensional vector subspace of R"*2}.

The identification between @,,(C) and é\@(R””) is given by

2
CP™' 5 Q,(C) 5 [a+V—1b] «—— W =aAb € Gry(R""?) c /A R"*

Here {a, b} is an orthonormal basis of W compatible with its orienta-
tion.

3.2. Lagrangian submanifolds in complex hyperquadrics and
hypersurfaces in spheres. Let N" — S""1(1) ¢ R""2 be an ori-
ented hypersurface immersed or embedded in the (n + 1)-dimensional
unit standard sphere.
Let x and n denote the position vector of points of N™ and the unit
normal vector field of N™ in S""1(1), respectively.

The “Gauss map”

G:N"3p— [x(p) +V-In(p)] = x(p) An(p) € Qu(C)
is a Lagrangian immersion.

Proposition 3.1 ([17]). Any deformation of oriented hypersurface N™
in S"T(1) gives a Hamiltonian deformation of G in Q,(C). Con-
versely, any small Hamiltonian deformation of G in Q,(C) is obtained
from a deformation of oriented hypersurface N™ in S™1(1).

Remark. (2n + 1)-dimensional real Stiefel manifold
Va(R™?) := {(a,b) | a,b € R"* orthonormal } = SO(n + 2)/SO(n)

the standard Einstein-Sasakian manifold over @, (C).
The natural projections

p1: Va(R™?) 3 (a,b) — a € S"1H(1),
P2 Vo(R"?) 3 (a,b) — aAb € Q,(C).

Nn V. (Rn+2) —V (Rn+2)
Legend.
= p1|S" pa| S*
N" S"H(1)  Qu(C) D pa(v(N™)) = G(N™)

ori.hypsurf. Lagr.

Here the Legendrian life N™ of N < S"*1(1) to Va(R™?) is defined
by N" 3 p +— (x(p),n(p)) € Va(R"*?).
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3.3. The mean curvature form formula. Let gStd o) be the stan-

dard Kéahler metric of @,(C) induced from the standard inner prod-
uct of R"*2. Note that the Einstein constant of gStd c) s equal to n.

Let k; (i = 1,--- ,n) denote the principal curvatures of N™ C S™TH(1).
Choose an orthonormal frame {e;} on N™ C R""! such that the second
fundamental form h of N™ in S"*1(1) with respect to n is diagonalized
as h(e;, e;) = r;d;; and let {#'} be its dual coframe. Then the induced
metric G* gStd(C) on N™ by the Gauss map G is given as

n
Gty = (1+r)0 R0
=1
Let H denote the mean curvature vector field of G. Then the mean
curvature form of the Gauss map G is expressed in terms of the principal
curvatures as follows :

Lemma 3.1 (B. Palmer [30]).

aH:d< <log§1+\/_m>>.

In case n = 2, if N> C S3(1) is a minimal surface, then the Gauss
map G : N2 — Gry(RY) = Q5(C) = 2 x S? is a minimal La-
grangian immersion. See also Castro-Urbano [8]. More generally, if
N™ C S""1(1) is an oriented minimal hypersurface in S"*'(1) which
is an austere submanifold of S"*(1) (Harvey-Lawson [14]), then the
Gauss map G : N — ),,(C) is a minimal Lagrangian immersion.

3.4. The Gauss maps of isoparametric hypersurfaces in S"*1(1).
Assume that N® — S"T1(1) € R"™ is a compact oriented hypersur-
face embedded in the standard sphere with constant principal curva-
tures, so called “isoparametric hypersurface”. Here g denotes the num-
ber of distinct principal curvatures of N™ in S™**(1) and my, ma, - -+, my
denote the multiplicities of the principal curvatures. Then the image
of the Gauss map G : N — @, (C) is a compact minimal Lagrangian
submanifold embedded in @, (C) and the Gauss map gives a covering
map N" — L" = G(N™) = N"/Z, — Q,(C) with Deck transforma-
g

tion group Z,.
By the famous theorems of H. F. Miinzner [20], [21], we know that

m; (i = 1,---,g) satisfy m; = m; o for each i, i.e., m; = mg = -+,
mg = my = ---, and g must be 1, 2, 3, 4 or 6. We may assume that
ma S mo.
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If a hypersurface N™ in S"*1(1) is obtained as an orbit of a compact
connected subgroup G of SO(n + 2), then N™ is called homogeneous.
Obviously a homogeneous hypersurface in S"*!(1) is an isoparametric
hypersurface in S™**(1).

Proposition 3.2 ([17]). N™ is homogeneous if and only if G(N™) is
homogeneous.

In [17] we classified all compact homogeneous Lagangian submani-
folds in complex hyperquadrics @, (C) by using the theory of homo-
geneous isoparametric hypersurfaces. We shall mention it in the next
subsection.

By W.-Y. Hsiang and J. B. Lawson, Jr. [15] and Ryoichi Takagi and
Tsunero Takahashi [31] all homogeneous isoparametric hypersurfaces
in the spheres are obtained as principal orbits of the linear isotropy

representations of Riemannian symmetric spaces (U, K) of rank 2.

qg (U,K) dim N miy,Ma NgK/KO
1 (ST x SO(n+2),50(n+1)) n n S
(n>1) R&A]
2 (SO(p+2) x SO(n+2—p), n p,n—p| SPxSP
SO(p+1)xSO(n+1—p))
(1<p<n—-1) [A;DA]
3 (SU(3),50(3)) [As] 3 1,1 S
31 (SUB)x SU®3),SU(3)) [As] 6 2,2 U
3 (SU(6), Sp(3))  [As] 12 4,4 ]
3 (Es, Fu)  [As] 24 88 Sin
4] (SO(5) x SO(5),50(5)) B 8 2,2 _ US(;S";] 2
4] (SUMm+2),S(U(m) xU(2))) [4m—2] 2 | TZ=ETE]
(m >2) [BCy|(m > 3),[Bs](m = 2) 2m — 3
4] (SO(m+2),50(m) x SOR)) |2m—2] 1, ool
(m=>3) [By] m— 2
4] (Splm+2),Sp(m) x 5p(2)  [Sm—-2| 4, | R
(m >2) [BCq](m > 3),[Bs](m = 2) dm —5
1 (50(10).U(5)) [BC, 18 | 45 | soppavmer
4 (Es, Spin(10) - T) [BC) 30 6,9 o
6 (Gy x Gy, Gy)  [Gy] 12 2,2 %
6 (G2,50(4)) [Gy) 6 | 11 s




In the case of ¢ = 4, the Clifford algebra construction of non-
homogeneous isoparametric hypersurfaces in the sphere were discov-
ered first by Hideki Ozeki and Masaru Takeuchi [28], [29] and gen-
eralized by D. Ferus, H. Karcher and H. F. Miinzner [13] (so called
“isoparametric hypersurfaces of OT-FKM type”). Recently T. Cecil,
Q.-S. Chi and G. Jensen [10] and S. Immervoll [16] showed that isopara-
metric hypersurfaces in the sphere with ¢ = 4 except for the cases of
(my1,ma) = (3,4),(4,5),(6,9), (7,8) are either homogeneous or of type
OT-FKM type.

3.5. Classification of compact homogeneous Lagrangian sub-
manifolds in complex hyperquadrics. Suppose that G C SO(n + 2)
is a compact connected Lie subgroup and L = G - [W] C @,(C) is a
Lagrangian orbit of G through a point [W] € @Q,,(C)

W is an oriented 2-dimensional vector subspace of R"™2? and we
denote a unit circle of W by

S W)= {vew | vl =1}

Then we can show that there is a finite subset wy, -+ ,wy of S*(W)
such that for each w € SY (W) \ {ws,- -+ ,wy} the orbit G - w of G
through w on S"™1(1) € R™™! is a compact homogeneous hypersurface
in S™1(1) ([17]). We set N" := G - w.

By the Hsiang-Lawson’s theorem, There is a compact Riemannian
symmetric pair (U, K) of rank 2 such that

N™ = Ad,(K)v c S""'(1) cR"*? =p for some v € S""(1),

where u = £ + p is the canonical decomposition of the symmetric pair
(U, K). Here we may assume that Ad,(K) C SO(n + 2) is a maximal
compact subgroup of SO(n+ 2) containing G' which is orbit-equivalent
to the action of G on S™*1(1).

Then we obtain

Theorem 3.1 (Hui Ma-Y. Ohnita [17]). There exists a compact homo-
geneous isoparametric hypersurface N™ C S"™1(1) C R"™ such that

(i) L =G(N) and L is a compact minimal Lagrangian submanifold,
or

(ii) L is contained in a Lagrangian deformation of G(N) consisting
of compact homogeneous Lagrangian submanifolds.

The second case (ii) happens only when (U, K) is one of
(1) (8' x SO(3),50(2)),
(2) (SO(3) x SO(3),50(2) x SO(2)),
(3) (SO(3) x SO(n+1),50(2) x SO(n)) (n > 3),
10



(4) (SO(m +2),S0(2) x SO(m)) (n=2m —2,m > 3).

In the first two cases, it is elementary and well-known to describe all
Lagrangian orbits of the natural actions of K = SO(2) on Q;(C) = 52
and K = SO(2) x SO(2) on @Q5(C) = S? x S?. Also in the last
two cases there exist one-parameter families of Lagrangian K-orbits in
Q,(C) and each family contains Lagrangian submanifolds which can
NOT be obtained as the Gauss image of any homogeneous isopara-
metric hypersurface in a sphere. The fourth one is a new family of
Lagrangian orbits.

(1) If (U, K) is (S'xSO(3),S0O(2)), then L is a small or great circle
in Q1<C) = 52.

(2) If (U, K)is (SO(3)xSO(3),SO(2)xSO(2)), then L is a product
of small or great circles of S? in Qo(C) = 5% x S%.

(3) If (U, K) is (SO(3) x SO(n+1),50(2) x SO(n)) (n > 2) , then

L=K-[W,] CQn(C) forsome\c S"\ {+v—-1},

where K - [WW,] (A € S') is the S'-family of Lagrangian or

isotropic K-orbits satisfying

(a) K - [Wy] = K- [W_;] = G(N") is a totally geodesic La-
grangian submanifold in @, (C).

(b) For each A € S\ {£v/—1},
K-Wy] = (8" x S")/Zy = Qe (R)

is an H-minimal Lagrangian submanifold in @, (C) with
VS =0 and thus Vag = 0.
(c) K - [W, ]| are isotropic submanifolds in @,(C) with
dim K - [W,. /] = 0 (points !).
(4) If (U, K) is (SO(m+2),S0(2) x SO(m)) (n =2m — 2), then

L=K-[Wy]CQn(C) forsome\ec S\ {£V-1},

where K - [W,] (A € S') is the S'-family of Lagrangian or

isotropic orbits satisfying

(a) K -[Wy] = K -[W_1] = G(N") is a minimal (NOT totally
geodesic) Lagrangian submanifold in @,,(C).

(b) For each A € ST\ {£v/—1},
K- [W,] 2 (SO(2) x SO(m))/(Zy x Zy x SO(m — 2))

is an H-minimal Lagrangian submanifold in @, (C) with
VS #0 and Vag = 0.
(c) K- [Wy =] =S50(m)/S(O(1) x O(m —1)) = RP™ ! are
isotropic submanifolds in @,(C) with dim K - [W, —| =
m — 1.
11



3.6. Hamiltonian stability of the Gauss images of homoge-
neous isoparametric hypersurfaces in S""!(1). Suppose that N"
is a compact isoparametric hypersurface embedded in S"*1(1). Palmer
[30] showed that its Gauss map G : N" — @,(C) is Hamiltonian
stable if and only if N* = 5™ C S"*(1) (g = 1).

Question. Hamiltonian stability of its Gauss image G(N™) C Q,(C) ?

g=1: N" = 5"is agreat or small sphere and G(N™) = S" is strictly
Hamiltonian stable. More strongly, it is stable as a minimal subman-
ifold and homologically volume-minimizing because it is a calibrated
submanifold.

g=2: N"= 98" x S the Clifford hypersurfaces (n = my +
mg,l < maq < mg) and Q(N") = Qm1+1,m2+1(R) C Qn(C) Then
mo—my > 3if and only if G(N™) C @,(C) is NOT Hamiltonian stable.
In case ms —my > 3, the spherical harmonics of degree 2 on the sphere
S™ c R™* of smaller dimension give volume-decreasing Hamiltonian
deformations of G(N™). If my — my = 2, then it is Hamiltonian stable
but not strictly Hamiltonian stable. If ms — m; = 0 or 1, then it is
strictly Hamiltonian stable.

g = 3 : All isoparametric hypersurfaces in the sphere with ¢ = 3
were classified by E. Cartan and they all are homogeneous, so called
“Cartan hypersurfaces”.

Theorem 3.2 (Hui Ma-Ohnita [17]). If g = 3, then L = G(N™) C
Q. (C) is strictly Hamiltonian stable.

Remark. In case g = 3, each induced metric from @Q,(C) is a normal
homogeneous metric. It never holds in cases g = 4,6

g = 6 : Only homogeneous examples are known now. If ¢ = 6 and
my = mg = 1, then it is homogeneous (Dorfmeister-Neher [12], Reiko
Miyaoka [18]).

Theorem 3.3 (Hui Ma-Ohnita). If g = 6 and N™ is homogeneous,
then L = G(N™) C Q,(C) is strictly Hamiltonian stable.

g = 4 : More recently, in the case when g = 4 and N" is homoge-
neous, we obtain

Theorem 3.4 (Hui Ma-Ohnita). (1)
G(N™) = SO(5)/T* - Z,4

18 strictly Hamailtonian stable.
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(2)

G(N™) = (SO(2) x SO(m))/(Zs x SO(m — 2)) - Zy (m > 3)

1s NOT Hamiltonian stable if and only if m > 6, i.e. mg—my =
(m—2)—1>3. Ifmy—m; =(m—2)—1=2,i.e. m=25, then
it is Hamiltonian stable but not strictly Hamiltonian stable. If
me—my = (m—2)—1=0o0rl, i.e. m = 3 or4, then it is
strictly Hamaltonian stable.

Our study on the Hamiltonian stability of their Gauss images in the
homogeneous cases of g = 4 is still in progress and we shall report
further results in this case on the forthcoming opportunity.

Problem. Investigate the Hamiltonian stability of the Gauss images
of compact non-homogeneous isoparametric hypersurface embedded in
the sphere with ¢ = 4. For every compact isoparametric hypersur-
face embedded in the sphere, is it true that its Gauss image is not
Hamiltonian stable if and only if my —my >3 7

1]

[10]
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