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Abstract. In this note, we consider the problem

−∆u = up in Ω, u > 0 in Ω, u|∂Ω = 0

on a smooth bounded domain Ω in R2 for p > 1. Let up be a positive solution
of the above problem with Morse index less than or equal to m ∈ N. We
prove that if up further satisfies the assumption p

∫
Ω
|∇up|2dx = O(1) as

p → ∞, then the number of maximum points of up is less than or equal to m
for p sufficiently large. If Ω is convex, we also show that a solution of Morse
index one satisfying the above assumption has a unique critical point and
the level sets are star-shaped for p sufficiently large.
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1. Introduction.

In this note we consider the problem
−∆u = up in Ω,

u > 0 in Ω,

u = 0 on ∂Ω

(1.1)

where Ω is a smooth bounded domain in R2 and p > 1. Since the Sobolev
embedding H1

0 (Ω) ↪→ Lp+1(Ω) is compact for any p > 1, the existence of at
least one solution is easy to obtain. In fact, if we define

Sp = inf
u∈H1

0 (Ω)
{
∫

Ω

|∇u|2dx |
∫

Ω

|u|p+1dx = 1},
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then a standard variational method implies that Sp is achieved by a positive

function up ∈ H1
0 (Ω) and up = S

1/(p−1)
p up is a solution of (1.1).

For the least energy solution up obtained in this way, several studies on
the asymptotic behavior have been done in [6], [7], [3] and [1]. In particular,
in [6] and [7], along a suitable subsequence p → ∞, least energy solution up

is shown to develop a single spiky pattern at an interior point of the domain.
More precisely, up satisfies a uniform L∞-norm estimate

C1 ≤ ∥up∥L∞(Ω) ≤ C2

for some 0 < C1 ≤ C2 < ∞ independent of p, and to “concentrate” at an
interior point of the domain, i.e.,

up
p∫

Ω
up

pdx
→ δ(x0) as p → ∞

for some x0 ∈ Ω in the sense of Radon measures. Moreover, the estimate

p

∫
Ω

|∇up|2dx → 8πe as p → ∞

is proved for least energy solution up. Recently, for any m ∈ N, a solution
sequence {up} which exhibits the asymptotic behavior

p

∫
Ω

|∇up|2dx → 8πme as p → ∞

has been constructed in [5] under some topological assumption of the domain.
In the following, we restrict our attention to the solution up of (1.1) which

satisfies the assumption

p

∫
Ω

|∇up|2dx = O(1) as p → ∞. (1.2)

Before stating the results in this paper, we recall that the Morse index of
a solution u of (1.1) is the number of negative eigenvalues of the linearized
operator Lu = −∆ − pup−1· acting on H1

0 (Ω). In this paper, we prove the
following theorems.

Theorem 1. Let {up} be a solution sequence of (1.1) satisfying the assump-
tion (1.2) with the Morse index less than or equal to m,m ∈ N. Then the
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number of maximum points of up is less than or equal to m for p sufficiently
large.

Theorem 2. Let {up} be a solution sequence of (1.1) satisfying the assump-
tion (1.2) with the Morse index one. If Ω is convex, then up has only one
critical point xp which is the global maximum point of up, and

(x − xp) · ∇up(x) < 0, ∀x ∈ Ω \ {xp}

holds for p sufficiently large. In particular, the level sets of up are strict
star-shaped with respect to xp.

In [4], El Mehdi and Pacella treated the problem
−∆u = N(N − 2)up−ε − λu in Ω,

u > 0 in Ω,

u = 0 on ∂Ω

where Ω is a smooth bounded, star-shaped domain in RN , N ≥ 3, p =
(N + 2)/(N − 2), ε > 0 and λ ≥ 0. They proved similar results on the
relation between the Morse index and the number of maximum points of
blowing-up solutions {uε} to this problem via a blow-up analysis. Note
that in this case, it holds ∥uε∥L∞(Ω) → +∞ as ε → 0. Theorems in this
paper are two-dimensional counterparts to the results in [4]. However, in our
situation, solutions may not blow up in the L∞-norm sense, so the usual blow-
up analysis as in the higher-dimensional case does not work. To overcome this
difficulty, we combine the arguments in [4] and the two-dimensional blow-up
technique by Adimurthi and Grossi [1].

2. Proof of Theorem 1.

Let x1
p ∈ Ω be a maximum point of up for p large, that is, ∥up∥∞ = up(x

1
p).

First, we recall a result in [6] that for any solution up of (1.1), there holds an
estimate

∥up∥∞ ≥ λ
1/(p−1)
1

where λ1 > 0 is the first eigenvalue of −∆ under the Dirichlet boundary
condition. Proof of this fact in [6] is simple, so we recall it here for the
readers’ convenience. Let ϕ1 > 0 be the first eigenfunction associated to λ1.
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Then we see

0 =

∫
Ω

(up∆ϕ1 − ϕ1∆up)dx =

∫
Ω

ϕ1up(u
p−1
p − λ1)dx,

thus we have ∥up∥p−1
∞ ≥ λ1.

From this fact, we see

εp :=
1

√
p∥up∥(p−1)/2

∞
→ 0 (p → ∞). (2.1)

Next, we claim that x1
p is away from ∂Ω uniformly in p sufficiently large.

Indeed, (1.1) and (1.2) imply that p
∫

Ω
up+1

p dx = O(1) as p → ∞. Then we
have

p

∫
Ω

up
pdx ≤

(
p

∫
Ω

up+1
p dx

)p/(p+1)

p1/(p+1)|Ω|1/(p+1) ≤ C

uniformly in p, thus
∫
Ω

up
pdx = O(1/p) as p → ∞. Therefore, at any maxi-

mum point xp of up, vp(x) := up(x)/
∫

Ω
up

pdx satisfies

vp(xp) =
up(xp)∫
Ω

up
pdx

≥ λ
1/(p−1)
1∫
Ω

up
pdx

→ +∞

as p → ∞. On the other hand, applying Lemma 4.1 in [6] and the elliptic L1

estimate to vp, we have, as in Lemma 4.2 in [6], that vp is bounded in L∞ near
∂Ω uniformly in p. Thus any maximum point xp of up cannot approach to
∂Ω and for some neighborhood ω of ∂Ω, we have {xp ∈ Ω|up(xp) = ∥up∥∞} ⊂
Ω \ ω for large p.

Now, we define the scaled function

ũp(y) =
p

∥up∥∞
{
up

(
εpy + x1

p

)
− up(x

1
p)

}
, y ∈ Ω1

p =
Ω − x1

p

εp

(2.2)

as in [1], which satisfies
− ∆ũp(y) =

(
1 +

ũp

p
(y)

)p

in Ω1
p,

0 < 1 +
ũp

p
(y) ≤ 1 in Ω1

p,

ũp(y) = −p y ∈ ∂Ω1
p.

(2.3)

4



By the above claim, the limit domain of Ω1
p as p → ∞ is R2. As in [1] p.1015,

we can pass to the limit in (2.3) to obtain some function U ∈ C2(R2) such
that ũp → U as p → ∞ in C2

loc(R2). Passing to the limit in (2.3), we see that
U satisfies

−∆U = eU in R2, max
y∈R2

U(y) = U(0) = 0.

Moreover, by the assumption (1.2) and Fatou’s lemma, we can check that∫
R2

eUdy < +∞. (2.4)

In fact, since ũp(y) → U(y) a.e. y ∈ R2, we see

p log

(
1 +

ũp

p
(y)

)
→ U(y) a.e.y ∈ R2

and

e
p log

“

1+
ũp
p

(y)
”

→ eU(y) a.e.y ∈ R2.

Thus Fatou’s lemma and a simple change of variables using (2.2) imply that∫
R2

eUdy ≤ lim inf
p→∞

∫
Ω1

p

(
1 +

ũp

p
(y)

)p

dy

= lim inf
p→∞

∫
Ω

(
up(x)

∥up∥∞

)p

p∥up∥p−1
∞ dx ≤ (1/C) lim inf

p→∞
p

∫
Ω

up
pdx,

where we have used the fact ∥up∥∞ ≥ C > 0 uniformly for p large. The last
term is bounded as before thanks to (1.2), so we get (2.4).

At this point, we see by a result of Chen and Li [2] that

U(y) = −2 log

(
1 +

|y|2

8

)
. (2.5)

Next, we define two elliptic operators

Lp := −∆x − pup−1
p (x)· : H1

0 (Ω) → H−1(Ω), (2.6)

L̃p := −∆y −
(

1 +
ũp

p
(y)

)p−1

· : H1
0 (Ω1

p) → H−1(Ω1
p). (2.7)
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Note that the operators (2.6) and (2.7) are related to each other by a simple
scaling

ε2
pLp

∣∣∣
up(x)=∥up∥∞

“

1+
ũp
p

(y)
” = L̃p,

here, x = εpy + x1
p for x ∈ Ω and y ∈ Ω1

p. Further if we write the j-th
eigenvalue of an elliptic operator L acting on H1

0 (D) for a bounded domain
D as λj(L,D), j ∈ N, then

ε2
pλj(Lp, D) = λj(L̃p, Dp), Dp =

D − x1
p

εp

. (2.8)

Now, we claim that there exists R > 0 such that λ1(Lp, B(x1
p, εpR)) < 0

for p sufficiently large.
Indeed, define

wp(y) = y · ∇ũp(y) +
2p

p − 1

(
1 +

ũp

p
(y)

)
, y ∈ Ω1

p. (2.9)

Then we have −∆wp(y) =
(
1 + ũp(y)

p

)p−1

wp(y) for y ∈ Ω1
p. Note that

wp(0) = 2p/(p − 1) → 2. Also, since ũp → U in C2
loc(R2), we have wp(y) →

2(8 − |y|2)/(8 + |y|2) < 0 if |y| = R > 2
√

2 as p → ∞. Now, set Ap = {y ∈
B(0, R) : wp(y) > 0}, Ap ̸= ϕ, and

wp(y) =

{
wp(y) y ∈ Ap,

0 y ∈ B(0, R) \ Ap.

Testing

λ1(L̃p, B(0, R)) = inf
v∈H1

0 (B(0,R))

∫
B(0,R)

|∇v|2dy −
∫

B(0,R)

(
1 + ũp

p
(y)

)p−1

v2dy∫
B(0,R)

v2dy

by wp ∈ H1
0 (B(0, R)), we see that λ1(L̃p, B(0, R)) ≤ 0. Strict inequality

λ1(L̃p, B(0, R)) < 0 actually follows since if equality holds, wp would be the
first eigenfunction of L̃p on B(0, R), so it must be strictly positive on B(0, R),
which contradicts to the fact that wp is 0 near ∂B(0, R). By scaling (2.8),
we prove the claim.

If there is another maximum point x2
p ̸= x1

p, we repeat the same procedure
as before to obtain the ball B(x2

p, εpR) such that λ1(Lp, B(x2
p, εpR)) < 0.
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We claim that B(x1
p, εpR) and B(x2

p, εpR) are disjoint for p large. Indeed,
since ũp → U in C2

loc(R2), U(y) = −2 log(1 + |y|2/8) is strictly concave and
y · ∇ũp(y) → y · ∇U(y) < 0 on B(0, R) \ {0}, we see that up is also strictly
concave and (x − x1

p) · ∇up(x) < 0 on B(x1
p, εpR) \ {x1

p} for p large. The
same property holds for up on B(x2

p, εpR)\{x2
p}, and this concavity property

means the claim.
Now, if there are N maximum points x1

p, · · · , xN
p of up, we have N open

balls B1, · · · , BN , Bj = B(xj
p, εpR), which are disjoint, and

λ1(Lp, B
j) < 0 for j = 1, · · · , N. (2.10)

By a variational characterization of N -th eigenvalue of Lp and the well-known
argument as in a proof of Courant’s Nodal Domain Theorem, we see that

λN(Lp, Ω) ≤
N∑

j=1

λ1(Lp, B
j). (2.11)

From (2.10) and (2.11), we have λN(Lp, Ω) < 0. On the other hand, the
Morse index of up is less than or equal to m by assumption, we have λm+1(Lp, Ω) ≥
0. Therefore we must have N ≤ m, and we have proved Theorem 1.

3. Proof of Theorem 2.

Assume up is a solution of (1.1) of Morse index one with the property
(1.2) as p → ∞. By Theorem 1, we know there exists only one maximum
point xp = x1

p of up and on the ball B = B(xp, εpR) ⊂ Ω,

λ1(Lp, B) < 0 and (x − xp) · ∇up(x) < 0 (∀x ∈ B \ {xp}).

Now, we claim that (x − xp) · ∇up(x) < 0 for all x ∈ Ω \ B. Indeed,
assume there exists some x ∈ Ω \B such that (x− xp) · ∇up(x) ≥ 0. By the
variational characterization of the second eigenvalue, we have

λ2(Lp, Ω) ≤ λ1(Lp, B) + λ1(Lp, Ω \ B).

Since up is a solution of Morse index one, we have λ2(Lp, Ω) ≥ 0, and thus
λ1(Lp, Ω\B) > 0 for p large. On the other hand, by a scaling x = εpy+xp and
∇y = εp∇x, we have y ·∇ũp(y) ≥ 0. By the convexity of Ω, the scaled domain
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Ωp = (Ω − xp)/εp is star-shaped with respect to 0. Hence the Hopf lemma
implies that wp in (2.9) satisfies wp(y) < 0 for y ∈ ∂Ωp. Since wp(y) > 0,
there would exist a connected component Cp ⊂ Ωp \ B(0, R), Cp ∩ ∂Ωp = ϕ
such that wp > 0 on Cp. Then we would have that λ1(L̃p, Cp) ≤ 0, and by
(2.8), λ1(Lp, εp(Cp + {xp})) ≤ 0. Note that εp(Cp + {xp}) ⊂ Ω \ B. This
contradicts to the monotonicity 0 < λ1(Lp, Ω \ B) ≤ λ1(Lp, εp(Cp + {xp})).
Thus we have proved (x − xp) · ∇up(x) < 0 for all x ∈ Ω \ {xp}. The rest of
the statement in Theorem 2 is a simple consequence of this inequality.
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