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Abstract

We consider a biharmonic equation with the nearly critical Sobolev
exponent under the Navier boundary condition on a smooth bounded,
strictly convex domain of dimension N > 5, which is symmetric with
respect to the coordinate hyperplanes.

We prove that the number of positive solutions of the above prob-
lem is exactly one when the nonlinear exponent is subcritical and
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sufficiently near to the critical exponent. Furthermore, this unique
solution is nondegenerate in the sense that the associated linearized
problem admits only the trivial solution.

1 Introduction
We consider the problem (P.) with the Navier boundary condition:

A?u = couPs in €,
(P.) u>0 in Q,
u=Au=0 on 0f),

where Q C RY(N > 5) be a smooth bounded domain, ¢y = (N — 4)(N —
2)N(N + 2), ¢ > 0 is a small positive parameter, p. = p — ¢ and p =
(N +4)/(N — 4) is the critical Sobolev exponent from the view point of
the Sobolev embedding H? N HY(Q) — LPT(Q). The existence of at least
one solution is easy to obtain for € > 0 small. In this paper, we prove a
uniqueness and a qualitative property of solution for the problem (F).

We impose some geometric assumptions on the domain.

(H1) Qis symmetric with respect to the hyperplane {z; = 0}, (i = 1,--- , N).
(H2) © is strictly convex.
Note that (P.) is equivalent to the cooperative system

—Au=1u in €2,
—Au = couPs in €,
u>0,u>0 in €2,
u=u=>0 on 0f).
Therefore under the assumptions (H1) and
(H2’) Q is convex in the z;-direction, (i = 1,--- , N),
any solution u. to (P.) is symmetric with respect to the hyperplane {z; = 0}:
U’e(xh'” y Lyt ,ZZ'N) :ue(xb'” y Tyt ,I’N), (Z: 17 7N)7
and monotone with respect to the positive x;-direction:

ou
(9%

<0 forx; >0, (i=1,---,N),



see [16] Lemma 4.3. From these and since () has no solution, we easily see
| te|| oo () = ue(0) — +00  ase — 0.
In this note, we prove

Theorem 1 (Asymptotic uniqueness) Assume Q C RN N > 5 satisfies
(H1) and (H2). Let u. and v. be two solutions to (P.). Then there exists
go > 0 such that for any e € (0,¢0), we have u. = v, on €.

Theorem 2 The unique solution u. to (P.) in Theorem 1 is nondegenerate
in the sense that A = 0 is not an eigenvalue for the linearized eigenvalue
problem

A?w = copul="w + dw in §,
w=Aw=0 on 0f).

As far as we know, the uniqueness of solutions to the subcritical problem

A%y = uP inQ, 1<p<(N+4)/(N-4),
u >0 in €2,
u=Au=0 on 0f2

where ) satisfies (H1) and (H2) (or (H2’)), seems widely open, except for
the case €2 is a ball. We note that the blow up phenomenon does induce the
uniqueness result in Theorem 1.

Our argument goes along the line of Grossi [11]; see also [3]. Grossi
obtained the same uniqueness and the nondegeneracy results for the problem

—Au=N(N-2)u= inQCRY N >3,
u >0 in €,
u=>0 on 0f)

under the assumptions (H1) and (H2’).

In the proof, Grossi used a fine blow up analysis by YanYan Li [18] to
show that the results of Han [12] hold true for general solutions of the above
problem, under (H1) and (H2’). In the Laplacian case, the uniform supremum
estimate near the boundary for general solutions is obtained by the method
of moving planes of Gidas, Ni and Nirenberg [10], and the additional use of
the Kelvin transformation if the domain is not strictly convex.

The method of moving planes also assures that the uniform boundedness
near the boundary for general solutions of (P.) if the domain is strictly con-
vex. However, in our biharmonic case, the Kelvin transformation does not
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work well because the Navier boundary condition is not preserved under the
transformation; see [5]. This is the reason why we assume (H2).

Once we confirm that a blow up point is isolated and not on the boundary,
then we can employ the local blow up analysis and the theory of isolated
simple blow up points, recently obtained by Djadli, Malchiodi and Ahmedou
[7] for biharmonic equations. See also Felli [9]. Their works assure that
the origin is an isolated simple blow up point for any solution sequence of
(P.), and the results of Chou and Geng [5], known to be valid for solutions
minimizing the Sobolev quotient, hold true also for general solutions under
(H1) and (H2).

In the proof of Theorem 2, we extend a lemma of Damascelli, Grossi and
Pacella [6] to a polyharmonic problem. We hope this is itself interesting, see
Lemma 13.

2 Preliminaries

In this section, we collect some useful facts in the sequel. Let G = G(z,y)
denote the Green function of A? under the Navier boundary condition:

A?G(-,y) =4, in Q,
G(,y) =AG(-,y) =0  on 0.

The Robin function is defined as

R(z) = lim [['(z, y) — G(z,y)],

Yy—x

where

1 4-N
T(x y):{mlw—yl ., N>5
Y 1 -
o7 log |z —y|™, N =4

and oy is the volume of the (N — 1) dimensional unit sphere in RY. We see
that R > 0 on  and R(z) — 400 as x tends to the boundary of 2.

Lemma 3 (Pohozaev identity for the Green function) The identity

| (=) 6) L (~AGis, = (¥ = 9R()

holds true for any y € €.

Proof: See [5]. Note that there is a mistake in the claimed formula in
[5]. O



Next lemma concerns a classical elliptic regularity for a solution to the
biharmonic equation, recently obtained by Caristi and Mitidieri ([1] Theorem
4.9).

Lemma 4 Let u € H?

loc

(Q) be a weak solution of
A%y = a(z)u inQ

where a € L*(Q) with o« > N/4. Then for any q € (0,400), there exist
C =C(q) >0 and R > 0 such that for any 0 <r < R and y € RY, we have

1
sup |ul < C {—N/ lu| " da
B(y,r)NQ r B(y,2r)NQ

Next lemma claims that the origin is an isolated blow up point for any
solution sequence u. of (P.). Proof will be done by a standard blow up
analysis just as in [11] Lemma A.1., because we know u,. is uniformly bounded
in sup-norm near the boundary thanks to our assumption (H2), see [5] p.925.

] 1/(g+1)

Lemma 5 Assume (H1) and (H2). Let u. be any solution to (P.). Then
there exists C' > 0 independent of € such that

|x|4/(p5_1)u€(x) <C
for any x € Q.

Under more general situation, an isolated blow up point has to be an
isolated simple blow up point: see [7] Proposition 2.19 and [9]. We refer [7],
[9] to the definitions of isolated, or isolated simple blow up point for our
biharmonic case. Then by using the estimates for isolated simple blow up
points ([7] Lemma 2.11 and Lemma 2.17), we have the followings:

Lemma 6 Assume (H1) and (H2). Let u. be any solution to (P.). Then we
have
lim [te][ 700 () = 1 (2.1)

and
fQ |Au.|*dx

(et 77

where Sy is the best Sobolev constant of the embedding H* N Hy(Q)) —
LPH(Q).

SN (2.2)

Next theorem is the main result of Chou and Geng [5].

b}



Theorem 7 ([5]) Assume Q C RN N > 5 is strictly convezr. Let u. be a
solution to (P.) satisfying (2.2). Let x. € Q be a point such that u.(x.) =
||| oo (). Then after passing to a subsequence, we have

(1) lim._gz. = xo for some interior point xq € Q.
(2) For any open neighborhood w of 02 not containing o, there holds
|| oo (@yute — 2(N — 4)(N = 2)onG(-,29) ase — 0 (2.3)
in C**(w) for some o € (0,1).

(8) There exists a constant C' > 0 independent of € and solution u. such

that
4/(N—4) 2\ N2
(1 + el 245, "l = 2. P?)
holds for any x € €.
(4)
160’2 F(N)Co
: 2 _ N
b el () = TNEN(N — 4)(N + 2)2F(N/2)R(‘T°)' (25)

By Lemma 6 (2.2), we see that the results of Theorem 7 hold for any
solution sequence u. to (P.) with x. = zo = 0 under (H1) and (H2).

In what follows, we use a symbol ||-|| to denote the L> norm of functions.
Now, let us consider the scaled function

1 y
~ R — (pe—1)/4
ua(y) T HUEHua (|‘U5H(p51)/4) ) y E Q& T ||u8|| Q

We see 0 < 4. < 1,4.(0) = 1, and @, satisfies

AU, = coube in €,
G.=Ai. =0  ond,,

Since ||uc|| — oo as e — 0, we see . — RY and by standard elliptic
estimates, we have a subsequence denoted also by u. that

e — U compact uniformly in RY (2.6)

as ¢ — 0 for some function U. Passing to the limit, we obtain that U is a
solution of

AU = ¢oU? in RV,

0<U<1,U(0)=1,

lim‘y|ﬂoo U(y) =0.
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Thus according to the uniqueness theorem by Chang Shou Lin [4], we obtain

U(y)z( ! )(NW. (2.7)

1+ Jyf?

3 A uniqueness result

In this section, we will prove Theorem 1. Assume the contrary that there
exist solutions wu. and v, to (P:), u. # v, for some {¢} | 0. Consider the
function

wely) = (u (ﬁ) G (ﬁ))
[[ue — ve e P e |t

for y € Q. = ||Ju.||P==V/4Q. Tt is easy to check that w. solves

A%w, = c.(y)w. in Q,

w, = Aw, =0 on €., (3.1)
|we]| =1
where .
e-(y) = cop / e (y) + (1 — £)5. ()", (3.2)
0
here we set
_ 1 y - 1 y
€ - € d e - e
8el¥) = <Hue!|<p€—”/4) and - 0:v) = (|ru€|r<pe—l>/4)
for y € Q..
By Theorem 7 (2.5), we see lim._ ||uc|| = lim._¢ ||ve|| = +00 and
tim el
e=0 ||vc||

By this, we have ||0.]| = 0.(0) = v-(0)/||uc|| — 1, so as in (2.6), we see
. — U and 9. — U uniformly on compact sets of RY

where U is as in (2.7). Thus

1
Ce — cop/ [tU + (1 — )UP~ dt = copUP™! (3.3)
0



uniformly on compact sets of R, Since ||w.|| = 1, standard elliptic regularity
allows us to pass to the limit in the equation (3.1). Then we get

w. — w uniformly on compact sets of RY (3.4)

for some function w, and the limit function w satisfies

A*w = copUP™ ' in RY,  |lw|| < 1. (3.5)
Since w. is symmetric with respect to the hyperplanes {z; = 0} (i =
1,--+,N), we see by (3.4) that w is a symmetric function.

Furthermore, arguing as in [11], we check that

[ 18w pay < (3.6)
where C' is independent of €. Thus by Fatou’s lemma, we also have

/ Awldy < C. (3.7)
RN

Now, we recall the classification theorem by Bartsch, Weth and Willem
(2]).

Lemma 8 Let w be a solution to (3.5) with the property (3.7). Then there
ezist a; (j=1,2,--- ,N),b € R such that w can be written as

" N 1 — |y|?
j 1+|y| )2 (1 + |y2) V=22

Mz

7j=1
In the following, we divide the proof into several steps.

Step 1. a; =0,5=1,---,N.
This is a simple consequence of the fact that w is a symmetric function
with respect to the hyperplanes {z; =0},j =1,--- ,N.

Step 2. b= 0.
By step 1, we have
1—Jy”
(1 |y[2) =272

Now, we need the following lemma: In the proof, we argue as in [11] Lemma
A.5 with the crucial use of Lemma 4.




Lemma 9 Let w. be a solution of (3.1). Then we have the estimate

1
lwe ()] < OW fory e Q.N{ly| >0} (3.8)
for some C >0 and § > 0.

Proof: Consider the Kelvin transformation of w,:

_ z
wi(z) = 2" N

* y
e W), ZGQEI{WZJEQE}

To prove (3.8), it will be enough to show that |w?| is bounded in B(0, R) N
for some R > 0. Direct calculation shows that

A2wi(z) = o] N A2ul(y), = e

Awi(z) = 4|27 (2 - V)%, 2 € 00,
1%

/ o [P dz = / w7 dy.
O Qe

Thus, w} satisfies the equation

*
€

N = Pe(wr im0
w: =0 on OS2,
Aw? :4|z|*2(z-1/)8(;'f, on 0.

Now, we claim that there exists a constant C' > 0 such that

ac|l ey < C (3.9)
where p
a=(z) == |Z|_8C€(W)‘

Indeed, since Q. C B(0,7||u||P==1/%) for some v > 0, we see that QF C
RN\ B(0, 1/(7]Jue]|®==Y/4)). By (2.4), we know that

i-(y) <CU(y) and 9. < CU(y),

thus
le.(y)] < CUP="Y(y) fory € Q.. (3.10)



Therefore, we have

o1 Z5) < Clal (

— 8+ (pe 1)
= 2" 1+ |z|2)4—5 (N—1)/2)

< Oz BN DE) = O =W
Since |z| > 1/(v||uc||P==Y74) for z € QF, we have

2] V) < e N V0D g

as ¢ — 0. Here we have used (2.1). From these, we confirm that the claim
(3.9).
Now, for any R > 0, we have

[ et < [ pueptia = [ ey
QrNB(0,2R) Qr Qe

1 (p+1)/2
< <_ |Awa|2dy) < C,
SN Ja.

o N

here we have used the Sobolev inequality for H* N H} functions and (3.6).
Let us take ¢ = p,y = 0,2 = Q! in Lemma 4. Thus for R > 0 in Lemma 4,
we obtain

1

sup |wi <C [ / lw* [P dz
B(0,R)NQz RN Jpoorno:  ©

1/(p+1)
| <c

O

By Lemma 9 and Theorem 7 (2.4), we have the following convergence
result.

Lemma 10 Let w C 2 be any neighborhood of 02 not containing 0. Then
we have

[l yPM — —2(N —2)(N — 4)onbG(-,0) in C3(w).

[|ue — ve||

Proof: We see

(HWL—Jﬁ)——Mﬂ—¢mwfwa:ﬂm (3.11)

|ue — vel|



for x € 2 with the boundary condition

=t _ 5 (HUEWM) 0

e — v || B |ue — Vel

on 0f), where

d.(z) = COpE/O [tue(z) + (1 — t)v(2)|P=tdt, =€ Q.

Note that

1 Yy
| e ||Pe—1 de( |]u€|’(pg—1)/4) =c(y), yeQ.,

see (3.2). Thus

||u€||_(p€_1)
2| VDD

for any z € Q,2 # 0 by (2.1) and (3.10).
We have by (3.12) and (3.8),

|d-(z)] < C (3.12)

fe(z) = “ua||2da(x)wa(”ua”(pe_l)MQU)

[ 1
|x|(N—4)(Pe—1) (||u5||(p€_1)/4|$|)N_4
||u6||3—p5—(p5—1)(N—4)/4

|| N =2)p

< Clfue]®

<C

— 0

for any x # 0, since 3 —p. — (p- — 1)(N —4)/4 = —8/(N —4) +e(N/4) <0
for € > 0 small.

Also by using (3.10), (3.8), (3.3), (2.1) and the dominated convergence
theorem, we obtain

(p.— Y
[ staydn = o [ o)y

= |Jug [PV / . (y)w. (y)dy
Qe

. 1— |y
UP~ wdy = copb d
— COp/RN way Cop /]RN (1 + |y|2)N/2+3 Yy

0 PN-1 0 PN+
= copboy (/0 (1+T2>N/2+3dr_/0 (1_|_r2)N/2+3dr)

— —2(N —2)(N — 4)boy.
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Last integrals are computed by the formula

/°° (Ldr _ T(la+1)/290(8 — (a+1)/2)

147r2)87 2I(3)
From these, we confirm that
fe — —2(N — 2)(N — 4)onbdy (3.13)

in the sense of distributions. On the other hand, we can apply the LP-theory
of [8] to the equation (3.11) with the Navier boundary condition to get

(ue — ve)

1A (H sH2|| — 6“ lorey < C) (Ifellzi) + I felleqen)
E E

for w CC W' is a neighborhood of 02 not containing 0. Since we have seen

that RHS of the above estimate is bounded by a constant independent of ¢,

|2 (UE_UE)

converges
e —ve | ) &

Ascoli-Arzeld theorem implies that the function A <||u5|
to some function in Ch*-topology. Finally, (3.13) implies that this limit
function is —2(N — 2)(N — 4)onbG(z,0). O

In the following, we will use Theorem 7 with x. = xqg = 0. Recall the
Pohozaev identity for u. and v. ([14] or [17]):

Age/ uPstdy = / (- Vug)au€ dsy, (3.14)
Q 09 ov
41 Jv.
Ace [ v dr = (x - Vue)—=—ds,, (3.15)

Q a0 ov
where

—Au, =u,, —Av. =7,
and

Co(N — 4)2
22N — (N — 4)e)’
Subtracting (3.15) from (3.14), and writing as uP=™! — vP=™! = h_(z)(u. —v.)
where

A =

pele) = e+ ) [ frue) + (1= (ot
we have

A

R

he(x)(ue — vs)dac

/ T - VUE Ve )ds, + / (a:-(Vug—VvE))gﬂgdsx. (3.16)
B) oQ v
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Let us multiply both sides of (3.16) by ||u.||*/||us — v.||. Noting that
lir% |lue||ue = hII(l) |uel|ve = 2(N — 2)(N — 4)onG(+,0),
lin% ||ue |l = lir% llucl[ve = 2(N — 2)(N — 4)on(—AG)(-,0)

in C'(w) by (2.3), Lemma 10 and Lemma 3, we see that

% x (RHS of (3.16))
= xT- Ue ||V 2 —Hu€|l2 Us — 7, S
~ [ @Ity (e @ - ) as,
v (e YYD i s
[ (v (Rt —m)) gt
— —8(N — 4)*(N —2)*0%b /m(x : VG)W(LO)CZSI
= —8(N — 4)*(N —2)%0%bR(0). (3.17)

On the other hand, by using (2.4), (3.8) and the dominated convergence
theorem, we have

Juel® (LHS of (3.16))
e — ve |
= A, x ¢||lu, 2x/h5mMus—vedx
ol [ o) = )

y 1 y pe
(pa*l)/4) + (1 - t) ||ua||va( Hua’ (psfl)/4)] we(y)dydt

= Ao x efuc|? x (pe + 1) ||ug|| '~ PemDN/AFpe 5
! 1
< e
0 Qe HUE” Hu8|
N — 4)?
- %Q%dha”%(ﬁ +1) /RN UPw(y)dy
1 b(1 — |yl2
:C(N)/ =),
Y (

T+ P07 (1 [P =7

1|y

where C'(N) is a constant depending only on N. Here we have used (2.1)
and Theorem 7 (2.5). Hence by (3.17) and (3.18), we have b = 0.

Step 3. w = 0 leads to a contradiction.
By stepl and step 2, we deduce that the limit function lim, o w. = w = 0.
Since ||we|| = 1, there exists z. € 2. such that w.(z.) = 1 and |z.| — o

13



because the above convergence w. — w = 0 is uniformly on compact sets of
RY. But this is not possible because of Lemma 9 (3.8).
Thus we have proved Theorem 1. O

4 A nondegeneracy result

In this section, we will prove Theorem 2. First, we observe that the first
eigenvalue \; . of the linearized operator £, = A? — ¢op.ule~'Id is negative.
Indeed, by a variational characterization of \; ., we have

. (Lo, @) 12
AMe = inf —
T gemnHi@Q) [, ¢%dx

fQ |A@|?dr — cop- fQ ube1p?dx

= inf
S H2NHL () o, ¢*dx
< Jo lAuPde — cop. Jqubtlde o1 —p.) [oub-t'de ~0

- Jo udda B Jo u2dz

Now, the unique solution u. to (P:) is obtained by a mountain pass the-
orem applied to the functional

1
Je(u) = 5 /Q | Aul?dz — p :O_ . /Q lu|P=dx

defined on H? N H}(Q). Thus by Hofer’s theorem ([13]), the Morse index of
U, 18 at most 1. Since we see

D26, ) — / Ay [2dx — cop. / WP e = Ay / 62 dz < 0
Q Q Q

for the first eigenfunction ¢, ., we must have that the second eigenvalue Ay .
of L. satisfies Ao > 0. At this point, we have only to prove that

Claim: )y, > 0 for sufficiently small € > 0.

Proof: Suppose the contrary that Ay, = 0 and there exists a solution w,

to
A?w, = copeulstw, in €, (4.1)
w, = Aw, =0 on 0f2 '
for e | 0. We may assume that ||w.| = ||uc|| without losing generality. We
set
iy = e () €9 = fuel 00
U el \ e || e/ T ‘

14



We obtain
A%, = cop.ubs 1w, in €.,
W, = A, =0 on 0f)., (4.2)
[We || Lo () = 1.
By standard elliptic estimates, w. converges to some function wg uniformly on
compact sets on R™. As in the previous section, we also know [, [Aw,[*dy <

C and thus [,y [Awg|*dy < C for some C' > 0. Passing to the limit in (4.2)
with noting (2.6), we obtain that wy solves

{ Awy = copUP " wy  in RY,
l|lwo || oo mivy < 1.

Thus again by Lemma 8, we have

N

Yj 1—Jyf?
woy = a; b 4.3
0= L R YT e 4
for some a; (j =1,---,N),beR.
Now, we recall the following fact, which is a special case of more general
result; see Lemma 13 in Appendix.

Lemma 11 Let Q2 be a smooth bounded domain satisfying (H1),(H2)’. Then
any solution we to (4.1) is symmetric with respect to the hyperplane {x; =
0}, (i=1,---,N).

Thanks to lemma 11, we see a; =0 for all j =1,--- , N in (4.3), because
from the symmetry of the solution w. to (4.1), woy also has to be symmetric
with respect to the hyperplane {y; =0} for j =1,--- | N.

Next we will prove that b = 0 in (4.3). First we show an identity, which
is obtained similarly as in [11].

Lemma 12 Let u. be a solution of (P.) and w. be a solution of (4.1). Then

we have S S
uE wE uE wE

. = 4.4

/89(8V o o 8y>(x v)dsy =0, (4.4)

here u, = —Au, and W, = —Aw,.

Proof: Set 1. = x - Vu.. By direct computation, we have

An. = 2Au, + x - V(Au,),
A%, = 4N u, + 2 - V(A%u,),

15



thus
AQUE = 4couls + copsufg_lna, in €.

Multiplying this equation by w, (4.1) by 7., and subtracting, we have

/Q (A*n)w. — (A%w.)n.) do = / degulrw.dz. (4.5)

Q

Green’s formula implies that

/cou’gswgdx:/AQUQ-wadx:/AQwa-uadx:/COpaugswadx,
Q Q Q Q

so we have
/ ubrw.dr = 0. (4.6)
Q

On the other hand, Navier boundary condition implies

ou, O(Au,
ngz(x-y)ay, An. =z -V(Au.) = (z - v) ( )

on Jf2. Thus we obtain
/ ((A2n€)w€ — (A2w€)775) dx
Q

= / (A(An.) - w. — An, - Aw,)dx — /(A(Awa) ‘N — Aw, - An,)dx

Q Q
B 0 ow. 0 on.
—/BQ <$(An€)w5 (Am)_@y ) ds, /aQ <E(Aw€)n5 (Awg)—ay) ds,

B ow.  I0(—Aw,)

_/69 <( Ana> Y + Y 776) ds,

B O(—Au.) Ow.  I(—Aw,) du,

_/89< 5 Oy + 5 By (x-v)ds,. (4.7)

Then by (4.5), (4.6) and (4.7), we obtain (4.4). O

Using (4.2) and arguing as in Lemma 9, we again have the estimate

5 1
W (y)| < C|ZU|T_4 for y € Q. N {ly| > ¢}

for some 0 > 0. By this estimate, we obtain
|ue||we — —2(N —2)(N — 4)onbG(-,0) in C*(w) (4.8)
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where w C 2 is any neighborhood of 0f2 not containing the origin. The proof
of this convergence result is very similar to that of Lemma 10, so we omit it.
Now, we multiply both sides of (4.4) by ||u.||* to get

/@Q (Mglnas) 3<”g;”w€> . a<||g;||ue> a<||tgy||m>) (- v)ds, = 0. (4.9)

By using (2.3), (4.8) and Lemma 3, LHS of (4.9) converges to

LHS — —8(N —2)*(N — 4)*0%bR(0)

as € — 0. Therefore we have b = 0.

Thus we have proved that w. — wg = 0 uniformly on compact sets of
RY. Now, the same reason of Step 3 in the previous section is applicable
since |10z L= (q.) = 1, therefore we have a desired contradiction. This ends
the proof of Theorem 2. O

5 Appendix

In this appendix, we show a lemma which is an extension of Theorem 2.1 in [6]
to the polyharmonic operator. For this purpose, we recall some definitions.

We say that a K x K matrix H = (H,;(z))1<; j<x with all entries in C(Q)
is cooperative if Hy;(x) > 0 for all i # j,1 <4,j < K and z € Q. A matrix
H = (H;;(x)) is called fully coupled if for all nonempty sets I, J C {1,--- , K}
with TUJ ={1,--- K} and I N J = ¢, there exist some i € I,j € J and
x € 2 such that H;;(x) # 0. Let L be a diagonal K x K matrix of strictly
elliptic second order operators and H = (H;;(x)), Hy; € C(2). We say
¢ =" (¢1,-, 0x) € (W2N(Q)NC(Q)E is a positive strict supersolution to
the system of the second order linear elliptic equations

Ly = H, 1/1:t (Y1, -~ ,¢K)5§—>RK,

if 9j(x) >0, (L—H)¢);(x) >0forall j=1,---, K and z € {2, and either
»#0ondQor (L—H)p#0in .

In [15] Theorem 1.1, it is proved that if L is as above and H is cooperative
and fully coupled, if there is a positive strict supersolution to the system
Ly = Hv in €, and if Q satisfies a uniform exterior cone condition, then
1 = 0 is the unique solution to

Ly = Hvyin Q, 1 =0 on df2.
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Lemma 13 Let K € N. Let u be a smooth solution of

(—A)*u = f(u) in
u>0 in Q, (5.1)
u=Au=---AK"1y=0 on 0

where Q2 is a smooth bounded domain satisfying (H1),(H2)’, f € C*(Ry) and
f'(u) >0 for u> 0. Then any solution of the linearized problem

(—A)Ev = f'(u)v in €, (5.2)
v=Av=---AK"ly =90 on 0% :

is also symmetric with respect to the hyperplane {x; =0}, (i =1,--- , N).

Proof: We rewrite the equation (5.1) to

—Au; = uj = fi(u) inQ, (j=1,---,K-1)
—Aug = f(uy) = fg(u) in Q, (5.3)
u; >0 inQ, (j=1,---,K) '
u; =0 ondQ(j=1,--- ,K)
where u; = v and u =" (uy, ug, - -+ ,ug). Also, setting v = vy, we can rewrite
the equation (5.2) to
—AUj:Uj+1 inQ, (]:1,,[(—1)
—Avg = f'(ug)vy  in Q, (5.4)
v; =0 ond(j=1,--- K)

which is, in matrix form,

LV:HV7 v:t (/Ula"'7’UK)
for
0 1 0 0
—A 0
L= .. and H = : .. 0
0 -4 0 1
Flu) 0 - o 0

Note that H is cooperative and fully coupled.
Now, fix 1 <7 < K. By our assumption of f, we easily see

of; vy .
— > <97 < .
%JW_Q j#4, 1<j<K
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Therefore we can apply Lemma 4.3 in [16] to get that any solution u of
(5.3) is symmetric with respect to the hyperplanes {z; = 0} and g—zz > 0 on
Q7 ={xr e Qlx; <0} forany j =1,---, K. Note also that since the domain
(2 is smooth and symmetric, (2, satisfies a uniform exterior cone condition
forany 2 =1,---, N.

Set ¢; = g—;j in ;. From above, we see ¢; > 0 in ;. Also by elliptic

regularity, we see ¢; € WQ’N(Q;) NC(Q; ), and ¢; # 0 on 92N OQ; by the

loc

Hopf lemma. Moreover, by differentiating the equation of (5.3) with respect
to x;, we have

—A@Zﬁ):% nQ, (j=1,---,K—1)
—A(%E) = fl(w)ge inQy,

which is in matrix form, Lo = H¢ in Q7 for ¢ =' (¢, -, ¢). Therefore, ¢
is a positive strict supersolution to the system Li) = Ht in ), in the sense
described above.

At this point, we can apply Theorem 1.1 of Sweers [15] to get that the
system

Ly = Hvy inQ,
{ Y =0 onodf) (5:5)
has the only solution ¥ = 0.
Now, set
772)]‘(1'):vj(xla'”axia"'71‘]\/')_Uj(xh"'a_a:"h'”amN)? I'EQ;

for j = 1,--- K, where v =" (v1,--- ,vg) is a solution of (5.4). By the
symmetry of u, we have

f,(ul(x)) = f/(ul(xh'" y T Lgy va))v

s0 1 =! (¢y, -+, k) is a solution of (5.5). Thus ¢) = 0 and v is symmetric
with respect to the hyperplane {z; = 0}. O
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