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Abstract

In this paper, we investigate the optimal singularity for the critical Sobolev space H
n
p ,p(Rn)

with n ∈ N and 1 < p < ∞. The same authors of this paper have already proved that the
function behaving as [log( 1

|x| )]
τ near x = 0 belongs to H

n
p ,p(Rn) if τ < 1

p′ = 1 − 1
p . The

purpose of this article is to give more precise characterization of H
n
p ,p(Rn) by using multiple

logarithmic functions.
On the other hand, the authors of this paper also have proved the following Sobolev type

embedding with a logarithmic weight : for 1 < p < r < ∞,

H
n
p ,p(Rn) ↪→ L(r−1)p′

(Rn ; wr(x)dx), where wr(x) =
1

[log(e + 1
|x| )]

r|x|n
. (1)

We observe that the embedding (1) is closely related to the optimal singularity for H
n
p ,p(Rn).

In the end, we shall prove that the embedding (1) is strongly sharp in the sense that the weight
wr cannot be replaced by wrφ with any function φ satisfying φ(x) → ∞ as x → 0.

2000 Mathematics Subject Classification. Primary 46E35 ; Secondary 26D10.

Key words : critical Sobolev space, weighted Sobolev inequality, optimal singularity of loga-
rithmic type

1 Introduction and main results

In this paper, we investigate the optimal singularity of the critical Sobolev space H
n
p

,p(Rn)
with n ∈ N and 1 < p < ∞. The Sobolev embedding theorem states that H

n
p

,p(Rn) ↪→ Lq(Rn)
holds for all p ≤ q < ∞, but H

n
p

,p(Rn) ̸⊂ L∞(Rn) which implies H
n
p

,p(Rn) possibly can have
a local singularity. Indeed, at least in the case of n ≥ 2 and n

n−1 ≤ p < ∞, we observe that

the function behaving as
[
log( 1

|x|)
]τ

near x = 0 belongs to H
n
p

,p(Rn) if 0 < τ < 1
p′ , which was

proved by the same authors of this paper, see [2, Lemma2.6]. Here, p′ := p
p−1 denotes the Hölder

conjugate exponent of p. The purpose of this paper is to obtain the optimal singularity so that
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the functions having the logarithmic type growth order near x = 0 belong to the critical Sobolev
space H

n
p

,p(Rn).

To state our main theorem, we define functions involving the multiple logarithm as follows.
Let τ > 0, and let η ∈ C∞(Rn) be any fixed non-negative function on Rn satisfying

supp η ⊂ {x ∈ Rn : |x| < δ} and η ≡ 1 for |x| <
δ

2

for some small δ > 0. For simplicity of notation, we define the j-ple logarithm log j(t) by

log j(t) := log ◦ · · · ◦ log︸ ︷︷ ︸
j

(t) for j ∈ N and large t > 0.

Furthermore, define the functions vj,τ (x) by
v1,τ (x) :=

[
log
(

1
|x|

)]τ

η(x),

vj,τ (x) :=
[
log
(

1
|x|

)] 1
p′
(

j−1∏
k=2

[
log k

(
1
|x|

)]− 1
p

)[
log j

(
1
|x|

)]−τ

η(x) for j ≥ 2,

where we put
∏1

k=2

[
log k(|x|−1)

]−1/p
:= 1 for the convenience. Then we shall show the following

theorem :

Theorem 1.1. (i) Let n ≥ 2 and n
n−1 ≤ p < ∞. Then it holds

vj,τ ∈ H
n
p

,p(Rn) if


0 < τ <

1
p′

when j = 1,

τ >
1
p

when j ≥ 2.

(ii) Let n ∈ N and 1 < p < ∞. Then it holds

vj,τ ̸∈ H
n
p

,p(Rn) if


τ ≥ 1

p′
when j = 1,

0 < τ <
1
p

when j = 2.

Remark 1.2. Theorem1.1 implies that the critical exponents τ so that the function vj,τ belongs
to H

n
p

,p(Rn) become τ = 1
p′ when j = 1, and τ = 1

p when j = 2 provided that n ≥ 2 and
n

n−1 ≤ p < ∞. Unfortunately, we do not know whether τ = 1
p is optimal or not when j ≥ 3 for

the technical reason. The case j = 1 in the assertion (i) was proved in [2, Lemma 2.6].

We now introduce weighted Lebesgue space Lp(Rn ; w(x)dx) for 1 ≤ p < ∞ and the non-
negative measurable function w, and we adopt the norm of Lp(Rn ; w(x) dx) as

∥u∥Lp(Rn ; w(x)dx) :=
(∫
Rn

|u(x)|pw(x) dx

) 1
p

.

Theorem1.1 is closely related to the following weighted Sobolev type embedding proved by [2,
Theorem1.5] :

2



Theorem A ([2, Theorem1.5]). Let n ∈ N, 1 < p < r < ∞ and p ≤ q ≤ (r − 1)p′. Then the
continuous embedding

H
n
p

,p(Rn) ↪→ Lq(Rn ; wr(x)dx) (1.1)

holds, where the weight function wr is defined by

wr(x) :=
1[

log(e + 1
|x|)
]r

|x|n
for x ∈ Rn \ {0}.

We shall show the assertion (ii) in Theorem1.1 as a direct consequence of Theorem A in Section 2.
In [2], it was also proved that the upper bound of the exponent q = (r − 1)p′ is optimal in the
sense that if q > (r − 1)p′, the embedding (1.1) cannot hold. Indeed, by the direct computation
we can see that

v1,τ ∈ Lq(Rn ; wr(x) dx) if and only if τ <
r − 1

q
,

which gives
v1,τ ∈ Lq(Rn ; wr(x)dx) for all 0 < τ <

1
p′

when p ≤ q ≤ (r − 1)p′,

v1,τ ̸∈ Lq(Rn ; wr(x)dx) for some 0 < τ <
1
p′

when q > (r − 1)p′.

Hence, by the above fact and Theorem 1.1 (i) with j = 1, we can see the optimality of the upper
bound q = (r − 1)p′ provided that n ≥ 2 and n

n−1 ≤ p < ∞.

Another purpose of this paper is to investigate sharper optimality of Theorem A with the
critical case q = (r − 1)p′. As stated above, the case q = (r − 1)p′ is optimal in the sense
that the case q > (r − 1)p′ makes the embedding (1.1) fail to hold. However, for the critical
case q = (r − 1)p′, we shall explore the possibility whether the weight wr(x) can be replaced by
another weight having a slightly stronger singularity at the origin. This exploration is motivated
by Theorem1.1 which says that the characterization of H

n
p

,p(Rn) can be given by not only the
single logarithm but also the multiple logarithms. However, against our expectation, we can
solve this question negatively as follows :

Theorem 1.3. Let n ∈ N and 1 < p < r < ∞, and let φ ∈ C(Rn \ {0}) be a positive
function such that φ is radially symmetric and non-increasing with respect to the radial direction
r = |x| ∈ (0,∞). In addition, assume lim

|x|↓0
φ(x) = ∞. Then it holds either (i) or (ii) as follows :

(i) It holds H
n
p

,p(Rn) ̸⊂ L(r−1)p′(Rn ; (wrφ)(x)dx).

(ii) It holds H
n
p

,p(Rn) ⊂ L(r−1)p′(Rn ; (wrφ)(x)dx), and

sup
u∈H

n
p ,p

(Rn)\{0}

∥u∥L(r−1)p′ (Rn ; (wrφ)(x)dx)

∥u∥
H

n
p ,p

(Rn)

= ∞. (1.2)
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2 Proof of Theorem1.1

This section is devoted to the proof of Theorem 1.1. We first show the affirmative part (i).

Proof of Theorem 1.1 (i). The assertion with the case j = 1 was already shown in [2, Lemma 2.6].
Hence, we consider the case j ≥ 2 below. However, we basically follow the strategy used in [2].

Define for l ∈ N,

ṽj,l,τ (t) := t−l

(
j−1∏
k=1

[
log k

(
1
t

)]− 1
p

)[
log j

(
1
t

)]−τ

χ[0,δ](t) for t > 0.

The function ṽj,l,τ can be non-increasing on (0,∞) by choosing δ > 0 small enough. Then the
direct computation gives ∣∣∣∂β

xvj,τ (x)
∣∣∣ ≤ C ṽj,l,τ (|x|) for x ∈ Rn \ {0}, (2.1)

where 1 ≤ |β| ≤ l, and C depends only on j, l, τ and δ.

In this proof, C denotes a positive constant depending only on n, p, j, τ and δ, which may
vary from line to line. It is easy to show vj,τ ∈ Lp(Rn). Now let n

p = m + α, where m is a

non-negative integer and α ∈ [0, 1). If α = 0, we can prove ∂β
xvj,τ ∈ Lp(Rn) for all 1 ≤ |β| ≤ m

directly by applying the estimate (2.1). Thus hereafter we may assume α ∈ (0, 1). Note that
0 ≤ m ≤ n−2 by the assumptions p ≥ n

n−1 and α ̸= 0. We shall make use of the characterization

of H
n
p

,p(Rn) in [4, §1.7, §2.1]. Thus it is enough to show that

J(·) :=
∫
Rn

|(∂β
xvj,τ )(· + y) − (∂β

xvj,τ )(·)|
|y|n+α

dy ∈ Lp(Rn) for |β| ≤ m (2.2)

since we already know vj,τ ∈ Lp(Rn). In order to prove (2.2), we first divide the integral into
three parts as follows :

J(x) ≤
∫
Rn

∫ 1

0

∣∣∣(∇∂β
xvj,τ )(x + ty)

∣∣∣ dt |y|−n−α+1 dy

≤ C

∫
Rn

∫ 1

0
ṽj,m+1,τ

(
|x + ty|

)
dt |y|−n−α+1 dy

≤ C

(∫
{|y|< |x|

2
}

∫ 1

0
ṽj,m+1,τ

(
|x + ty|

)
dt |y|−n−α+1 dy

+
∫
{ |x|

2
≤|y|≤2|x|}

∫ 1

0
ṽj,m+1,τ

(
|x + ty|

)
dt |y|−n−α+1 dy

+
∫
{|y|>2|x|}

∫ 1

0
ṽj,m+1,τ

(
|x + ty|

)
dt |y|−n−α+1 dy

)
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=: C
(
J1(x) + J2(x) + J3(x)

)
.

Since it holds |x + ty| > |x|
2 for any |y| < |x|

2 and 0 ≤ t ≤ 1, we can estimate J1 as follows :

J1(x) ≤
∫
{|y|< |x|

2
}

∫ 1

0
ṽj,m+1,τ

(
|x|
2

)
dt |y|−n−α+1 dy ≤ C |x|1−α ṽj,m+1,τ

(
|x|
2

)
.

Next, we estimate J2. By changing a variable x + ty = z, we have

J2(x) ≤ C|x|−n−α+1

∫ 1

0

∫
{ |x|

2
≤|y|≤2|x|}

ṽj,m+1,τ

(
|x + ty|

)
dy dt

= C|x|−n−α+1

∫ 1

0

∫
{ t|x|

2
≤|z−x|≤2t|x|}

ṽj,m+1,τ

(
|z|
)
dz t−n dt

= C|x|−n−α+1

[∫
{ |x|

2
≤|z−x|≤2|x|}

∫ 1

|z−x|
2|x|

t−n dt ṽj,m+1,τ

(
|z|
)
dz

+
∫
{|z−x|< |x|

2
}

∫ 2|z−x|
|x|

|z−x|
2|x|

t−n dt ṽj,m+1,τ

(
|z|
)
dz

]
=: C|x|−n−α+1

(
J21(x) + J22(x)

)
.

Note that |x|
2 ≤ |z − x| ≤ 2|x| implies |z−x|

2|x| ≥ 1
4 and |z| ≤ 3|x|. We now define exp j(t) by

exp j(t) := exp ◦ · · · ◦ exp︸ ︷︷ ︸
j

(t) for j ∈ N and t > 0.

Then by changing variables z = ρω (ρ > 0 and |ω| = 1), σ = log j(1/ρ) and using the condition
m ≤ n − 2, we can estimate J21 as

J21(x) ≤ C

∫
{ |x|

2
≤|z−x|≤2|x|}

ṽj,m+1,τ

(
|z|
)
dz ≤ C

∫
{|z|≤3|x|}

ṽj,m+1,τ

(
|z|
)
dz

≤ C

∫ ∞

log j
(

1
min{δ,3|x|}

)[exp j(σ)]−(n−m−1)

(
j−1∏
k=1

[exp k(σ)]1−
1
p

)
σ−τ dσ

≤


C if |x| ≥ δ

3
,

C|x|n−m−1

(
j−1∏
k=1

[
log k

(
1

3|x|

)]− 1
p

)[
log j

(
1

3|x|

)]−τ

if |x| <
δ

3
,

where we used the following claim :

Claim. The estimate∫ ∞

T
[exp j(σ)]−(n−m−1)

(
j−1∏
k=1

[exp k(σ)]1−
1
p

)
σ−τdσ
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≤ 1
n − m − 1

[exp j(T )]−(n−m−1)

(
j−1∏
k=1

[exp k(T )]−
1
p

)
T−τ

holds for any T > 0.

Indeed, this claim is shown as∫ ∞

T
[exp j(σ)]−(n−m−1)

(
j−1∏
k=1

[exp k(σ)]1−
1
p

)
σ−τdσ

= − 1
n − m − 1

∫ ∞

T

d

dσ

{
[exp j(σ)]−(n−m−1)

}(j−1∏
k=1

[exp k(σ)]−
1
p

)
σ−τdσ

=
1

n − m − 1
[exp j(T )]−(n−m−1)

(
j−1∏
k=1

[exp k(T )]−
1
p

)
T−τ

+
1

n − m − 1

∫ ∞

T
[exp j(σ)]−(n−m−1) d

dσ

{(
j−1∏
k=1

[exp k(σ)]−
1
p

)
σ−τ

}
dσ

≤ 1
n − m − 1

[exp j(T )]−(n−m−1)

(
j−1∏
k=1

[exp k(T )]−
1
p

)
T−τ

since the function σ 7→
(∏j−1

k=1[exp k(σ)]−
1
p

)
σ−τ is non-increasing.

On the other hand, we can estimate J22 as

J22(x) = C |x|n−1

∫
{|z−x|< |x|

2
}

1
|z − x|n−1

ṽj,m+1,τ

(
|z|
)
dz

≤ C |x|n−1 ṽj,m+1,τ

(
|x|
2

)∫
{|z−x|< |x|

2
}

1
|z − x|n−1

dz = C |x|n ṽj,m+1,τ

(
|x|
2

)
since |z| > |x|

2 holds for |z − x| < |x|
2 . Lastly, we estimate J3. By changing a variable ty = z, we

divide the integral into two parts as follows :

J3(x) =
∫ 1

0

∫
{|z|>2t|x|}

ṽj,m+1,τ

(
|x + z|

)
|z|−n−α+1tα−1 dt dz

=
∫
{|z|>2|x|}

∫ 1

0
tα−1 dt ṽj,m+1,τ

(
|x + z|

)
|z|−n−α+1 dz

+
∫
{|z|≤2|x|}

∫ |z|
2|x|

0
tα−1 dt ṽj,m+1,τ

(
|x + z|

)
|z|−n−α+1 dz =: J31(x) + J32(x).

We now estimate J31. We first remark that we have J31(x) = 0 for |x| ≥ δ since |x + z| > δ

holds for |z| > 2|x| and |x| ≥ δ. Then we consider |x| < δ. Since we have |x + z| > |z|
2 for any

|z| > 2|x|, by changing variables z = ρω (ρ > 0 and |ω| = 1) and σ = log j(2/ρ), we have

J31(x) =
1
α

∫
{|x|>2|x|}

ṽj,m+1,τ

(
|x + z|

)
|z|−n−α+1 dz ≤ 1

α

∫
{|x|>2|x|}

ṽj,m+1,τ

(
|z|
2

)
|z|−n−α+1 dz
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= C

∫ log j
(

1
|x|

)
log j( 1

δ )

[
exp j(σ)

]n
p

(
j−1∏
k=1

[
exp k(σ)

]1− 1
p

)
σ−τ dσ

≤ C
[
exp j(σ)

]n
p

(
j−1∏
k=1

[
exp k(σ)

]− 1
p

)
σ−τ

∣∣∣∣∣
σ=log j

(
1
|x|

)

= C|x|−
n
p

(
j−1∏
k=1

[
log k

(
1
|x|

)]− 1
p

)[
log j

(
1
|x|

)]−τ

,

where we used the following claim :

Claim. Fix a > 0. Then there exists a positive constant Ca depending only on
n, p, j, τ and a such that∫ t

a

[
exp j(σ)

]n
p

(
j−1∏
k=1

[
exp k(σ)

]1− 1
p

)
σ−τ dσ ≤ Ca

[
exp j(t)

]n
p

(
j−1∏
k=1

[
exp k(t)

]− 1
p

)
t−τ

(2.3)
for any t > a.

Indeed, this claim is shown as follows. We first remark that

d

dt
h0(t ; t0)

:=
d

dt

[
2p

n

[
exp j(t)

]n
p

(
j−1∏
k=1

[
exp k(t)

]− 1
p

)
t−τ −

∫ t

t0

[
exp j(σ)

]n
p

(
j−1∏
k=1

[
exp k(σ)

]1− 1
p

)
σ−τ dσ

]

=
[
exp j(t)

]n
p

(
j−1∏
k=1

[
exp k(t)

]1− 1
p

)
t−τ

(
1 − 2p

n
R0(t)

)
,

where

R0(t) :=
1
p

j−1∑
k=1

1∏k
λ=1 exp j−λ(t)

+
τ

t
∏j−1

λ=1 expλ(t)
→ 0 as t → ∞.

Then there exists t0 > 0 depending only on n, p, j, τ such that R0(t) < n
4p holds for any t ≥ t0.

Thus for any t ≥ t0, we have d
dth0(t ; t0) > 0 which implies h0(t ; t0) ≥ h0(t0 ; t0) > 0. Hence, the

inequality (2.3) with a = t0 and Ca = 2p
n holds. Therefore, it is enough to consider a < t0. In

this case, we see 

∫ t0

a

[
exp j(σ)

]n
p

(
j−1∏
k=1

[
exp k(σ)

]1− 1
p

)
σ−τ dσ ≤ C ′

a,

min
t∈[a,t0]

[
exp j(t)

]n
p

(
j−1∏
k=1

[
exp k(t)

]− 1
p

)
t−τ > 0.

Hence, the inequality (2.3) holds for a < t0. Thus the claim is proved.
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We proceed to the estimate of J32. We divide it into two parts as follows :

J32(x) = C|x|−α

∫
{|z|≤2|x|}

ṽj,m+1,τ

(
|x + z|

)
|z|−n+1 dz

= C|x|−α

(∫
{|z|< |x|

2
}
ṽj,m+1,τ

(
|x + z|

)
|z|−n+1 dz +

∫
{ |x|

2
≤|z|≤2|x|}

ṽj,m+1,τ

(
|x + z|

)
|z|−n+1 dz

)
=: C|x|−α

(
J321(x) + J322(x)

)
.

Since |z| < |x|
2 yields |x + z| > |x|

2 , we have

J321(x) ≤
∫
{|z|< |x|

2
}
ṽj,m+1,τ

(
|x|
2

)
|z|−n+1 dz = C |x| ṽj,m+1,τ

(
|x|
2

)
.

On the other hand, note that |x + z| ≤ 3|x| holds for |z| ≤ 2|x|. Hence, recalling m ≤ n− 2 and
in the same way as the estimate of J21, we see

J322(x) ≤ C |x|−n+1

∫
{ |x|

2
≤|z|≤2|x|}

ṽj,m+1,τ

(
|x + z|

)
dz

≤ C |x|−n+1

∫
{|x+z|≤3|x|}

ṽj,m+1,τ

(
|x + z|

)
dz

≤


C |x|−n+1 if |x| ≥ δ

3
,

C |x|−m

(
j−1∏
k=1

[
log k

(
1

3|x|

)]− 1
p

)[
log j

(
1

3|x|

)]−τ

if |x| <
δ

3
.

Summing up, we obtain

J(x)

≤ C

 ∑
µ= 1

2
,1,3

|x|−
n
p

(
j−1∏
k=1

[
log k

(
1

µ|x|

)]− 1
p

)[
log j

(
1

µ|x|

)]−τ

χ[0, δ
µ

]

(
|x|
)

+ |x|−n−α+1χ[ δ
3
,∞]

(
|x|
).

Therefore, we have

∥J∥Lp(Rn) ≤ C
∑

µ= 1
2
,1,3

∥∥∥∥∥|·|−n
p

(
j−1∏
k=1

[
log k

(
1

µ|·|

)]− 1
p

)[
log j

(
1

µ|·|

)]−τ

χ[0, δ
µ

]

(
|·|
)∥∥∥∥∥

Lp(Rn)

+ C
∥∥∥|·|−n−α+1χ[ δ

3
,∞]

(
|·|
)∥∥∥

Lp(Rn)

≤ C

∥∥∥∥∥|·|−n
p

(
j−1∏
k=1

[
log k

(
1
|·|

)]− 1
p

)[
log j

(
1
|·|

)]−τ
∥∥∥∥∥

Lp({|x|<δ})

+ C

∫ ∞

δ
3

ρ−p (n+α−1)+n−1 dρ.
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Furthermore, the direct computation gives∥∥∥∥∥|·|−n
p

(
j−1∏
k=1

[
log k

(
1
|·|

)]− 1
p

)[
log j

(
1
|·|

)]−τ
∥∥∥∥∥

p

Lp({|x|<δ})

=
1

τp − 1

[
log j

(
1
δ

)]−τp+1

and ∫ ∞

δ
3

ρ−p (n+α−1)+n−1 dρ =
1

p(n − m − 1)

(
δ

3

)−p(n−m−1)

since m ≤ n − 2 and τ > 1
p . Thus we obtain the desired estimate.

Next, we shall prove Theorem 1.1 (ii) as a corollary of Theorem A.

Proof of Theorem 1.1 (ii). We first consider the case j = 1 by a contradiction argument. Sup-
pose v1,τ ∈ H

n
p

,p(Rn) for some τ ≥ 1
p′ . Then Theorem A guarantees v1,τ ∈ L(r−1)p′(Rn ;wr(x)dx)

for all r with p < r < ∞. However, we see

∞ > ∥v1,τ∥(r−1)p′

L(r−1)p′ (Rn ; wr(x)dx)
≥ C

∫
B δ

2
(0)

[
log
(

1
|x|

)]τ(r−1)p′−r dx

|x|n
= C

∫ ∞

log( 2
δ
)
στ(r−1)p′−rdσ,

where C is some positive constant. Thus we must have τ(r − 1)p′ − (r − 1) < 0, i.e., τ < 1
p′ ,

which is a contradiction to the assumption τ ≥ 1
p′ .

Next, we consider the case j = 2. In the same way as the case j = 1, suppose v2,τ ∈ H
n
p

,p(Rn)
for some 0 < τ < 1

p . Then v2,τ belongs to L(r−1)p′(Rn ; wr(x)dx) for all r with p < r < ∞ by
TheoremA. On the other hand, the direct computation shows

∞ > ∥v2,τ∥(r−1)p′

L(r−1)p′ (Rn ; wr(x)dx)
≥
∫

B δ
2
(0)

([
log
(

1
|x|

)] 1
p′
[
log 2

(
1
|x|

)]−τ
)(r−1)p′

wr(x)dx

≥ C

∫
B δ

2
(0)

[
log
(

1
|x|

)]−1 [
log 2

(
1
|x|

)]−τ(r−1)p′ dx

|x|n
= C

∫ ∞

log 2( 2
δ
)
σ−τ(r−1)p′dσ,

where C is some positive constant. Thus we must have −τ(r − 1)p′ + 1 < 0, i.e., τ > 1
(r−1)p′ for

all r with p < r < ∞, which is a contradiction to the assumption τ < 1
p .

Remark 2.1. If Theorem A held with the case p = r, the remaining cases of Theorem 1.1 (ii)
could be solved in the quite same manner as the cases j = 1 and j = 2 as follows :

vj,τ ̸∈ H
n
p

,p(Rn) if


τ ≥ 1

p′
when j = 1,

0 < τ ≤ 1
p

when j ≥ 2.

However, the proof of Theorem A in [2] cannot work when p = r since they made use of the
generalized Young’s inequality and the case p = r corresponds to its marginal case where the
inequality fails.
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3 Proof of Theorem1.3

In this section, we shall give the proof of Theorem 1.3. First, we recall the Riesz kernel Iα(x)
and the Bessel kernel Gα(x) defined as follows. For n ∈ N and 0 < α < n,

Iα(x) :=
1

γ(α)
|x|−(n−α),

Gα(x) :=
1

(4π)
α
2 Γ(α

2 )

∫ ∞

0
e−

π|x|2
σ e−

σ
4π σ−n−α

2
dσ

σ

for x ∈ Rn \ {0}, where γ(α) := πn/2 2α Γ(α
2 )/ Γ(n−α

2 ) and Γ denotes the Gamma function. For
the relation between Iα and Gα, it is well-known that{

Gα(x) ≤ Iα(x) for all x ∈ Rn \ {0},
Gα(x) = Iα(x) + o(|x|−(n−α)) as |x| → 0.

(3.1)

Among others, we refer to [3] for more detailed properties of Iα and Gα.

Then Theorem1.3 can be reformulated in terms of Gα as the following equivalent form :

Theorem 3.1. Let n ∈ N and 1 < p < r < ∞, and let φ ∈ C(Rn \ {0}) as in Theorem1.3.
Then it holds either (i) or (ii) as follows :

(i) There exists f0 ∈ Lp(Rn) such that Gn
p
∗ f0 ̸∈ L(r−1)p′(Rn ; (wrφ)(x)dx).

(ii) It holds Gn
p
∗ f ∈ L(r−1)p′(Rn ; (wrφ)(x)dx) for all f ∈ Lp(Rn), and

sup
f∈Lp(Rn)\{0}

∥Gn
p
∗ f∥L(r−1)p′ (Rn ; (wrφ)(x)dx)

∥f∥Lp(Rn)
= ∞.

It is easy to see the equivalence between Theorem 1.3 and Theorem3.1. However, we will show
it for the completeness of the paper.

Proof of the equivalence. First, we will check that Theorem 3.1 yields Theorem 1.3. Assume
that the condition (i) in Theorem3.1. Set u0 := Gn

p
∗ f0. Then it holds

∥u0∥
H

n
p ,p

(Rn)
= ∥(I − ∆)

n
2p u0∥Lp(Rn) = ∥f0∥Lp(Rn) < ∞.

Thus u0 ∈ H
n
p

,p(Rn), but u0 ̸∈ L(r−1)p′(Rn ; (wrφ)(x)dx). Hence, the condition (i) in Theo-
rem1.3 holds.

Next, assume the condition (ii) in Theorem 3.1. Take any element u ∈ H
n
p

,p(Rn), and set
f := (I − ∆)

n
2p u. Then f ∈ Lp(Rn), and then by the assumption, we have

u = Gn
p
∗ (I − ∆)

n
2p u = Gn

p
∗ f ∈ L(r−1)p′(Rn ; (wrφ)(x)dx).
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Thus H
n
p

,p(Rn) ⊂ L(r−1)p′(Rn ; (wrφ)(x)dx). Moreover, by the assumption, take a sequence
{fj}j∈N ∈ Lp(Rn) \ {0} such that

lim
j→∞

∥Gn
p
∗ fj∥L(r−1)p′ (Rn ; (wrφ)(x)dx)

∥fj∥Lp(Rn)
= ∞.

Set uj := Gn
p
∗ fj . Then uj ∈ H

n
p

,p(Rn) \ {0} and

∥uj∥L(r−1)p′ (Rn ; (wrφ)(x)dx)

∥uj∥
H

n
p ,p

(Rn)

=
∥Gn

p
∗ fj∥L(r−1)p′ (Rn ; (wrφ)(x)dx)

∥fj∥Lp(Rn)
→ ∞ as j → ∞,

which implies (1.2).

The direction from Theorem 1.3 to Theorem 3.1 will be seen in a quite same way as above,
and we omit the details.

Hence we will concentrate on the proof of Theorem3.1 below. In order to prove Theorem3.1,
we will apply the following theorem in [1] :

Theorem B ([1, Theorem 2.1]). Let n ∈ N and 1 < p ≤ q < ∞, and let U and V be positive
weight functions in Rn. Assume that

sup
R>0

(∫
{|x|<R}

U(x) dx

) 1
q
(∫

{|x|>R}
V (x)−(p′−1) dx

) 1
p′

= ∞.

Then it holds either (i) or (ii) :

(i) There exists a non-negative function f0 ∈ Lp(Rn ; V (x)dx) such that
∫
{|y|>|·|} f0(y)dy ̸∈

Lq(Rn ; U(x)dx).

(ii)
∫
{|y|>|·|} f(y)dy ∈ Lq(Rn ; U(x)dx) for all non-negative functions f ∈ Lp(Rn ; V (x)dx), and

sup
f∈Lp(Rn ; V (x)dx)\{0},

f : non-negative

∥∥∥∫{|y|>|·|} f(y) dy
∥∥∥

Lq(Rn ; U(x)dx)

∥f∥Lp(Rn ; V (x)dx)
= ∞.

Remark 3.2. In [1], the following Hardy type inequality in the n-dimensional case was proved :
if

sup
R>0

(∫
{|x|<R}

U(x) dx

) 1
q
(∫

{|x|>R}
V (x)−(p′−1) dx

) 1
p′

< ∞ (3.2)

then
∫
{|y|>|·|} f(y) dy ∈ Lq(Rn ; U(x)dx) holds for all non-negative functions f ∈ Lp(Rn ; V (x)dx),

and

sup
f∈Lp(Rn ; V (x)dx)\{0},

f : non-negative

∥∥∥∫{|y|>|·|} f(y) dy
∥∥∥

Lq(Rn ; U(x)dx)

∥f∥Lp(Rn ; V (x)dx)
< ∞.

Thus, the condition (3.2) is necessary and sufficient for the n-dimensional Hardy inequality to
hold.
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We are now in the position to prove Theorem 3.1 :

Proof of Theorem 3.1. Let f be a non-negative function in Lp(Rn). Then since |y| > |x|
implies |x − y| < 2|y|, we see

∥Gn
p
∗ f∥(r−1)p′

L(r−1)p′ (Rn ; (wrφ)(x)dx)
≥
∫
Rn

(∫
{|y|>|x|}

Gn
p
(x − y)f(y) dy

)(r−1)p′

(wrφ)(x) dx

≥
∫
Rn

(∫
{|y|>|x|}

Gn
p
(2y)f(y) dy

)(r−1)p′

(wrφ)(x) dx.

Thus, it is enough to show that either (i) or (ii) holds as follows :

(i) There exists a non-negative function f0 ∈ Lp(Rn) such that∫
{|y|>|·|}

Gn
p
(2y)f0(y)dy ̸∈ L(r−1)p′(Rn ; (wrφ)(x)dx).

(ii) For all non-negative functions f ∈ Lp(Rn) it holds∫
{|y|>|·|}

Gn
p
(2y)f(y)dy ∈ L(r−1)p′(Rn ; (wrφ)(x)dx),

and

sup
f∈Lp(Rn)\{0},
f : non-negative

∥∥∥∫{|y|>|·|} Gn
p
(2y)f(y) dy

∥∥∥
L(r−1)p′ (Rn ; (wrφ)(x) dx)

∥f∥Lp(Rn)
= ∞.

Furthermore, by Theorem B, it suffices to show that

sup
R>0

(∫
{|x|<R}

U0(x)dx

) 1
(r−1)p′

(∫
{|x|>R}

V0(x)−(p′−1)dx

) 1
p′

= ∞, (3.3)

where
(U0, V0) :=

(
wrφ,Gn

p
(2·)−p

)
.

Indeed, once (3.3) has been established, then by applying TheoremB, we obtain either (i) or (ii)
as follows :

(i) There exists a non-negative function f0 ∈ Lp(Rn ; Gn
p
(2x)−pdx) such that

∫
{|y|>|·|} f0(y)dy ̸∈

L(r−1)p′(Rn ; (wrφ)(x)dx).

(ii) For all non-negative functions f ∈ Lp(Rn ; Gn
p
(2x)−pdx) it holds∫

{|y|>|·|}
f(y) dy ∈ L(r−1)p′(Rn ; (wrφ)(x)dx),
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and

sup
f∈Lp(Rn ; G n

p
(2x)−pdx)\{0},

f : non-negative

∥∥∥∫{|y|>|·|} f(y) dy
∥∥∥

L(r−1)p′ (Rn ; (wrφ)(x)dx)

∥f∥Lp(Rn ; G n
p

(2x)−pdx)
= ∞.

By setting f̃0(x) := f0(x)Gn
p
(2x)−1 or f̃(x) := f(x)Gn

p
(2x)−1, we have the desired facts. Hence,

it remains to prove (3.3).

Obviously, we may assume
∫
{|x|<R}(wrφ)(x) dx < ∞ for any R > 0. Note that

max
t≥2

log(e + t)
log t

=
log(e + 2)

log 2
.

Then we see for any 0 < R < 1
2 ,∫

{|x|<R}
(wrφ)(x) dx =

∫
{|x|<R}

[
log
(

e +
1
|x|

)]−r

|x|−nφ(x) dx

≥
[
log(e + 2)

log 2

]−r ∫
{|x|<R}

[
log
(

1
|x|

)]−r

|x|−nφ(x) dx

= C

∫ R

0

[
log
(

1
t

)]−r

φ̃(t)
dt

t
,

where we set φ̃(t) := φ(x) with |x| = t ∈ (0,∞). Define g(R) by

g(R) :=

∫ R
0

[
log(1

t )
]−r

φ̃(t) dt
t[

log( 1
R)
]−(r−1)

for 0 < R <
1
2
.

Then by using L’Hopital’s rule, we obtain

lim
R↓0

g(R) = lim
R↓0

[
log( 1

R)
]−r

φ̃(R) 1
R

(r − 1)
[
log( 1

R)
]−r 1

R

= lim
R↓0

φ̃(R)
r − 1

= ∞.

Next, we consider the integral
∫
{|x|>R} Gn

p
(2x)p′dx for R > 0. The latter estimate in (3.1)

implies that there exists a positive constant 0 < δ0 < 1 such that In
p
(x) ≤ 2Gn

p
(x) for all

0 < |x| < δ0. Then for any R with 0 < R < δ0
2 , we see∫

{|x|>R}
Gn

p
(2x)p′dx ≥

∫
{R<|x|< δ0

2
}
Gn

p
(2x)p′dx ≥

∫
{R<|x|< δ0

2
}

(
1
2
In

p
(2x)

)p′

dx

= C

∫
{R<|x|< δ0

2
}
|x|−n dx = C log

(
δ0

2R

)
.

Thus combining the above estimates from below, we have for 0 < R < δ0
2 ,(∫

{|x|<R}
(wrφ)(x) dx

) 1
(r−1)p′

(∫
{|x|>R}

Gn
p
(2x)p′dx

) 1
p′
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≥ C

(∫ R

0

[
log
(

1
t

)]−r

φ̃(t)
dt

t

) 1
(r−1)p′ [

log
(

δ0

2R

)] 1
p′

= C

(
g(R)

[
log
(

1
R

)]−(r−1)
) 1

(r−1)p′ [
log
(

δ0

2R

)] 1
p′

= Cg(R)
1

(r−1)p′

(
1 +

log( δ0
2 )

log( 1
R)

) 1
p′

→ ∞ as R ↓ 0,

which implies (3.3). Thus Theorem 3.1 is proved.
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