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Abstract

Consider jump type stochastic differential equations with parameters. The coefficients
of the diffusion and the jump terms satisfy the uniformly non-degenerate condition. The
main purpose in this paper is to derive the logarithmic derivatives of the density function
with respect to the parameters, which is equivalent to the computations of the Greeks for
pay-off functions of asset price dynamics models in mathematical finance. The proof is
based on the martingale methods via the Clark-Ocone type formula.
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1 Introduction

The Malliavin calculus has played an important role in many fields, as one of powerful tools in
infinite dimensional analysis. It has also given us an attractive solution to the hypoelliptic prob-
lem for the differential operator associated with a stochastic differential equation, by means of
probabilistic methods. It is well known that the Hormander type conditions on the coefficients
of the equation, which is the condition about the Lie algebra generated by the vector fields as-
sociated with the coefficients, yield the existence of the smooth density function. See [3, 23]
and references therein. Bismut [5] studied the logarithmic derivatives of the density function
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with respect to the initial point of a stochastic differential equation on Riemannian manifolds.
Nowadays, the celebrated formulae in the book are caledBismut formulaafter his great
contribution. His approach is based upon the Girsanov transform on Brownian motions. The
formula has a nice flavour with the precise estimate of heat kernels or large deviation principles.
Elworthy and Li [10] also tackled the same problem in more general class of stochastic differen-
tial equations on Riemannian manifolds, via the martingale methods based on the Clark-Ocone
type formula. The logarithmic derivatives of the density function is equivalent to the Greeks
computations for pay-off functions in mathematical finance. Foueha. [11, 12] applied the
Malliavin calculus on the Wiener space to sensitivity analysis for asset price dynamics models.
They also applied their results to the numerical simulation of the Greeks.

All works stated above, paid attention to the case of processes without any jumps. There has
been a natural and non-trivial question whether a similar approach is applicable to sensitivity
analysis in case of jump processes. The interests for jump processes are recently getting more
and more in mathematical finance. There are some approaches to tackle the problem on the
sensitivities: the Girsanov transformation approach ([19, 20]) for Lévy processes initiated by
Bismut [4], the martingale methods based on the Clark-Ocone type formula ([6, 26]) similarly to
[10] in case of diffusion processes, and an application of the Malliavin calculus on the Wiener-
Poisson space ([1, 7, 9]) as introduced in [2, 8, 24]. In particular, Davis and Johansson [7], and
Cass and Friz [6] studied in case of jump diffusion processes, but their approach does not take
any effects from the jump term. On the other hand, the author in [26] studied the logarithmic
derivatives of the density function with respect to the initial point of stochastic differential
equations with jumps, via the martingale methods based on the Clark-Ocone type formula. The
formulae obtained there are definitely reflected any effects by jumps.

This paper is a continuation study of [26]. We study the logarithmic derivatives of the
density function for jump type stochastic differential equations depending on parameters, in
which the effects from the diffusions and the jumps are explicitly reflected. Our approach is
based on the martingale methods via the Clark-Ocone type formula, again. In mathematical
finance, the sensitivities of pay-off functions with respect to not only the initial point, but also
another parameters, have to be studied very carefully. That is our motivation of the present
paper. The organization of the present paper is as follows: Section 2 devotes to the introduction
of basic facts on stochastic differential equations, and the existence of smooth densities for the
solution process. In Section 3, the main result in the paper is introduced, which is proved in the
final section. Some typical examples of jump processes are given.



2 Preliminaries

Let us introduce some notations which will be used throughout the paper. BftiteR™\ {0},
and denote by (dz) the Lévy measure ovéRg' such thatngq(|z|2 A1)v(dz) < +oo.

Assumption 1. The Lévy measurne(dz) satisfies that

(i) forany p>1,
/Rm{lz| l(z<1) +12P1 (751 } v (d2) < +oo,
0

(i) there exist constants;c> 0 and o > 0 such that

inf
6]=1JRD

for sufficiently smalD < p < 1,

z-0

o

2
A 1) v(dz >cp~°

(iii) there exists a @-density dz) with respect to the Lebesgue measuréRhsuch that

lim |g(z)|=0.

2t

In what follows, we shall impose Assumption 1 on the Lévy measyiéz) without any

comments.

Remark 2.1. In [17, 24], the following conditions on the Lévy measwr&lz) are assumed.

(iv) there exist® < a < 2 such that

liminf p=¢ % v (d2) > 0,
minf p \z\ng (d2)

(v) there exists a positive definite matrixcBR™ @ R™ such that

-1
liminf (/ 122 v(dz)) / zZv(dz >B.
PO 14<p lZ<p

The condition (iv) is calledhe order conditioron the measure (dz), and the driving Lévy
process of the equation (2.1) is calledn-degeneratander the condition (v). It can be easily
checked that the condition (ii) in Assumption 1 is satisfied under (iv) and (v). O



Remark 2.2. Leta, b,c> 0, and 0< 3 < 1. Write
dz) = _N—1-B 2| —1-f3 —bzI d
v(dg =aq(-2) € l(z<0) T2 € (z>0) z

Gamma processés = +o, 8 = 0), variance gamma processgs= 0), tempered stable pro-
cessesc = 4o, 0 < B < 1), inverse Gaussian procesges= +, 3 =1/2), and CGMY pro-

cesses are in our position, whose Lévy measure satisfy Assumption 1. Those are often appeared
in asset price dynamics models with jumps in mathematical finance. O

Let (Q,.#,P) be our underlying probability space, antl= {W ; t > 0} anm-dimensional
Brownian motlon with\p = 0 € R™. Denote a Poisson random measure ¢0gf) x R7' by
J(dt,d2) with the intensity measuré(dt,dz) := dtv (d2), and the natural filtration oV and
J(dt,dz) by {Ft}-. For the simplicity of notations, write

J(dt,d2) = J(dt,dz) — J(dt,d2),
j(dt,dZ) = I(\Z|S1) JN(dt,dZ) + |(|Z|>1) J(dt,d2).

Leta (¢,y) € Co” (R' x RY;RY) (0<i <m),andb(e,y,2) € Co>* (R x RY x R RY) with

y|€nﬂgd Zlgnﬂg0 det]l +db(e,y,2)]| > 0, ‘Izlmob(s,y,z) =0,

wherel € RY@RY is the identity. The symbob indicates the derivative with respect to
the parameter ifR9, while the symbolsd; and d, indicate the derivatives ig € R' andz e
RM, respectively.C) (R';R) denotes the set ap € CN (R';RJ) such that all derivatives of
0Py (1<|B| <N) are bounded, wherg = (B1,...,B) € Z\,, 9F = P*...oP, and|B| =
ko1 B

Lete € R' andx € RY be deterministic. Consider a procegss = x{ ;t > 0} determined by
the stochastic differential equation of the form:

dx = ao(e,x) di+a(e ) odW+ [ blex 2l Xo=x (2.1)
0

wherea(e,y) = (a1 (£,Y),...,am(€,y)). The conditions on the coefficients guarantee the ex-
istence of the unique solutiop ;t > 0} to (2.1). The infinitesimal generatd¥’® associated
with the Markov proces$x ; t > 0} is given by

m

LF=A+ Z A,+/ {®B —1(z<1)B } v(d2),
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where Af = aj(e,y)-0 (0<i<m) andBf =b(e,y,2)-0 (zeRJ) are vector fields over
RY, and the operato®¢ is defined byBEf (y) = f(y+Db(e,y,2) — f(y). Write By[ - | =
E| - }xo =y|. Let{Z;t>0} and{U;;t >0} be RY ® RY-valued processes determined by
the linear stochastic differential equations of the form:

02 = 920(e,x) Zidt+da(e,x) ZiodW+ [ db(e.x-.2)Zd
0
dU = U {0ao(£,xt) —/| [(| rob)y o +ab] (£,%,2) v(dz)}dt

_Utda(s,xt)odWJr/RmUt [(I +db)_1—l] (&,%—,2) dJ,

<1

Zo=Upg=1I.

It can be easily checked by the It6 formula tEalt); = U; Z; = |. The conditions on the coeffi-
cients, and the Kolmogorov criterion for random fields implies that

Proposition 2.1(cf. [13]). Fort > 0, the mappindR? 5 x — x € RY has a G-modification,
and Z = dyx. Moreover, for any p> 1, T > 0, and any compact subset®R!', it holds that

sup Ex sup([x|® +[|Z[|” + [[U[[P) | < +oo.
ceK t<T

Similarly, we can get the following lemma on the differentiability of the prodegst > 0}
with respect to the parameter R'.

Lemma 2.1. Fort > 0, the mappin@R' > £ — x € RY has a G-modification, and the deriva-
tive dgx¢ satisfies the equation of the form:

d0:x — 020 (£.%) O -+ 0a(£.%) O o QW+ | 9b(.%—,2) Gl
0
+dsa0(€,%) dt+dsa (e, %) o AW + / deb (,%_,2) dJ, (2.2)
R
dxE=0c R @RY.

Moreover, for any p> 1, T > 0, and any compact subset®R!, it holds that

Sup {supnaextnp} < 4o
ecK '[ST

Proof. We shall writex; = x{ only in the proof, to emphasize the dependence @R’
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First, we shall study the continuity &' > ¢ — xf ¢ RY. LetT > 0 and(g,8) € R' xR,
Since

><f—><f5=/t (£,%€) —ao 57 ds+/ 5x5)}od\/\é

+//Rm <5xs_ >}dJ,

we can get the upper estimate

t<T

for any p > 1, from the conditions om (¢,y) andb(e,y,z). Thus the Kolmogorov criterion
tells us that the mapping' > £ — x¢ € RY has a continuous modification for each O.

Next, we shall study the differentiability of in e c R. Let 0#£ &, € R, ande =
(0,...,0,1,0,...,0)" € R thek-th unit vector. Since

p
XE—X?] ] < Copxr |0

ey ao(etEanE ™) —a(e,x)
- / z ds
ta<5+fem Hée‘) a(e, %)
+), ; odve
5+Eem Eres ) b(ext ,2) _
+// dJ,
RY ¢
we can get the upper estimate
e+ée e e+lec e |P
Ey ;s<quxt : XX z a ]SCap,x,T,e,k!f—ﬂp

for any p > 1. Hence the mappinB' > £ — xf € RY has aCl-modification with respect to
the parameteg € R' for eacht > 0, via the Kolmogorov criterion, again.

Furthermore, the conditions on the coefficients enables us to justify that the dertjafive
satisfies (2.2). It is an easy work to check the upper estimaidgexpfn the assertion. The proof
is complete. O



Corollary 2.1. The derivativedsx can be computed as follows:

Oex¢ = z(/ot Us (0ga0(s,xs)+ H(I +ab) 1o |}agb] (£,%, 2) v(dz)) ds

t t
+zt/ Usdga(s,xs)od\/\é—i—zt// Us- [(1+9b)20:b] (2%, 2) &3,
0 0Jrm

<1

(2.3)

Proof. Obvious by applying the It6 product formulath dg:X;. O

3 Main result

We shall devote to state the main result in the present paper. Throughout this paper, suppose
that the coefficients; (¢,y) (1 <i < m) andb(e,y,z) of the equation (2.1) satisfy

Assumption 2. For eache € R', theRY @ RY-valued functions

[aa’](e,y), [9b{db}"](e.y,2)
are uniformly elliptic on ye RY and ze RE"

LetT > 0, and defind (,y,2) = [(I +db)‘1dzb} (£,Y,2) z. Then, the following fact on the
existence of the smooth density is well known.

Proposition 3.1(cf. [21, 25]). Fix € € R'. If there exist constants;c> 0 and > 0 such that

m 2
yien];{‘d l}{?:fl{izl / (‘ £,Y,2) - — /\1) v(dz)} >c4p! (3.1)

for sufficiently smalD < p < 1, then the law of the random variablg xdetermined by2.1)
admits a density (&, x,y) with respect to the Lebesgue measuréRdrsuch that p(&,x,y) is
smooth in ye RY.

ai(g,y)-

Remark 3.1. It can be easily checked that Assumption 1 and Assumption 2 imply the condition
(3.1) in Proposition 3.1. In fact, since the boundedness of the funistioyy, z) yields that

1< Ha +db)_1r(£,y,z) p ] [l + 9] (£,y,2) A|
<cs ] [C +db)_1r(£,y,z) )\’



for A € ¥-1, we see that

2
> Cg e

Ha +ab)—1azb]* (£,y.2) % i

[a +db)‘1r (£,y,2) %

-2
>C7eP

under Assumption 2. Then we have

/Rg]( %2A1> v (d2)
= Je (‘ ([(l +op)op| (.v.2) %) 2

2
/\1) v (dz

from Assumption 1 (ii), for sufficiently small & p < 1.

b(e,y,2)-

2
/\1) v (d2

z-0
> Cge inf —
6]=1/RY

P

>cgep 7

Our goal in the present paper is to study the logarithmic derivativesr¢€, x,y) with
respect to the parameterc R!. This can be also regarded as the continuous work of [26], in
which the Bismut-Elworthy-Li type formulae (or, the logarithmic derivariveppfe,x,y) with

respect to the initial point € RY of the equation (2.1)) are studied.

We shall introduce the main result. LBt= {Ds;sc [0,T]} be the Malliavin derivative

operator. Define

Fo(s) =Us <é'eao(s,xs) +
F (s) =Usd:a(e,Xs),
K (s,2) =Us_ [(I +ab)_1dgb] (&,%s—,2),

t
NE= [ (@) ale o) ZeFo(s),
1t t
:f/ (dW)* a(&,Xs _125/ F (s) o dW,

Lt
HE _1/Tr[ (£.%) ZSDS(/ F (s odv\éﬂ ds

//ng dIVz (2) [(&b)* (I +db)} (€,%s,2) Zsk (s,2)| dJ,

H(I +db) 1 - |}agb] (£, %, 2) v(dz)) ,

|7<1
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where

Di

divz[®(2)] = ({divz[® ()]} ; 1<k <), {div, [P (]} = 5 a7

M) = (TrM}y i1 <ke< ). (TrM b= 5 M,

for anR! @ R™-valued functiord = (dy; 1<i<m, 1<k<I),andM € R"@R' @ R™. Then
we have

Theorem 1 (Sensitivity with respect t@ € R'). Suppose Assumption 1 and Assumption 2. Let
¢ : RY — R be measurable such thaj [|¢(XT)|2} < +00. Then it holds that

Oelix [¢(x7)] = Ex[@(xr)F], TF:=Nf+L7—Hf —Vf. (3.2)

Remark 3.2. Instead of Assumption 2, suppose that the functaei| (¢,y) is uniformly ellip-
tic in y € RY, and that the functiofd,b {d,b}*] (¢,y,2) is not always uniformly elliptic. Then,
the weight is computed d$ = N¢ + L% — H£. On the other hand, if the functidaa’] (¢,y) is
not always uniformly elliptic, and the functida,b {d,b}*] (¢,y,2) is uniformly elliptic, instead
of Assumption 2, then the weight is given by = —Vf. O

Example 1(Lévy processes)L.etm=d =1,x€ R, and(y,01,02) € R x (0,40) x (0, +00).
Suppose that the measurédz) satisfies Assumption 1. Consider tRevalued Lévy process
{x;t > 0} defined by

t
Xt:X+Vt+O'1W+02// zdJ.
0 JRg
Since we are in position that
a((y,01,02),y) =Y, ai((y,01,02),y) =01, b((y,01,02),Y,2) = 022,

we have ‘
o =t, 0o =W, c?azxt:/O/R zdl, Zz=U=1
0

Then it holds that
(Ntya Lty7 th7 \/'[y) = (Wv 07 07 O) )
01

21
(N L ) = (0.6 o),

) O-]_t’ 0_17



(l\l[027 LtO'Z’ Htoz,\/'[az) — ( \M dZ 0 O // az{g )
|Z|<1 Ro

020(z

Therefore, the corresponding WEIgﬁlyﬁ rTl, andr on the sensitivities with respect 0oy,
ando, can be computed as follows:

2 _
F¥=V\—h ro_ W1 o V\—'lr zv (d2) + // %1922
|7<1 Ro

oo’ T oT’ T 020(z

while the weights on the sensitivity with respect to the initial paigtR are given as follows:

Wr 1 (M7 o2} 5, 2 [T
M — _ // ACICITY // zd
"7 oAt oAt o Sy 9(2) 02A2 Jo Jrg .

T
asstatedin[26],wherAT:T+// |z dJ. O
0 JRg

Example 2 (Geometric Lévy processed)et m= d = 1, and suppose that the measur@lz)
satisfies Assumption 1. L€X; ; t > 0} theR-valued Lévy process given by

Xt=vt+01V\4+oz/0t/Rozd_L

where(y, 01,02) € R x (0,+00) x (0,+0). Forx > 0, definex. = x exp[X;], which is calledhe
geometric Lévy proces3he Ité formula enables us to see that the prodgss > 0} satisfies
the linear stochastic differential equation of the form

d><t={v+ . (e"2z—1—azz)v(dz)}xtdt+01xtodW+ (€727~ 1) % dJ,
<1 Ro

which can be regarded as the special case of canonical stochastic differential equations with
jumps (cf. [17]). Since we are in position that

wol(v.0u0.y) = {y+ [ (@*-1-azvinly,
al((y,ol,az),y)zaly, b((Y,O']_,O'z) Y, ) ( e%2% — 1) Y,

Assumption 2 is not satisfied.
But this example is also definitely in our position. Writdy) = exp[y|. Since

OB ()] = B [ ¢/ 061) 7] = S [(80 ) (X+-X0)] |y _iog
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OyEx [ (x1)] = Ex [¢ (1) X7 T] = 0yEx[(¢ o ) (X + X7)] |X:Iogx’
0o, Ex [¢ (x7)] = Ex [ (x7) xTWr | = 00, Ex[(§ 0 ) (X 4 X7)] ‘X:Iogx’

T _
OB 00c0)] =B | x| [ 23(d5.02)| = 0ul(90) (X4 X0)]

for ¢ € Cg(]R;R), the corresponding Weight'éF, 7, I for geometric Lévy processes can
be computed by using the results done in Example 1 as follows:

’ T ) T

2 _
F¥:Wr rao_WM-T ro_ Wr zv (d2) //dz{g
Ro

o1 O'1T o |z7<1 O'zg
Wy 1 T c?z{g ) 12|}
rx — _ / / di+ / / 2d
T ouxAr  OoxAr Jo Jry,  9(2) azxA% 0 JRg 4
T
WhereAT:T+// |Z/dJ. O
0 JRg

4 Proof of Theorem 1

In this section, we shall give the proof of Theorem 1. Tet 0, € € R!, andx € RY. First, we
shall start withg € Cg (Rd;R), which can be extended to the measurable funafiofR? — R
such thatfy [[(P (xT)lz] <+, as stated below. Write

Ut (t,y) =Ey[@ (xr—1)]

fort € [0,T] andy € RY. The following lemma plays a key role in our argument.

Lemma 4.1. The following equality holds.
T T .
6 (x1) = Fx [ (x7)] +/0 0t al (&,%) dw+/o /Rm%guf tx_)dd  (4.1)
0
Proof. As stated in [14], the function® is in Cé’z ([0,T) x Rd), and satisfies
& €& — | & — .
QU+ 270 =0, limu* (t,y) =6 (y)
Lett € [0,T). Applying the It6 formula to the function® implies that
t t ~
(%) = B[ (x) + [ (0wl (e et | | 8 (s ) dd. (42
0
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Each term in both hand sides of (4.2) converges to each term in (4t1)’aE, respectively,
becauser € Co? ([0,T) x RY), and

U (t,%) = Ex[¢ (x7) [Ft] — Ex[$ (x7) [ F7] = (xr)

ast /T (cf. Theorem 1-6.6 in [16]). The proof is complete. 0J

Lemma 4.2. It holds that
.
B |00 (xr) 21 [ Fo(t) 0] —Ex( 1r) M. (4.3)

Proof. Since Lemma 4.1 tells us that the proc¢s$ (t,x) = Ex[¢ (x7)|%] it € [0,T)}
is (%#)-martingale, so is the proce$g\ué (t,x);t €[0,T)}. In fact, this can be checked by
differentiating the both hand sides of the equality (4.2) with respeeta®Y, by usingu €
Co?([0,T) x RY). Then, fort < T < T, we have

Ex [0xUE (t,%) Fo (t)] = Ex [ (T,%7) Fo(t)] = Ex[OU® (T,%¢) Zr Fo(1)],

so taking the limitag T yields thafEy [0u¢ (t,%) Fo (t)] = Ex[d¢ (Xx7) ZT Fo(t)]. Therefore,
the Fubini theorem and Lemma 4.1 yield that

Ey {mp (x7) Zr /OT Fo(t) dt} _ /OT Ex |G (t, %) Fo(t)] dt

_E, UOT [OU a] (&, %) AW NE

= Ex[¢ (x1) N7],

which completes the proof. 0J

Lemma 4.3. It holds that
:
B |00 (xr) 21 || F (9)00We| = B[p () (15— )] @4

Proof. Write t
G — / F (5) o dWL.
0

SinceDs¢ (x1) = 9@ (x1) Zr Usa(g,%s) for se [0, T| from the chain rule on the operatbr the
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integration by parts formula implies that

Ex[0¢ (xr) Zt Gr] = Ex {% /OT Dst (x7) a(€, %) "L ZsGr ds}
—E, {¢ (x7) %D* (a(e,x.)—l z GT)l :

whereD* is the Skorokhod integral operator. Remark Batc Do, (R' ®Rd) from the condi-
tions ong; (&,y) (1 <i < m) (cf. [23]). Then, Proposition I-1.3.3 in [23] yields that

D* (a(s,x.)*1 zZ GT)
—D* (a(e,x.)*l z.) Gr —/OT Tr [a(e,xs)*l stSGT} ds

. {/OT (dW)* a(e, xs) zs} Gr — /OT Tr |a(e, %) " Z:DsGr | ds
—TLE—THE,

which completes the proof. 0J

Lemma 4.4. It holds that

Ey {aqb o) 27 | ' A K (2 da} — B[ (xr) V4. (4.5)

T ) T .
MTz// K (s,2) dJ, MTz// K (s,z) dJ.
0 JRY 0 JRD

Multiplying Mt by both sides of the equality (4.1), we see

Proof. Write

B [0 () Mir] = B0 )] o] + 55| { | (ol (e.x) aw f wir

E, [{ [ [ B () di} MT}
= Ex [ (x7)] Ex [M7] + 11+ 2.

As for 11, we have

I = UOT [Ou &) (£,%) Mtdw] +Ey VOT </Ot [0u al (£, %) dV\é) th}
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_E, UOT (/Ot OW al (&, %) dV\g) th} .
As for I, we can get
Iz:Ex[// BEE (%) K (t, )dJ]
+Ex[/o (/0 [ 26 (56) ) }%—Ex[ /%5 (t.x) ME da]
:]EX[//%S (t,%) K (t,2) d ] { ( Rgﬂ%guE(s,xS_)dJ)th}.
Since
EXH/t OV &) (£,%) d\/\ls+// BEu SXS)dJN}K(t,Z)}
_EX[EX[/ [0V a) (£, %) dV\é+// BEu sxs)dj‘%]l((t,z)}

—0cR ®@RY,
the Fubini theorem and the equality (4.1) in Lemma 4.1 enable us to see that

Ex[@ (x7) Mr] = Ex[¢ (x7) M7] +Ex U()T/Rmosiue (t,%) K (t,2) di}

—E, UT (/T [Ouf &) (g,%s) dV\é) dh?lt}

_Ey U (/ Rm% (5,%.) dJ) dmt] (4.6)
:/()T/ngEX[d’ (x7) K (t,2)] dJ+/O /RBHEX [BEUE (t,%) & (t,2)] dJ
:/T/m]EX[u£ (t,% +b(g,%,2) K (t,2)] dJ

0 JRI

We shall differentiate both hand sides of (4.6)xE RY. From¢ € CZ (RY;R) and the
condition onb (&,y,z), we see that

OKEx [ (x1) Mr] = Ex[0¢ (xr) Zr M7] + Ex [ (XT) OMT]
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as for the left hand side of (4.6), while the right hand side of (4.6) is

T ~
aX// Ex [ (t, % +b(,%,2)) K (t,2)] dJ
0 Jry
T ~
:// Ey [OkUE (t,% + b(£,%,2)) K (t,2)] dJ
0 JRDM
TO . T .
+// By [BEUE (t,%) Ak (t,2)] dJ+// Ex [U€ (t,%) dek (t,2)] o
0 JRD 0 JRD
=3+ 14+1s.

We shall computés, 14 andls. Lemma 4.1 enables us to see that
T T b
l4 = Ey {/ / %iug(t,xt)dJ/ OkK (t,2) dJ]

0 JRD 0 JRY
T -
— By {(p (x7) / / ok (t,2) dJ} .
0 JRY

On the other hand, sinaé (t,x) = Ex[¢ (x7) |-%t] for 0<t < T, we have

5 = Ex [¢ (XT)/OT/RB“M (t,2) di] :

Furthermore, multiplyin/t by the equality (4.1) in Lemma 4.1, it holds that

Ex[9 (x7) Vf]

=Ey UOT Rm%iug (s,Xs) divy [g(z) [(dzb)*l (1 +db)} (&,%s,2) ZSK(S,Z)} dzd%
= —Fy {/OT/Rmdzu‘g (s, s+ b(&,xs,2)) [(dzb)*l (1 +ﬁb)} (€,%s,2) ZsK (S,2) dJA]

T ~
= —[Ey {/ OU® (S, s+ b(€,%s,2)) ZsK (S,2) dJ]
0 JRD
=—la.

Here we have used the integration by parts (or, the divergence formula) in the second equality,
which can be justified by Assumption 1 (iii). Therefore, we can obtain that

Ex[0¢ (Xr) Zr M1] + Ex[¢ (XT) HKMT]
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= —Ex[¢p (x7) VE] + Ey [¢ (xT) /OT/Rmo”'XK (t,2) dj} + Fx [fﬁ (XT)/OT

= —Ex[¢ (x7) V] +Ex [0 (xT) M7],

oK (t,2) dJA}
Ry’

which completes the proof. O

Proof of Theorem 1Firstly, consider the case gf € CJ (R%;R), whereCg (RY;R) is the
set ofC®-functions onRY with the compact support. Remark that

0:0 (xr) = 3¢ (x7) Zr {/OT Fo(s) ds+/0TF(s)odV\.g+/oT/RmK(s,z) dJ}

from Corollary 2.1. By summing up the equalities (4.3), (4.4) and (4.5), the assertion of Theo-
rem 1 holds forp € Cy (Rd;R). The standard density argument (cf. [6, 7]) enables us to extend
the assertion of Theorem 1 fgr € C5 (Rd;R), to the one for square-integrable measurable
function g : RY — R with E, [|¢ (xT)ﬂ < 400, which we are going to explain below.

Secondly, consider the case pfe Co (R%R), whereCo (RY;R) is the set of continuous
functions orRY with the compact support. Then the functiprcan be approximated uniformly
and boundedly by the sequenfa; n € N} in C (R%R). Thus we have

[Ex [¢n (x7)] = Ex[¢ (x7)]] < sup |én(y) — ¢ (¥)I,

ycRd

which tends to 0 as — +o. On the other hand, the Cauchy-Schwarz inequality and Lemma
2.1 yield that, for any compact sétc R,

SUP |Jelx [¢n (x7)] — Ex [¢ (xr) {NF + LF — Hf — V£ }]]

ge=

1/2 1/2
< SUPEx || (x1) — ¢ (xr)[?| " sup By |INF +L§ — Hf — V¢ 7|

ge= gez

£ £ £ €2 1/2
< sup [¢n(y) — ¢ ()| SUPEx [IN§ +L§ — HE V£ [?]

yeRd gc=

which tends to 0 as — +o. Hence, the assertion can be justified goe Co (Rd;R).
Thirdly, study the case of an indicator functign= Ik, whereK is a compact subset iRd.
LetN € N, and letd > 0 be sufficiently small. Define subsé€s 5 andK_ in RY by

Kis={ye R Iy =91 <8 (€ 0K) pUK,
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K 5= {yeRd: y=91>96 (Je 0K)}ﬂl<7

where dK denotes the boundary &. Then, there exists a pointwise convergent sequence
{¢n;ne N} in Co(RY;R) to ¢ such that 0< ¢, < 1, and for everyn > N, ¢n— ¢ = 0 on
K= Kié UK_s. Since{¢n; n € N} is uniformly bounded, the dominated convergence theorem
implies that

|Ex [¢n (x7)] —Ex[¢ (x7)]| — O

asn — +oo. Itis clear that, for every > N and any compact subsgtc R',

sup Ex [\¢n (xr)—¢ (XT)|2|(xTeK)] =0.

ge=

Moreover, we see that
e [0k (¢r) — 6 (1) Pl g cie | < 4B xr €KY

because of X ¢ < 1. Since the probability law of th&d-valued random variabber admits a
smooth densityr (£, x,y) with respect to the Lebesgue measure @&under Assumption 2,
as seen in Proposition 3.1 and Remark 3.1, we have

Py [xr € K] z/RCpT(e,x,y) dy < (suppT(e,x,y)) K,
yeKe

where|K¢| denotes the Lebesgue measure of th&Set RY. Thus, we can obtain

Ex | I6n (1) = 6 (1) P e | < 4 (s?zpm(e,xay)> e
yeKe

Remark thaﬂKC\ — 0asd | 0. SinceK® is the compact subset Y, the densitypr (£,X,y) is
uniformly bounded iry € K¢. Hence the Cauchy-Schwarz inequality and Lemma 2.1 yield that

SUP |0 Ex [@n (x7)] — Ex[@ (x1) {NF +LF —Hf —VF}]|

ge=
1/2 1/2
< SUPEy ||n (x7) — & (x1) | " SUP Ex | IN§ +L§ —HE —VE [
ez ez
1/2 12
<2 (supsup pT (e,x,y)) ]KC\”Z sup Ex [|N$ +L§ —HE$ —V1§|2} ,
ez

ge= yeKC
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which tends to 0 am — +. Therefore, we can conclude that
OcEx (¢ (x7)] = Ex[@ (xr) {NF +LF —Hf —Vf}].

Finally, we can immediately extend the assertion of Theorem 1 to the class of finite linear
combinations of indicator functions, which can approximate a measurable fugctigfi — R
such thatfy [|¢ (xT)|2] < +00. The proof of Theorem 1 is complete. O
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