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Abstract. We construct cohomogeneity one special Lagrangian submanifolds in the cotangent
bundle of the sphere Sn invariant under SO(p) × SO(q) (p + q = n + 1). We describe the
asymptotic behavior of these special Lagrangian submanifolds.

1. Introduction

In 1993, Stenzel [12] constructed cohomogeneity one Ricci-flat Kähler metrics on the cotan-
gent bundles of rank one symmetric spaces of compact type. Anciaux [1] constructed special
Lagrangian submanifolds in the cotangent bundle of the sphere, applying the symmetry of the
Stenzel metric. Ionel and Min-Oo [7] studied special Lagrangian submanifolds in the deformed
and resolved conifolds of dimension 3, using the moment map technique. In this paper, gen-
eralizing there results, we study cohomogeneity one special Lagrangian submanifolds in the
cotangent bundle of the sphere Sn invariant under SO(p) × SO(q) (p + q = n + 1). First we
construct Lagrangian submanifolds using the moment map technique. Since these Lagrangian
submanifolds are cohomogeneity one, the condition for them to be special Lagrangian is reduced
to an ODE. We analyse the solution of this ODE, and observe the asymptotic behavior of those
special Lagrangian submanifolds. We note that special Lagrangian submanifolds with this kind
of symmetry were also studied by Kanemitsu [10] independently.

Acknowledgements. The authors would like to thank Professor Yoshihiro Ohnita for help-
ful discussions.

2. Preliminaries

2.1. Calabi-Yau manifolds and special Lagrangian submanifolds. We shall review some
definitions and basic notions of Calabi-Yau manifolds and special Lagrangian submanifolds. See
[9] for details.

There are several different definitions of Calabi-Yau manifolds. In this paper, we use the
following definition.

Definition 2.1. Let n ≥ 2. An almost Calabi-Yau n-fold is a quadruple (M,J, ω,Ω) such that
(M,J, ω) is a Kähler manifold of complex dimension n with a complex structure J and a Kähler
form ω, and Ω is a nonvanishing holomorphic (n, 0)-form on M . In addition, if ω and Ω satisfy

(2.1)
ωn

n!
= (−1)

n(n−1)
2

(√
−1

2

)n

Ω ∧ Ω̄,

then we call (M,J, ω,Ω) a Calabi-Yau n-fold.

If ω and Ω satisfy (2.1), then the Kähler metric g of (M,J, ω) is Ricci-flat and its holonomy
group Hol(g) is a subgroup of SU(n), that is another definition of a Calabi-Yau manifold.
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A closed p-form φ on a Riemannian manifold (M, g) is called a calibration if φ|V ≤ volV for
any oriented p-plane V ⊂ TxM for all x ∈ M . A p-dimensional submanifold N of M is said to
be calibrated by a calibration φ if φ|TxN = volTxN for all x ∈ N .

Remark 2.2. The constant factor in (2.1) is chosen so that Re(e
√
−1θΩ) is a calibration for any

θ ∈ R.

Definition 2.3. Let (M,J, ω,Ω) be a Calabi-Yau n-fold and L be a real n-dimensional sub-
manifold of M . Then, for θ ∈ R, L is called a special Lagrangian submanifold of phase θ if it is

calibrated by the calibration Re(e
√
−1θΩ).

Harvey and Lawson gave the following alternative characterization of special Lagrangian sub-
manifolds.

Proposition 2.4 ([4]). Let (M,J, ω,Ω) be a Calabi-Yau n-fold and L be a real n-dimensional
submanifold of M . Then L is a special Lagrangian submanifold of phase θ if and only if ω|L ≡ 0

and Im(e
√
−1θΩ)|L ≡ 0.

2.2. Stenzel metric on the cotangent bundle of the sphere. In [12], Stenzel constructed
complete Ricci-flat Kähler metrics on the cotangent bundles of rank one symmetric spaces of
compact type. For our use, here we shall recall the Stenzel metric on the cotangent bundle of
the sphere. We denote the cotangent bundle of the n-sphere Sn ∼= SO(n+ 1)/SO(n) by

T ∗Sn =
{
(x, ξ) ∈ Rn+1 × Rn+1 | ∥x∥ = 1, ⟨x, ξ⟩ = 0

}
.

We identify the tangent bundle and cotangent bundle of Sn by the Riemannian metric on Sn.
Since any unit cotangent vector of Sn can be translated to another one, the Lie group SO(n+1)
acts on T ∗Sn with cohomogeneity one by g · (x, ξ) = (gx, gξ) for g ∈ SO(n + 1). Let Qn be a
complex quadric in Cn+1 defined by

Qn =

{
z = (z1, . . . , zn+1) ∈ Cn+1

∣∣∣∣ n+1∑
i=1

z2i = 1

}
.

The group SO(n+1,C) acts on Qn transitively, hence Qn ∼= SO(n+1,C)/SO(n,C). According
to Szöke [13], we can identify T ∗Sn with Qn by the following diffeomorphism:

Φ : T ∗Sn −→ Qn

(x, ξ) 7−→ x cosh(∥ξ∥) +
√
−1

ξ

∥ξ∥
sinh(∥ξ∥).

The diffeomorphism Φ is equivariant under the action of SO(n+1). Thus we frequently identify
T ∗Sn with Qn. We give the complex structure JStz on T ∗Sn by pulling back the complex
structure of Qn via the map Φ. With respect to this complex structure, Stenzel [12] constructed
a complete Ricci-flat Kähler metric on Qn, whose Kähler form is given by

ωStz =
√
−1∂∂̄u(r2) =

√
−1

n+1∑
i,j=1

∂2

∂zi∂z̄j
u(r2)dzi ∧ dz̄j ,

where r2 = ∥z∥2 =
∑n+1

i=1 ziz̄i and u is a smooth real function satisfying the following differential
equation:

(2.2)
d

dt
(U ′(t))n = cn(sinh t)n−1 (c > 0),

where U(t) = u(cosh t). In the case of n = 2, the Stenzel metric coincides with the hyperkähler
metric discovered by Eguchi and Hanson [3].

The Kähler form ωStz is exact and ωStz = dαStz, where the 1-form αStz = −Im
(
∂̄u(r2)

)
. We

give the Liouville form α0 on Cn+1 by α0(v) = ⟨Jz, v⟩, where ⟨ , ⟩ and J are the standard real
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inner product and complex structure on Cn+1, respectively. Then one can show that αStz =
u′(r2)α0. Hence αStz has the following expression:

αStz(v) = u′(r2)α0(v) = u′(r2)⟨Jz, v⟩ (v ∈ TzQ
n, z ∈ Qn).

From this, ωStz can be evaluated as

ωStz(v, w) = dαStz(v, w)

= v(αStz(w))− w(αStz(v))− αStz([v, w])

= 2u′(r2)⟨Jv,w⟩+ 2u′′(r2)
(
⟨z, v⟩⟨Jz, w⟩ − ⟨z, w⟩⟨Jz, v⟩

)
(2.3)

for v, w ∈ TzQ
n and z ∈ Qn.

The holomorphic (n, 0)-form ΩStz on Qn is given by

1

2
d(z21 + z22 + · · ·+ z2n+1 − 1) ∧ ΩStz = Ω0,

where Ω0 = dz1 ∧ . . . ∧ dzn+1 is the standard holomorphic (n + 1, 0)-form on Cn+1. We can
express ΩStz as

ΩStz(v1, . . . , vn) = Ω0(z, v1, . . . , vn)

or

ΩStz(v1, . . . , vn) =
1

∥z∥2
Ω0(z̄, v1, . . . , vn),

where v1, . . . , vn ∈ TzQ
n, z ∈ Qn and z = z1

∂
∂z1

+ · · ·+ zn+1
∂

∂zn+1
, z̄ = z̄1

∂
∂z1

+ · · ·+ z̄n+1
∂

∂zn+1
.

Clearly the action of SO(n+1) on Qn preserves JStz, ωStz and ΩStz. Moreover one can show
that there exists a constant λ ∈ R such that

ωn
Stz

n!
= (−1)

n(n−1)
2

(√
−1

2

)n

λ2ΩStz ∧ Ω̄Stz.

Hence (T ∗Sn ∼= Qn, JStz, ωStz, λΩStz) is a cohomogeneity one Calabi-Yau manifold.

2.3. Moment maps and Lagrangian submanifolds. Let (M,ω) be a symplectic manifold,
and G be a Lie group acting on M . We denote the Lie algebra of G by g. Let X∗ denote the
fundamental vector field of X ∈ g on M , i.e.,

X∗
x =

d

dt

∣∣∣
t=0

exp(tX)x (x ∈ M).

Now we suppose that the action of G on M is Hamiltonian with the moment map µ : M → g∗.
We define the center of g∗ to be Z(g∗) = {X ∈ g∗ | Ad∗(g)X = X (∀g ∈ G)}. It is easy to
see that the inverse image µ−1(c) of the moment map µ for c ∈ g∗ is G-invariant if and only if
c ∈ Z(g∗).

Proposition 2.5. Let L be a connected isotropic submanifold, i.e., ω|L ≡ 0, of M invariant
under the action of G. Then L ⊂ µ−1(c) for some c ∈ Z(g∗).

Proof. For X ∈ g, we define a function µX on M by µX(x) = (µ(x))(X). Then, from the
definition of the moment map, µX is the Hamiltonian function of X∗. Since L is an isotropic
submanifold of M , we have

LY (µX) = dµX(Y ) = ω(X∗
x, Y ) = 0

for all X ∈ g, Y ∈ TxL and x ∈ L. This implies that µX is constant on L for all X ∈ g, hence
µ : M → g∗ is also constant on L. Thus L ⊂ µ−1(c) for some c ∈ g∗. Moreover, since L is
G-invariant, we have c ∈ Z(g∗). �
Proposition 2.6. Let L be a connected submanifold of M invariant under the action of G.
Suppose that the action of G on L is cohomogeneity one (possibly transitive). Then L is an
isotropic submanifold, i.e., ω|L ≡ 0, if and only if L ⊂ µ−1(c) for some c ∈ Z(g∗).
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Proof. By Proposition 2.5, we know that L ⊂ µ−1(c) for some c ∈ Z(g∗) if L is isotropic. So it
suffices to prove the converse.

Suppose that L ⊂ µ−1(c) for some c ∈ Z(g∗). This means that µ is constant on L, so µX is
also constant on L for all X ∈ g. Therefore

ω(X∗
x, Y ) = LY (µX) = 0

for all X ∈ g, Y ∈ TxL and x ∈ L. Let x ∈ L be a regular point of the action of G on L.
It is known that the set of regular points is open dense in L. Since the action of G on L
is cohomogeneity one, if we take Y1 ∈ TxL which is transverse to the orbit of G at x, then
TxL = span{X∗

x, Y1 | X ∈ g}. Therefore ω|TxL ≡ 0. Since ω vanishes on an open dense subset
of L, it vanishes on L entirely. Thus L is isotropic. �

3. Construction of cohomogeneity one special Lagrangian submanifolds in T ∗Sn

In this section we shall construct cohomogeneity one special Lagrangian submanifolds in T ∗Sn

with respect to the Stenzel metric, using the moment map technique. Since the zero-section Sn

of T ∗Sn is a homogeneous special Lagrangian submanifold in T ∗Sn, a homogeneous hypersurface
in Sn is a (n− 1)-dimensional isotropic submanifold in T ∗Sn. Extending it to an n-dimensional
submanifold in T ∗Sn, we can construct a cohomogeneity one Lagrangian submanifold. For
such a Lagrangian submanifold, the condition to be special Lagrangian can be described by an
ordinary differential equation.

Let G be a compact Lie subgroup of SO(n+ 1) and g be its Lie algebra. Then the action of
G on Qn is Hamiltonian, and its moment map µ : Qn → g∗ is given by

(3.1) (µ(z))(X) = µX(z) = αStz(X
∗
z ) = αStz(Xz) = u′(r2)⟨Jz,Xz⟩ (z ∈ Qn, X ∈ g).

In this paper we shall study special Lagrangian submanifolds especially invariant under

G =

(
SO(p) O
O SO(q)

)
∼= SO(p)× SO(q) (p+ q = n+ 1, 1 ≤ p ≤ q ≤ n).

In this case, G-action on Sn is cohomogeneity one, and its principal orbits are diffeomorphic to
Sp−1 × Sq−1. Let us take

Xij = Eji − Eij ∈ so(n+ 1),

where Eij denotes the (n+1)× (n+1)-matrix whose (i, j)-component is 1 and all of others are
0. Then

{Xij | 1 ≤ i < j ≤ p} ∪ {Xij | p+ 1 ≤ i < j ≤ n+ 1}
forms a basis of the Lie algebra g = so(p) ⊕ so(q) of G. We denote by {θij} the dual basis of
{Xij}. Then the moment map µ : Qn → g∗ of G-action on Qn can be expressed as

µ(z) =
∑
i,j

µij(z)θij ,

where µij is defined by µij(z) = µXij (z) = (µ(z))(Xij). From (3.1) we have

µij(z) = u′(r2)⟨Jz,Xijz⟩ = 2u′(r2)Im(ziz̄j).

Thus, using the basis {θij} of g∗, the moment map µ : Qn → g∗ of G-action on Qn can be
evaluated as

µ(z) = 2u′(r2)
(
Im(ziz̄j)1≤i<j≤p, Im(ziz̄j)p+1≤i<j≤n+1

)
.

From Proposition 2.6, a Lagrangian submanifold of Qn invariant under G should be contained
in µ−1(c) for some c ∈ Z(g∗). In the case of p = 2 or q = 2, since SO(2) is abelian, g∗ has the
non-trivial center. In the case of p = 1, the orbit space of G action on the zero-section Sn is
different from the case of p ≥ 2. Therefore we shall discuss the following five cases individually.

(1) 3 ≤ p ≤ q (2) p = 1, q ≥ 3 (3) p = 2, q ≥ 3 (4) p = q = 2 (5) p = 1, q = 2
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In the case of p = 1, we have special Lagrangian submanifolds invariant under SO(n), which were
first studied by Anciaux [1]. Ionel and Min-Oo [7] investigated special Lagrangian submanifolds
in Q3 invariant under SO(2) × SO(2) or SO(3). So this paper is a generalization of these
two preceding studies. Special Lagrangian submanifolds with this kind of symmetry were also
constructed by Kanemitsu [10] independently.

3.1. Case of 3 ≤ p ≤ q. We give a parametrization of the orbit space of the action of G =
SO(p)× SO(q) on T ∗Sn = {(x, ξ) ∈ Rn+1 × Rn+1 | ∥x∥ = 1, ⟨x, ξ⟩ = 0}. First, x ∈ Sn can be
moved to

x = (

1
⌣

cos t, 0, . . . , 0,

p+1
⌣

sin t, 0, . . . , 0) (t ∈ R)
by the action of G. Furthermore ξ ∈ T ∗

xS
n can be moved to

ξ = (

1
⌣

−ξ1 sin t,

2
⌣

ξ 2, 0, . . . , 0,

p+1
⌣

ξ1 cos t,

p+2
⌣

ξ3 , 0, . . . , 0) (ξ1, ξ2, ξ3 ∈ R)

by the isotropy subgroup Gx of G-action on Sn at x. Therefore we define a subset Σ of T ∗Sn

by

Σ =

{
(x, ξ)

∣∣∣∣ x = (cos t, 0, . . . , 0, sin t, 0, . . . , 0)
ξ = (−ξ1 sin t, ξ2, 0, . . . , 0, ξ1 cos t, ξ3, 0, . . . , 0)

}
.

Then each G-orbit in T ∗Sn meets Σ, i.e., G · Σ = T ∗Sn.
In this case, the center of g∗ is Z(g∗) = {0}. We determine the subset µ−1(0) ∩ Φ(Σ) of Qn.

Now z = Φ(x, ξ) ∈ Φ(Σ) can be expressed as

z =

(
cos t cosh ρ−

√
−1

ξ1 sin t

ρ
sinh ρ,

√
−1

ξ2
ρ
sinh ρ, 0, . . . , 0,

sin t cosh ρ+
√
−1

ξ1 cos t

ρ
sinh ρ,

√
−1

ξ3
ρ
sinh ρ, 0, . . . , 0

)
,

where ρ = ∥ξ∥ =
√

ξ21 + ξ22 + ξ23 . Then µ(z) = 0 if and only if

0 = Im(z1z̄2) = −ξ2
ρ
cos t sinh ρ cosh ρ,

0 = Im(zp+1z̄p+2) = −ξ3
ρ
sin t sinh ρ cosh ρ.

So we have ξ2 = ξ3 = 0, hence

z =
(
cos(t+

√
−1ξ1), 0, . . . , 0, sin(t+

√
−1ξ1), 0, . . . , 0

)
.

Consequently we obtain

µ−1(0) ∩ Φ(Σ) =
{
(cos τ, 0, . . . , 0, sin τ, 0, . . . , 0) | τ = t+

√
−1ξ1 (t, ξ1 ∈ R)

}
.

Since µ−1(0) is G-invariant, we have

µ−1(0) = G · (µ−1(0) ∩ Φ(Σ)).

Thus the orbit space µ−1(0)/G of G-action on µ−1(0) is parametrized by t and ξ1.

Remark 3.1. The (t, ξ1)-plane can be regarded as the covering space of the orbit space µ−1(0)/G.
In fact, we can take t ∈ [0, π/2], and µ−1(0)/G ∼= C/(Z × Z2 × Z2), where the action of Z on
C is the parallel translation of period 2π and the actions of Z2 are reflections across the points
(t, ξ1) = (0, 0) and (π/2, 0) respectively. Principal orbits of G-action on µ−1(0) are diffeomorphic
to Sp−1 × Sq−1. There are two singular orbits Sp−1 and Sq−1 at (t, ξ1) = (0, 0) and (π/2, 0),
respectively. This implies that the orbit space µ−1(0)/G is an orbifold with two singular points.
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Theorem 3.2. Let τ be a regular curve in the complex plane C. We define a curve σ in
µ−1(0) ∩ Φ(Σ) by

σ(s) = (cos τ(s), 0, . . . , 0, sin τ(s), 0, . . . , 0).

Then the G-orbit L = G · σ through σ is a Lagrangian submanifold in Qn. Moreover, L is a
special Lagrangian submanifold of phase θ if and only if τ satisfies

(3.2) Im
(
e
√
−1θτ ′(cos τ)p−1(sin τ)q−1

)
= 0.

Proof. Since L = G ·σ is a cohomogeneity one (possibly homogeneous) submanifold of dimension
n contained in µ−1(0), from Proposition 2.6, L is a Lagrangian submanifold in Qn. We shall
look for σ so that L is a special Lagrangian submanifold in Qn. We take a basis of the tangent
space Tσ(s)L of L at σ(s) as follows:

X∗
1,2 = X1,2σ(s) = (0,

2
⌣

cos τ(s), 0, . . . , 0),

...

X∗
1,p = X1,pσ(s) = (0, . . . , 0,

p
⌣

cos τ(s), 0, . . . , 0),

X∗
p+1,p+2 = Xp+1,p+2σ(s) = (0, . . . , 0,

p+2
⌣

sin τ(s), 0, . . . , 0),

...

X∗
p+1,n+1 = Xp+1,n+1σ(s) = (0, . . . , 0,

n+1
⌣

sin τ(s)),

σ′(s) = (

1
⌣

−τ ′(s) sin τ(s), 0, . . . , 0,

p+1
⌣

τ ′(s) cos τ(s), 0, . . . , 0).

Then we have

ΩStz(X
∗
1,2, . . . , X

∗
1,p, σ

′(s), X∗
p+1,p+2, . . . , X

∗
p+1,n+1)

= (dz1 ∧ dz2 ∧ · · · ∧ dzn+1)(σ(s), X
∗
1,2, . . . , X

∗
1,p, σ

′(s), X∗
p+1,p+2, . . . , X

∗
p+1,n+1)

=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

cos τ(s) 0 · · · 0 −τ ′(s) sin τ(s) 0 · · · 0

0 cos τ(s)
... 0

...
...

... 0
. . . 0

...
...

...

0
... cos τ(s) 0

...
...

sin τ(s)
... 0 τ ′(s) cos τ(s) 0

...

0
...

... 0 sin τ(s)
...

...
...

...
... 0

. . . 0
0 0 . . . 0 0 0 0 sin τ(s)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= τ ′(s)(cos τ(s))p−1(sin τ(s))q−1.

Thus L is a special Lagrangian submanifold of phase θ if and only if τ satisfies (3.2). �
For a curve τ in the complex plane C, L coincides with the image of the following map:

Ψ : I × Sp−1 × Sq−1 −→ Qn

(s, x, y) 7−→ (cos τ(s)x1, . . . , cos τ(s)xp, sin τ(s)y1, . . . , sin τ(s)yq).

Here I is an open interval in R. When τ passes throughmπ/2 (m ∈ Z), the map Ψ degenerates at
that point. If τ does not pass through mπ/2 (m ∈ Z), then L is diffeomorphic to I×Sp−1×Sq−1

and immersed in Qn by the map Ψ.
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3.2. Case of p = 1, q ≥ 3. The orbit space of the action of

G =

(
1 O
O SO(n)

)
∼= SO(n)

on T ∗Sn is parametrized as

Σ =

{
(x, ξ)

∣∣∣∣ x = (cos t, sin t, 0, . . . , 0)
ξ = (−ξ1 sin t, ξ1 cos t, ξ2, 0, . . . , 0)

}
.

Then each G-orbit in T ∗Sn meets Σ, i.e., G · Σ = T ∗Sn.
In this case, the center of g∗ is Z(g∗) = {0}. We determine the subset µ−1(0) ∩ Φ(Σ) of Qn.

For z = Φ(x, ξ) ∈ Φ(Σ), µ(z) = 0 is satisfied if and only if

0 = Im(z2z̄3) = −ξ2
ρ
sin t sinh ρ cosh ρ,

where ρ = ∥ξ∥ =
√

ξ21 + ξ22 . Thus ξ2 = 0 and we obtain

µ−1(0) ∩ Φ(Σ) =
{
(cos τ, sin τ, 0, . . . , 0) | τ = t+

√
−1ξ1 (t, ξ1 ∈ R)

}
.

Since µ−1(0) is G-invariant, we have

µ−1(0) = G · (µ−1(0) ∩ Φ(Σ)).

Thus the orbit space µ−1(0)/G of G-action on µ−1(0) is parametrized by t and ξ1.

Remark 3.3. In this case, we can take t ∈ [0, π], and µ−1(0)/G ∼= C/(Z×Z2). Principal orbits
of G-action on µ−1(0) are diffeomorphic to Sn−1. There are two singular orbits at (t, ξ1) = (0, 0)
and (π, 0), that is, fixed orbits at the north pole and the south pole of the zero-section Sn. Thus
the orbit space µ−1(0)/G is an orbifold with two singular points.

Theorem 3.4. Let τ be a regular curve in the complex plane C. We define a curve σ in
µ−1(0) ∩ Φ(Σ) by

σ(s) = (cos τ(s), sin τ(s), 0, . . . , 0).

Then the G-orbit L = G · σ through σ is a Lagrangian submanifold in Qn. Moreover, L is a
special Lagrangian submanifold of phase θ if and only if τ satisfies

(3.3) Im
(
e
√
−1θτ ′(sin τ)n−1

)
= 0.

Proof. Same with the proof of Theorem 3.2. �

For a curve τ in the complex plane C, L coincides with the image of the following map:

Ψ : I × Sn−1 −→ Qn

(s, y) 7−→ (cos τ(s), sin τ(s)y1, . . . , sin τ(s)yn).

When τ passes through mπ (m ∈ Z), the map Ψ degenerates at that point. If τ does not pass
through mπ (m ∈ Z), then L is diffeomorphic to I × Sn−1 immersed in Qn by the map Ψ.

3.3. Case of p = 2, q ≥ 3. The orbit space of the action of

G =

(
SO(2) O
O SO(n− 1)

)
∼= SO(2)× SO(n− 1)

on T ∗Sn is parametrized as

Σ =

{
(x, ξ)

∣∣∣∣ x = (cos t, 0, sin t, 0, . . . , 0)
ξ = (−ξ1 sin t, ξ2, ξ1 cos t, ξ3, 0, . . . , 0)

}
.

Then each G-orbit in T ∗Sn meets Σ, i.e., G · Σ = T ∗Sn.



8 KANAME HASHIMOTO AND TAKASHI SAKAI

In this case, the center of g∗ is Z(g∗) = Rθ12. For c1 ∈ R, we determine the subset µ−1(c1θ12)∩
Φ(Σ) of Qn. For z = Φ(x, ξ) ∈ Φ(Σ), µ(z) = c1θ12 is satisfied if and only if

c1 = 2u′(r2)Im(z1z̄2) = −2u′(cosh(2ρ))
ξ2
ρ
cos t sinh ρ cosh ρ,

0 = Im(z3z̄4) = −ξ3
ρ
sin t sinh ρ cosh ρ,

where ρ = ∥ξ∥ =
√

ξ21 + ξ22 + ξ23 . Thus ξ3 = 0 and we obtain

Φ−1(µ−1(c1θ12)) ∩ Σ =

(x, ξ)

∣∣∣∣∣
x = (cos t, 0, sin t, 0, . . . , 0)
ξ = (−ξ1 sin t, ξ2, ξ1 cos t, 0, . . . , 0)

c1 = −u′(cosh(2ρ)) ξ2ρ cos t sinh(2ρ)

 .

Since µ−1(c1θ12) is G-invariant, we have

µ−1(c1θ12) = G · (µ−1(c1θ12) ∩ Φ(Σ)).

Theorem 3.5. Let σ be a regular curve in µ−1(c1θ12) ∩ Φ(Σ). We express σ as

σ(s) = (z1(s), z2(s), z3(s), 0, . . . , 0).

Then the G-orbit L = G · σ through σ is a Lagrangian submanifold in Qn. Moreover, L is a
special Lagrangian submanifold of phase θ if and only if σ satisfies

(3.4) Im
(
e
√
−1θzn−1

3

)
= c2

for some c2 ∈ R.

Proof. Since L = G · σ is a cohomogeneity one submanifold contained in µ−1(c1θ12), from
Proposition 2.6, L is a Lagrangian submanifold in Qn. We shall look for σ so that L is a special
Lagrangian submanifold in Qn. We take a basis of the tangent space Tσ(s)L of L at σ(s) as
follows:

X∗
12 = X12σ(s) = (−z2(s), z1(s), 0, . . . , 0),

X∗
34 = X34σ(s) = (0, 0, 0, z3(s), 0, . . . , 0),

...

X∗
3,n+1 = X3,n+1σ(s) = (0, . . . , 0, z3(s)),

σ′(s) = (z′1(s), z
′
2(s), z

′
3(s), 0, . . . , 0).

Since z is in Qn, we note that

z1(s)
2 + z2(s)

2 + z3(s)
2 = 1,

z1(s)z
′
1(s) + z2(s)z

′
2(s) + z3(s)z

′
3(s) = 0.

Using these equalities, we have

ΩStz(X
∗
12, σ

′(s), X∗
34, . . . , X

∗
3,n+1)

= (dz1 ∧ dz2 ∧ · · · ∧ dzn+1)(σ(s), X
∗
12, σ

′(s), X∗
34, . . . , X

∗
3,n+1)

=

∣∣∣∣∣∣∣∣∣∣∣∣∣

z1(s) −z2(s) z′1(s) 0 · · · 0
z2(s) z1(s) z′2(s) 0 · · · 0
z3(s) 0 z′3(s) 0 · · · 0

0
... 0 z3(s)

...
...

...
...

. . . 0
0 0 0 · · · 0 z3(s)

∣∣∣∣∣∣∣∣∣∣∣∣∣
= z3(s)

n−2z′3(s).
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Therefore L is a special Lagrangian submanifold of phase θ in Qn if and only if σ satisfies

Im
(
e
√
−1θzn−2

3 z′3

)
= 0.

This condition is equivalent to (3.4) for some c2 ∈ R. �

For a curve σ in µ−1(c1θ12) ∩ Φ(Σ), L coincides with the image of the following map:

Ψ : I × S1 × Sn−2 −→ Qn

(s, x, y) 7−→ (z1(s)x1 − z2(s)x2, z1(s)x2 + z2(s)x1, z3(s)y1, . . . , z3(s)yn−1).

When σ passes through z = (± cosh(ξ2),
√
−1 sinh(ξ2), 0, . . . , 0) or z = (0, 0,±1, 0, . . . , 0), the

map Ψ degenerates at that point. If σ does not pass through the points of singular orbits, L is
diffeomorphic to I × S1 × Sn−2 and immersed in Qn by the map Ψ.

3.4. Case of p = q = 2. The orbit space of the action of

G =

(
SO(2) O
O SO(2)

)
∼= SO(2)× SO(2)

on T ∗S3 is parametrized as

Σ =

{
(x, ξ)

∣∣∣∣ x = (cos t, 0, sin t, 0)
ξ = (−ξ1 sin t, ξ2, ξ1 cos t, ξ3)

}
.

Then each G-orbit in T ∗S3 meets Σ, i.e., G · Σ = T ∗S3.
In this case, the center of g∗ is Z(g∗) = Rθ12 + Rθ34 = g∗. For c1, c2 ∈ R, we determine the

subset µ−1(c1θ12+ c2θ34)∩Φ(Σ) of Q3. For z = Φ(x, ξ) ∈ Φ(Σ), µ(z) = c1θ12+ c2θ34 is satisfied
if and only if

c1 = 2u′(r2)Im(z1z̄2) = −2u′(cosh(2ρ))
ξ2
ρ
cos t sinh ρ cosh ρ,

c2 = 2u′(r2)Im(z3z̄4) = −2u′(cosh(2ρ))
ξ3
ρ
sin t sinh ρ cosh ρ,

where ρ = ∥ξ∥ =
√

ξ21 + ξ22 + ξ23 . Therefore we obtain

Φ−1(µ−1(c1θ12 + c2θ34)) ∩ Σ =

(x, ξ)

∣∣∣∣∣
x = (cos t, 0, sin t, 0)
ξ = (−ξ1 sin t, ξ2, ξ1 cos t, ξ3)

c1 = −u′(cosh(2ρ)) ξ2ρ cos t sinh(2ρ)

c2 = −u′(cosh(2ρ)) ξ3ρ sin t sinh(2ρ)

 .

Since µ−1(c1θ12 + c2θ34) is G-invariant, we have

µ−1(c1θ12 + c2θ34) = G · (µ−1(c1θ12 + c2θ34) ∩ Φ(Σ)).

Theorem 3.6. Let σ be a regular curve in µ−1(c1θ12 + c2θ34) ∩ Φ(Σ). We express σ as

σ(s) = (z1(s), z2(s), z3(s), z4(s)).

Then the G-orbit L = G · σ through σ is a Lagrangian submanifold in Q3. Moreover, L is a
special Lagrangian submanifold of phase θ if and only if σ satisfies

(3.5) Im
(
e
√
−1θ

(
z21 + z22

))
= c3

for some c3 ∈ R.
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Proof. The proof is similar with the previous theorem. We take a basis of the tangent space
Tσ(s)L of L at σ(s) as follows:

X∗
12 = X12σ(s) = (−z2(s), z1(s), 0, 0),

X∗
34 = X34σ(s) = (0, 0,−z4(s), z3(s)),

σ′(s) = (z′1(s), z
′
2(s), z

′
3(s), z

′
4(s)).

Then we have

ΩStz(X
∗
12, X

∗
34, σ

′(s)) = (dz1 ∧ dz2 ∧ dz3 ∧ dz4)(σ(s), X
∗
12, X

∗
34, σ

′(s))

=

∣∣∣∣∣∣∣∣
z1(s) −z2(s) 0 z′1(s)
z2(s) z1(s) 0 z′2(s)
z3(s) 0 −z4(s) z′3(s)
z4(s) 0 z3(s) z′4(s)

∣∣∣∣∣∣∣∣
= z1(s)z

′
1(s) + z2(s)z

′
2(s).

Therefore L is a special Lagrangian submanifold of phase θ in Q3 if and only if

Im
(
e
√
−1θ

(
z1z

′
1 + z2z

′
2

))
= 0.

This condition is equivalent to (3.5) for some c3 ∈ R. �
Remark 3.7. Since G = SO(2) × SO(2) is abelian and Z(g∗) = g∗, arbitrary z ∈ Q3 lies in
µ−1(c1θ12 + c2θ34) for some c1, c2 ∈ R. Furthermore z ∈ Q3 satisfies (3.5) for some c3 ∈ R. This
yields that, for a fixed θ, the family of special Lagrangian submanifolds, which is constructed in
Theorem 3.6, foliates T ∗S3 ∼= Q3.

For a curve σ in µ−1(c1θ12 + c2θ34) ∩Φ(Σ), L coincides with the image of the following map:

Ψ : I × S1 × S1 −→ Q3

(s, x, y) 7−→ (z1(s)x1 − z2(s)x2, z1(s)x2 + z2(s)x1,

z3(s)y1 − z4(s)y2, z3(s)y2 + z4(s)y1).

When σ passes through z = (± cosh(ξ2),
√
−1 sinh(ξ2), 0, 0) or (0, 0,± cosh(ξ3),

√
−1 sinh(ξ3)),

the map Ψ degenerates at that point. If σ does not pass through the points of singular orbits,
then L is diffeomorphic to I × S1 × S1 and immersed in Q3 by the map Ψ.

3.5. Case of p = 1, q = 2. The orbit space of the action of

G =

(
1 O
O SO(2)

)
∼= SO(2)

on T ∗S2 is parametrized as

Σ =

{
(x, ξ)

∣∣∣∣ x = (cos t, sin t, 0)
ξ = (−ξ1 sin t, ξ1 cos t, ξ2)

}
Then each G-orbit in T ∗S2 meets Σ, i.e., G · Σ = T ∗S2.

In this case, the center of g∗ is Z(g∗) = Rθ23 = g∗. For c1 ∈ R, we determine the subset
µ−1(c1θ23) ∩ Φ(Σ) of Q2. For z = Φ(x, ξ) ∈ Φ(Σ), µ(z) = c1θ23 is satisfied if and only if

c1 = 2u′(r2)Im(z2z̄3) = −2u′(cosh(2ρ))
ξ2
ρ
sin t sinh ρ cosh ρ,

where ρ = ∥ξ∥ =
√

ξ21 + ξ22 . Therefore we obtain

Φ−1(µ−1(c1θ23)) ∩ Σ =

(x, ξ)

∣∣∣∣∣
x = (cos t, sin t, 0)
ξ = (−ξ1 sin t, ξ1 cos t, ξ2)

c1 = −u′(cosh(2ρ)) ξ2ρ sin t sinh(2ρ)

 .
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Since µ−1(c1θ23) is G-invariant, we have

µ−1(c1θ23) = G · (µ−1(c1θ23) ∩ Φ(Σ)).

Theorem 3.8. Let σ be a regular curve in µ−1(c1θ23) ∩ Φ(Σ). We express σ as

σ(s) = (z1(s), z2(s), z3(s)).

Then the G-orbit L = G · σ through σ is a Lagrangian submanifold in Q2. Moreover, L is a
special Lagrangian submanifold of phase θ if and only if σ satisfies

(3.6) Im
(
e
√
−1θz1

)
= c2

for some c2 ∈ R.

Proof. Similar with the previous theorems. �
Remark 3.9. Since G = SO(2) is abelian and Z(g∗) = g∗, arbitrary z ∈ Q2 lies in µ−1(c1θ23)
for some c1 ∈ R. Furthermore z ∈ Q2 satisfies (3.6) for some c2 ∈ R. This yields that, for a fixed
θ, the family of special Lagrangian submanifolds, which is constructed in Theorem 3.8, foliates
T ∗S2 ∼= Q2.

For a curve σ in µ−1(c1θ23) ∩ Φ(Σ), L coincides with the image of the following map:

Ψ : I × S1 −→ Q2

(s, y) 7−→ (z1(s), z2(s)y1 − z3(s)y2, z2(s)y2 + z3(s)y1)

When σ passes through z = (±1, 0, 0), the map Ψ degenerates at that point. If σ does not pass
through z = (±1, 0, 0), then L is diffeomorphic to I × S1 and immersed in Q2 by the map Ψ.

3.6. Conormal bundle special Lagrangian submanifolds. Harvey and Lawson [4] intro-
duced the notion of austere submanifolds in order to construct special Lagrangian submanifolds
in T ∗Rn ∼= Cn as the conormal bundles of submanifolds in Rn. A submanifold M of a Rie-
mannian manifold M̃ is said to be austere if the set of eigenvalues of the shape operator of M is
invariant under the multiplication of −1 concerning the multiplicities. As a generalization of the
construction of conormal bundle special Lagrangian submanifolds due to Harvey and Lawson,
Karigiannis and Min-Oo proved the following theorem.

Theorem 3.10 ([11]). Let M be a submanifold of Sn. Then the conormal bundle N∗M of M
is a Lagrangian submanifold of T ∗Sn with respect to the Stenzel metric. Moreover, N∗M is a
special Lagrangian submanifold of T ∗Sn if and only if M is an austere submanifold of Sn.

In [6], we determined all austere orbits of the isotropy representations of irreducible symmetric
spaces of compact type. All austere orbits of the action of SO(p) × SO(q) (p + q = n + 1) on
Sn are the following.

(1) When p = q, a minimal principal orbit of the action of SO(p) × SO(p) on Sn, that is
called a minimal Clifford hypersurface Sp−1(1/

√
2)× Sp−1(1/

√
2) ⊂ Sn(1).

(2) When p = 1, a minimal principal orbit of the action of SO(1)× SO(n) on Sn, that is a
totally geodesic hypersphere Sn−1(1) ⊂ Sn(1).

(3) Singular orbits of the action of SO(p)× SO(q) on Sn, that are totally geodesic spheres
Sp−1(1) ⊂ Sn(1) and Sq−1(1) ⊂ Sn(1).

From Theorem 3.10, the conormal bundles of the above austere orbits are special Lagrangian
submanifolds in T ∗Sn. In fact, we can catch these special Lagrangian submanifolds by the
construction we gave in this section.

(1) Let τ(s) = π/4 +
√
−1s and define a curve σ in µ−1(0) ∩ Φ(Σ) by

σ(s) = (

1
⌣

cos τ(s), 0, . . . , 0,

p+1
⌣

sin τ(s), 0, . . . , 0).
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Then the orbit L = G ·σ of the action of G = SO(p)×SO(p) through σ is the conormal
bundle of a minimal Clifford hypersurface in Qn ∼= T ∗Sn. In fact, τ satisfies the condition
(3.2) for θ = π/2, hence L is a special Lagrangian submanifold of phase π/2 in Qn.

(2) Let τ(s) = π/2 +
√
−1s and define a curve σ in µ−1(0) ∩ Φ(Σ) by

σ(s) = (cos τ(s), sin τ(s), 0, . . . , 0).

Then the orbit L = G · σ of the action of SO(1) × SO(n) through σ is the conormal
bundle of a totally geodesic hypersphere in Qn ∼= T ∗Sn. In fact, τ satisfies the condition
(3.3) for θ = π/2, hence L is a special Lagrangian submanifold of phase π/2 in Qn.

(3) Let τ(s) = 0 +
√
−1s and define a curve σ in µ−1(0) ∩ Φ(Σ) by

σ(s) = (

1
⌣

cos τ(s), 0, . . . , 0,

p+1
⌣

sin τ(s), 0, . . . , 0).

Then the orbit L = G · σ of the action of SO(p) × SO(q) through σ is the conormal
bundle of a totally geodesic sphere in Qn ∼= T ∗Sn. In fact, when q is even, L is a special
Lagrangian submanifold of phase 0 in Qn. When q is odd, L is a special Lagrangian
submanifold of phase π/2 in Qn.

4. Ricci flat Kähler metric and special Lagrangian submanifolds in the
complex cone

We define the complex cone Qn
0 in Cn+1 by

Qn
0 =

{
z = (z1, . . . , zn+1) ∈ Cn+1

∣∣∣∣∣
n+1∑
i=1

z2i = 0

}
.

Qn
0 has a (unique) singularity at the origin of Cn+1. As r = ∥z∥ tends to ∞, Qn is asymptotic

to Qn
0 in Cn+1. In this section, we give a (singular) Ricci-flat Kähler metric on Qn

0 as the limit
of the Stenzel metric on Qn.

The holomorphic (n, 0)-form Ωcone on Qn
0 is given by

1

2
d(z21 + · · ·+ z2n+1) ∧ Ωcone = Ω0.

We can express Ωcone as

Ωcone(v1, . . . , vn) =
1

∥z∥2
(dz1 ∧ · · · ∧ dzn+1)(z̄, v1, . . . , vn),

where v1, . . . , vn ∈ TzQ
n and z ∈ Qn.

As t → ∞, the differential equation (2.2) is asymptotic to

d

dt
(F ′(t))n =

(
1

2

)n−1

n c et(n−1) (c > 0).

Then

F (t) =

(
1

2

)n−1
n

(
n

n− 1

)n+1
n

c
1
n e

n−1
n

t

is a solution of this differential equation. Since cosh t → (1/2)et as t → ∞, we define a function
f as F (t) = f((1/2)et). Then we have

f(t) =

(
n

n− 1

)n+1
n

c
1
n t

n−1
n .
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Proposition 4.1. Let fcone(t) = c r
n−1
n (c > 0) and define a Kähler form ωcone on Qn

0 by

ωcone =
√
−1∂∂fcone(r

2) =
√
−1

n+1∑
i,j=1

∂2

∂zi∂z̄j
fcone(r

2)dzi ∧ dz̄j .

Then ωcone gives a Ricci-flat Kähler metric on Qn
0 .

Remark 4.2. When n = 3 and c = 3/2, then fcone(r
2) = (3/2)r

4
3 coincides with the potential

of the Ricci-flat Kähler metric on Q3
0 due to Candelas and de la Ossa [2].

Proof of Proposition 4.1. Henceforth we write f as fcone shortly. In a similar way with (2.3),
we can evaluate

ωcone(v, w) = 2f ′(r2)⟨Jv,w⟩+ 2f ′′(r2)
(
⟨v, z⟩⟨Jz, w⟩ − ⟨w, z⟩⟨Jz, v⟩

)
for v, w ∈ TzQ

n
0 , z ∈ Qn

0 . From this, we have

ωcone(v, w̄) = 2
√
−1

(
f ′(r2)(v, w) + 2f ′′(r2)(v, z)(z, w)

)
,

where ( , ) is the standard Hermitian inner product on Cn+1.
Now we show that there exists a constant λ ∈ R such that

(4.1)
ωn
cone

n!
= (−1)

n(n−1)
2

(√
−1

2

)n

λΩcone ∧ Ωcone.

Let v1, . . . , vn be a basis of TzQ
n
0 which satisfies (vi, vj) = δij , and θ1, . . . , θn be its dual basis.

Using this basis, we can express ωcone as

ωcone =

n∑
i,j=1

ωijθi ∧ θ̄j ,

where
ωij = ωcone(vi, v̄j) = 2

√
−1

(
f ′(r2)δij + 2f ′′(r2)(vi, z)(z, vj)

)
.

Then the left-hand side of (4.1) is

ωn
cone

n!
= (−1)

n(n−1)
2 det(ωij)θ1 ∧ · · · ∧ θn ∧ θ̄1 ∧ · · · ∧ θ̄n.

Here we can compute

det(ωij) = (2
√
−1)n(f ′(r2))n

(
1 + 2

f ′′(r2)

f ′(r2)

(
|(v1, z)|2 + · · ·+ |(vn, z)|2

))
=

(
2
√
−1

)n(c(n− 1)

n

)n(n− 2

n

)
1

r2
.(4.2)

On the other hand, Ωcone can be computed as follows:

Ωcone(v1, . . . , vn) =
1

∥z∥2
(dz1 ∧ · · · ∧ dzn+1)(z̄, v1, . . . , vn)

=
1

∥z∥
det

(
z̄

∥z∥
, v1, . . . , vn

)
.

Hence we have

Ωcone ∧ Ωcone(v1, . . . , vn, v̄1, . . . , v̄n) =
1

∥z∥2
=

1

r2
.(4.3)

From (4.2) and (4.3), consequently we obtain

ωn
cone

n!
= (−1)

n(n−1)
2

(√
−1

2

)n(
4c(n− 1)

n

)n(n− 2

n

)
Ωcone ∧ Ωcone.

Thus we proved the proposition. �
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We shall construct cohomogeneity one special Lagrangian submanifolds in Qn
0 in a similar

way with the previous section, using the moment map technique.
Let T ◦Sn denote the subset of T ∗Sn excluding the zero-section. Then we can identify T ◦Sn

and Qn
0\{0} by the following diffeomorphism:

Π : T ◦Sn −→ Qn
0 \ {0}

(x, ξ) 7−→ ∥ξ∥x+
√
−1ξ.

The diffeomorphism Π is equivariant under the action of SO(n+ 1).
Here we consider

G =

(
SO(p) O
O SO(q)

)
∼= SO(p)× SO(q) (p+ q = n+ 1, 1 ≤ p ≤ q ≤ n)

as a Lie subgroup of SO(n + 1). The action of G on Qn
0 is Hamiltonian, and its moment map

µ : Qn
0 → g∗ can be expressed as

µ(z) = 2f ′(r2)
(
Im(ziz̄j)1≤i<j≤p, Im(ziz̄j)p+1≤i<j≤n+1

)
using the basis {θij} of g∗.

From Proposition 2.6, a special Lagrangian submanifold of Qn
0 invariant under G should be

contained in the inverse image µ−1(c) of some c ∈ Z(g∗). Although we should consider each
type of the center Z(g∗) individually, here we shall work on the generic case, 3 ≤ p ≤ q. For
other cases, we can study similarly as in the previous section.

4.1. Case of 3 ≤ p ≤ q. The orbit space of the action of G = SO(p) × SO(q) on T ◦Sn is
parametrized as

Σ =

(x, ξ)

∣∣∣∣∣ x = (cos t, 0, . . . , 0, sin t, 0, . . . , 0)
ξ = (−ξ1 sin t, ξ2, 0, . . . , 0, ξ1 cos t, ξ3, 0, . . . , 0)
(ξ1, ξ2, ξ3) ̸= (0, 0, 0)

 .

Then each G-orbit in T ∗Sn meets Σ, i.e., G · Σ = T ◦Sn.
In this case, the center of g∗ is Z(g∗) = {0}. We determine the subset µ−1(0) ∩ Π(Σ) of Qn

0 .
Now z ∈ Π(x, ξ) ∈ Π(Σ) can be expressed as

z = (ρ cos t−
√
−1ξ1 sin t,

√
−1ξ2, 0, . . . , 0, ρ sin t+

√
−1ξ1 cos t,

√
−1ξ3, 0, . . . , 0),

where ρ = ∥ξ∥ =
√

ξ21 + ξ22 + ξ23 . Then µ(z) = 0 if and only if

0 = Im(z1z̄2) = −ξ2ρ cos t,

0 = Im(zp+1z̄p+2) = −ξ3ρ sin t.

Thus ξ2 = ξ3 = 0 and we obtain

µ−1(0) ∩Π(Σ) =
{(

|ξ1| cos t−
√
−1ξ1 sin t, 0, . . . , 0, |ξ1| sin t+

√
−1ξ1 cos t, 0, . . . , 0

)
| ξ1 ̸= 0

}
.

Since µ−1(0) is G-invariant, we have

µ−1(0) = G · (µ−1(0) ∩Π(Σ)).

Thus the orbit space µ−1(0)/G of G-action on µ−1(0) is parametrized by t and ξ1.

Proposition 4.3. Let σ be a curve in µ−1(0) ∩Π(Σ). We express σ as

σ(s) = (z1(s), 0, . . . , 0, zp+1(s), 0, . . . , 0).

Then the G-orbit L = G · σ through σ is a Lagrangian submanifold in Qn
0 . Moreover, L is a

special Lagrangian submanifold of phase θ if and only if

(4.4) Im
(
e
√
−1θ(−1)

q
2 z1(s)

n−1
)
= c

for some c ∈ R.
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Proof. Since L = G · σ is a cohomogeneity one submanifold of dimension n contained in µ−1(0),
from Proposition 2.6, L is a Lagrangian submanifold in Qn

0 . We shall look for σ so that L is a
special Lagrangian submanifold in Qn

0 . Since σ(s) ∈ Qn
0 , we note that

z21(s) + z2p+1(s) = 0,

z1(s)z
′
1(s) + zp+1(s)z

′
p+1(s) = 0.

We take a basis of the tangent space Tσ(s)L of L at σ(s) as follows:

X∗
1,2 = X1,2σ(s) = (0,

2
⌣

z1(s), 0, . . . , 0),

...

X∗
1,p = X1,pσ(s) = (0, . . . , 0,

p
⌣

z1(s), 0, . . . , 0),

X∗
p+1,p+2 = Xp+1,p+2σ(s) = (0, . . . , 0,

p+2
⌣

zp+1(s), 0, . . . , 0),

...

X∗
p+1,n+1 = Xp+1,n+1σ(s) = (0, . . . , 0,

n+1
⌣

zp+1(s)),

σ′(s) = (

1
⌣

z′1(s), 0, . . . , 0,

p+1
⌣

z′p+1(s), 0, . . . , 0).

Then we have

Ωcone(X
∗
1,2, . . . , X

∗
1,p, σ

′(s), X∗
p+1,p+2, . . . , X

∗
p+1,n+1)

=
1

∥z∥2
(dz1 ∧ dz2 ∧ · · · ∧ dzn+1)(σ(s), X

∗
1,2, . . . , X

∗
1,p, σ

′(s), X∗
p+1,p+2, . . . , X

∗
p+1,n+1)

=
1

∥z∥2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

z̄1(s) 0 · · · 0 z′1(s) 0 · · · 0

0 z1(s)
... 0

...
...

... 0
. . . 0

...
...

...

0
... z1(s) 0

...
...

z̄p+1(s)
... 0 z′p+1(s) 0

...

0
...

... 0 zp+1(s)
...

...
...

...
... 0

. . . 0
0 0 . . . 0 0 0 0 zp+1(s)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= (−1)

q
2 zn−2

1 (s)z′1(s).

Thus L is a special Lagrangian submanifold of phase θ if and only of σ satisfies

Im
(
e
√
−1θ(−1)

q
2 zn−2

1 z′1

)
= 0.

This condition is equivalent to (4.4) for some c ∈ R. �
We express z1 = |ξ1| cos t−

√
−1ξ1 sin t. When ξ1 > 0, the condition (4.4) becomes

(4.5) Im
(
(−1)

q
2 e

√
−1(θ−(n−1)t)

)
= c

for some c ∈ R. In particular, when c = 0 we have

θ − (n− 1)t =

{
0 (mod π) (q : even)
π
2 (mod π) (q : odd)
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When c ̸= 0, solution curves of (4.5) are asymptotic to the following lines:{
τ = t+

√
−1ξ1

∣∣∣ t = θ − kπ

n− 1
, ξ1 ∈ R

}
(k ∈ Z) (q : even),{

τ = t+
√
−1ξ1

∣∣∣ t = 2θ − (2k + 1)π

2(n− 1)
, ξ1 ∈ R

}
(k ∈ Z) (q : odd).

Therefore, when c = 0, the cones over the orbits of the action of SO(p)× SO(q) through

1√
2

(
e
√
−1 kπ−θ

n−1 , 0, . . . , 0,
√
−1e

√
−1 kπ−θ

n−1 , 0, . . . , 0
)

(q : even)

1√
2

(
e
√
−1

(2k+1)π−2θ
2(n−1) , 0, . . . , 0,

√
−1e

√
−1

(2k+1)π−2θ
2(n−1) , 0, . . . , 0

)
(q : odd)

are special Lagrangian cones of phase θ in Qn
0 . When c ̸= 0, special Lagrangian submanifolds are

diffeomorphic to R×Sp−1×Sq−1, and their ends are asymptotic to the above special Lagrangian
cones.

5. Asymptotic behavior of cohomogeneity one special Lagrangian submanifolds
in T ∗Sn

Cohomogeneity one special Lagrangian submanifolds in Qn which we constructed in Section 3
are diffeomorphic to R×Sp−1 ×Sq−1 generically. In this section, we shall study the asymptotic
behavior of their ends and the singular sets.

5.1. Case of 3 ≤ p ≤ q. We shall analyse solution curves of the differential equation (3.2). In
the phase space C, the orbit space of G-action on µ−1(0) can be reduced to

{τ = t+
√
−1ξ1 | 0 ≤ t ≤ π

2
, ξ1 ∈ R}.

In this area, (3.2) has singularities at 0 and π/2. When θ = 0, the real segment [0, π/2] is a
trivial solution, and its corresponding special Lagrangian submanifold is the zero-section Sn of
T ∗Sn.

As ξ1 tends to ∞, cos τ and sin τ are asymptotic to

cos τ −→ 1

2
e−

√
−1τ , sin τ −→

√
−1

2
e−

√
−1τ .

Then (3.2) is asymptotic to

Im
(√

−1
q−1

τ ′e
√
−1(θ−(n−1)τ)

)
= 0.

This condition becomes

Im
(√

−1τ ′e
√
−1(θ−(n−1)τ)

)
= 0 (q : even),

Im
(
τ ′e

√
−1(θ−(n−1)τ)

)
= 0 (q : odd),

and it is equivalent to the equation

Im
(
e
√
−1(θ−(n−1)τ)

)
= c (q : even),(5.1)

Re
(
e
√
−1(θ−(n−1)τ)

)
= c (q : odd)

for some c ∈ R. In particular, when c = 0 we have

θ − (n− 1)t = 0 (mod π) (q : even),

θ − (n− 1)t =
π

2
(mod π) (q : odd).



COHOMOGENEITY ONE SPECIAL LAGRANGIAN SUBMANIFOLDS 17

When c ̸= 0, solution curves of (5.1) are asymptotic to these lines. Therefore, as ξ1 → ∞,
solution curves of (3.2) are asymptotic to the following lines:{

τ = t+
√
−1ξ1

∣∣∣ t = θ − kπ

n− 1
, ξ1 ∈ R

}
(k ∈ Z) (q : even),{

τ = t+
√
−1ξ1

∣∣∣ t = 2θ − (2k + 1)π

2(n− 1)
, ξ1 ∈ R

}
(k ∈ Z) (q : odd).

A special Lagrangian submanifold L in Qn is given as the orbit through a curve

σ(s) = (

1
⌣

cos τ(s), 0, . . . , 0,

p+1
⌣

sin τ(s), 0, . . . , 0)

in µ−1(0) ∩ Φ(Σ) by the action of SO(p)× SO(q). The unit vector is

σ

∥σ∥
→ 1√

2

(
e
√
−1 kπ−θ

n−1 , 0, . . . , 0,
√
−1e

√
−1 kπ−θ

n−1 , 0, . . . , 0
)

(q : even),

σ

∥σ∥
→ 1√

2

(
e
√
−1

(2k+1)π−2θ
2(n−1) , 0, . . . , 0,

√
−1e

√
−1

(2k+1)π−2θ
2(n−1) , 0, . . . , 0

)
(q : odd).

as ξ1 → ∞.
As τ approaches to 0, cos τ and sin τ are asymptotic to

cos τ −→ 1, sin τ −→ τ.

Then (3.2) is asymptotic to

Im
(
e
√
−1θτ ′τ q−1

)
= 0,

and it is equivalent to the equation

Im
(
e
√
−1θτ q

)
= c

for some c ∈ R. In particular, when c = 0 solutions of the above equation are the following
half-lines: {

τ = t+
√
−1ξ1

∣∣∣ arg(τ) = kπ − θ

q

}
(k = 0, 1, 2, . . . , 2q − 1).

Therefore the solution of (3.2) branches to 2q curves at 0, and these curves are asymptotic to
the above half-lines around 0. The orbit of the action of SO(p)×SO(q) through z = (1, 0, . . . , 0)
is a singular orbit, which is diffeomorphic to Sp−1.

As τ → π/2, cos τ and sin τ are asymptotic to

cos τ −→ π

2
− τ, sin τ −→ 1.

Then (3.2) is asymptotic to

Im

(
e
√
−1θτ ′

(π
2
− τ

)p−1
)

= 0,

and it is equivalent to the equation

Im
(
e
√
−1θ

(
τ − π

2

)p)
= c

for some c ∈ R. In particular, when c = 0 solutions of the above equation are the following
half-lines: {

τ = t+
√
−1ξ1

∣∣∣ arg(τ − π

2
) =

kπ − θ

p

}
(k = 0, 1, 2, . . . , 2p− 1).

Therefore the solution of (3.2) branches to 2p curves at π/2, and these curves are asymptotic to
the above half-lines around π/2. The orbit of the action of SO(p)× SO(q) through

z = (0, . . . , 0,

p+1
⌣

1 , 0, . . . , 0)
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is a singular orbit, which is diffeomorphic to Sq−1.
Consequently we obtain the following observations.

Proposition 5.1. In the case of 3 ≤ p ≤ q, cohomogeneity one special Lagrangian submanifolds
L invariant under SO(p)×SO(q) are diffeomorphic to I×Sp−1×Sq−1 and embedded in T ∗Sn ∼=
Qn generically.

(1) Two ends of L in Qn are asymptotic to special Lagrangian cones in Qn
0 which are the

cones over the orbits through

1√
2

(
e
√
−1 kπ−θ

n−1 , 0, . . . , 0,
√
−1e

√
−1 kπ−θ

n−1 , 0, . . . , 0
)

(k ∈ Z) (q : even)

1√
2

(
e
√
−1

(2k+1)π−2θ
2(n−1) , 0, . . . , 0,

√
−1e

√
−1

(2k+1)π−2θ
2(n−1) , 0, . . . , 0

)
(k ∈ Z) (q : odd)

by the action of SO(p)× SO(q).
(2) When the curve τ passes through 0, the map Ψ : I×Sp−1×Sq−1 → Qn degenerates, and

q special Lagrangian submanifolds of Qn meet at the singular set Sp−1.
(3) When the curve τ passes through π/2, the map Ψ : I × Sp−1 × Sq−1 → Qn degenerates,

and p special Lagrangian submanifolds of Qn meet at the singular set Sq−1.

Furthermore we observe the following.

Remark 5.2. A smooth solution of (3.2) approaches to a singular one as c → 0. This implies
that a smooth special Lagrangian submanifold is deformed to a singular one. In other words, a
branched special Lagrangian submanifold can be deformed to be smooth.

Example. In the case of n = 6, p = 3, q = 4, the differential equation (3.2) is

Im
(
e
√
−1θτ ′(cos τ)2(sin τ)3

)
= 0.

The following figures shows solution curves of this ODE, when θ = 0, π/4 and π/2. Each solution
curve corresponds to a special Lagrangian submanifold in Qn.

-0.5 0.0 0.5 1.0 1.5 2.0

-1.0

-0.5

0.0

0.5

1.0

Figure 1. θ = 0
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Figure 2. θ = π/4
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Figure 3. θ = π/2

5.2. Case of p = 1, q ≥ 3. In the phase space C, the orbit space of G-action on µ−1(0) can be
reduced to

{τ = t+
√
−1ξ1 | 0 ≤ t ≤ π, ξ1 ∈ R}.

In this area, (3.3) has singularities at 0 and π. When θ = 0, the real segment [0, π] is a trivial
solution, and its corresponding special Lagrangian submanifold is the zero-section Sn of T ∗Sn.

Similarly with the previous case, we see that solution curves of (3.3) are asymptotic to the
following lines:{

τ = t+
√
−1ξ1

∣∣∣ t = θ − kπ

n− 1
, ξ1 ∈ R

}
(k ∈ Z) (n : even){

τ = t+
√
−1ξ1

∣∣∣ t = 2θ − (2k + 1)π

2(n− 1)
, ξ1 ∈ R

}
(k ∈ Z) (n : odd)

as ξ1 → ∞.
The solution of (3.3) branches to 2n curves at 0 and π, and these curves are asymptotic to

the following half-lines:{
τ = t+

√
−1ξ1

∣∣∣ arg(τ) = kπ − θ

n

}
{
τ = t+

√
−1ξ1

∣∣∣ arg(τ − π) =
kπ − θ

n

}
(k = 0, 1, 2, . . . , 2n− 1).

around 0 and π, respectively. The orbits of the action of SO(n) through z = (±1, 0, . . . , 0) are
singular orbits, that is, fixed orbits.

Therefore we obtain the following observations.

Proposition 5.3. In the case of p = 1, q ≥ 3, cohomogeneity one special Lagrangian subman-
ifolds L invariant under SO(n) are diffeomorphic to I × Sn−1 and embedded in T ∗Sn ∼= Qn

generically.
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(1) Two ends of L in Qn are asymptotic to special Lagrangian cones in Qn
0 which are the

cones over the orbit through

1√
2

(
e
√
−1 kπ−θ

n−1 ,
√
−1e

√
−1 kπ−θ

n−1 , 0, . . . , 0
)

(k ∈ Z) (n : even)

1√
2

(
e
√
−1

(2k+1)π−2θ
2(n−1) ,

√
−1e

√
−1

(2k+1)π−2θ
2(n−1) , 0, . . . , 0

)
(k ∈ Z) (n : odd)

by the action of SO(n).
(2) When the curve τ passes through 0 or π, the map Ψ : I × Sn−1 → Qn degenerates, and

n special Lagrangian submanifolds of Qn meet at the singular point z = (±1, 0, . . . , 0).

Example. In the case of n = 4, p = 1, q = 4, the differential equation (3.3) is

Im
(
e
√
−1θτ ′(sin τ)3

)
= 0.

The following figures shows solution curves of this ODE, when θ = 0, π/4 and π/2.

0 1 2 3

-2

-1

0

1

2

Figure 4. θ = 0
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-1
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Figure 5. θ = π/4
0 1 2 3

-2

-1

0

1

2

Figure 6. θ = π/2
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5.3. Case of p = 2, q ≥ 3. We express z ∈ Φ(Σ) as

z = (z1, z2, z3, 0, . . . , 0),

where

z1 = cos t cosh ρ−
√
−1

ξ1
ρ
sin t sinh ρ,

z2 =
√
−1

ξ2
ρ
sinh ρ,

z3 = sin t cosh ρ+
√
−1

ξ1
ρ
cos t sinh ρ.

Then the condition to be z ∈ µ−1(c1θ12) is

c1 = −u′(cosh(2ρ))
ξ2
ρ
cos t sinh(2ρ).

This equation approaches to the condition to be z ∈ µ−1(0) as ρ → ∞. Thus µ−1(c1θ12)∩Φ(Σ)
is asymptotic to µ−1(0)∩Φ(Σ) as ρ → ∞. Therefore, we shall describe the asymptotic behavior
of special Lagrangian submanifolds in the case of c1 = 0.

When c1 = 0, the orbit space µ−1(0)/G of G-action on µ−1(0) is parametrized as

µ−1(0) ∩ Φ(Σ) = {(cos τ, 0, sin τ, 0, . . . , 0) | τ = t+
√
−1ξ1 (t, ξ1 ∈ R)}.

Let τ be a regular curve in the complex plane C. We define a curve σ in µ−1(0) ∩ Φ(Σ) by

σ(s) = (cos τ(s), 0, sin τ(s), 0, . . . , 0).

Then the G-orbit L = G · σ through σ is a Lagrangian submanifold in Qn. For a curve τ , L
coincides with the image of the following map:

Ψ0 : I × S1 × Sn−2 −→ Qn

(s, x, y) 7−→ (cos τ(s)x1, cos τ(s)x2, sin τ(s)y1, . . . , sin τ(s)yn−1).

When τ passes through mπ/2 (m ∈ Z), the map Ψ0 degenerates at that point. If τ does not
pass through mπ/2 (m ∈ Z), then L is diffeomorphic to I × S1 × Sn−2 and immersed in Qn by
the map Ψ0. Moreover, L is a special Lagrangian submanifold of phase θ if and only if τ satisfies

(5.2) Im
(
e
√
−1θτ ′ cos τ(sin τ)n−2

)
= 0.

This condition is equivalent to the equation

Im
(
e
√
−1θ(sin τ)n−1

)
= c2

for some c2 ∈ R. In the phase space C, the orbit space of G-action on µ−1(0) can be reduced to

{τ = t+
√
−1ξ1 | 0 ≤ t ≤ π

2
, ξ1 ∈ R}.

In this area, (5.2) has singularities at 0 and π/2. When θ = 0, the real segment [0, π/2] is a
trivial solution, and its corresponding special Lagrangian submanifold is the zero-section Sn of
T ∗Sn.

Then, similarly with the previous cases, we obtain the following observations.

Proposition 5.4. In the case of p = 2, q ≥ 3, cohomogeneity one special Lagrangian submani-
folds L invariant under SO(2) × SO(n − 2) are diffeomorphic to I × S1 × Sn−2 and embedded
in T ∗Sn ∼= Qn generically.
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(1) Two ends of L in Qn are asymptotic to special Lagrangian cones in Qn
0 which are the

cones over the orbits through

1√
2

(
e
√
−1 kπ−θ

n−1 , 0,
√
−1e

√
−1 kπ−θ

n−1 , 0, . . . , 0
)

(k ∈ Z) (n : odd)

1√
2

(
e
√
−1

(2k+1)π−2θ
2(n−1) , 0,

√
−1e

√
−1

(2k+1)π−2θ
2(n−1) , 0, . . . , 0

)
(k ∈ Z) (n : even)

by the action of SO(2)× SO(n− 1).
(2) When the curve σ in µ−1(c1θ12) ∩ Φ(Σ) passes through z = (± cosh(ξ2),

√
−1 sinh(ξ2),

0, . . . , 0), the map Ψ : I × S1 × Sn−2 → Qn degenerates at that point. Especially when
σ passes through z = (±1, 0, . . . , 0), then (n− 1) special Lagrangian submanifolds of Qn

meet at the singular set S1.
(3) When the curve σ passes through z = (0, 0,±1, 0, . . . , 0), the map Ψ : I×S1×Sn−2 → Qn

degenerates, and 2 special Lagrangian submanifolds of Qn meet at the singular set Sn−2.

5.4. Case of p = q = 2. We express z ∈ Φ(Σ) as

z = (z1, z2, z3, z4),

where

z1 = cos t cosh ρ−
√
−1

ξ1
ρ
sin t sinh ρ,

z2 =
√
−1

ξ2
ρ
sinh ρ,

z3 = sin t cosh ρ+
√
−1

ξ1
ρ
cos t sinh ρ,

z4 =
√
−1

ξ3
ρ
sinh ρ.

Then the conditions to be z ∈ µ−1(c1θ12 + c2θ34) are

c1 = −u′(cosh(2ρ))
ξ2
ρ
cos t sinh(2ρ),

c2 = −u′(cosh(2ρ))
ξ3
ρ
sin t sinh(2ρ).

These equations approach to the condition to be z ∈ µ−1(0) as ρ → ∞. Thus µ−1(c1θ12+c2θ34)∩
Φ(Σ) is asymptotic to µ−1(0) ∩ Φ(Σ) as ρ → ∞. Therefore, we shall describe the asymptotic
behavior of special Lagrangian submanifolds in the case of c1 = c2 = 0.

When c1 = c2 = 0, the orbit space µ−1(0)/G of the G-action on µ−1(0) is parametrized as

µ−1(0) ∩ Φ(Σ) =
{
(cos τ, 0, sin τ, 0) | τ = t+

√
−1ξ1 (t, ξ1 ∈ R)

}
.

Let τ be a regular curve in the complex plane C. We define a curve σ in µ−1(0) ∩ Φ(Σ) by

σ(s) = (cos τ(s), 0, sin τ(s), 0).

Then the G-orbit L = G · σ through σ is a Lagrangian submanifold. For a curve τ , L coincides
with the image of the following map:

Ψ0 : I × S1 × S1 −→ Q3

(s, x, y) 7−→ (cos τ(s)x1, cos τ(s)x2, sin τ(s)y1, sin τ(s)y2).

When τ passes through mπ/2 (m ∈ Z), the map Ψ0 degenerates at that point. If τ does not
pass through mπ/2 (m ∈ Z), then L is diffeomorphic to I ×S1×S1 and immersed in Q3 by the
map Ψ0. Moreover, L is a special Lagrangian submanifold of phase θ if and only if τ satisfies

(5.3) Im
(
e
√
−1θτ ′ cos τ sin τ

)
= 0.
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This condition is equivalent to

Im
(
e
√
−1θ(sin τ)2

)
= c3

for some c3 ∈ R. In the phase space C, the orbit space of G-action on µ−1(0) can be reduced to

{τ = t+
√
−1ξ1 | 0 ≤ t ≤ π

2
, ξ1 ∈ R}.

In this area, (5.3) has singularities at 0 and π/2. When θ = 0, the real segment [0, π/2] is a
trivial solution, and its corresponding special Lagrangian submanifold is the zero-section S3 of
T ∗S3.

Then we obtain the following observations.

Proposition 5.5. In the case of p = q = 2, cohomogeneity one special Lagrangian submanifolds
L invariant under SO(2)×SO(2) are diffeomorphic to I×S1×S1 and embedded in T ∗S3 ∼= Q3

generically.

(1) Two ends of L in Q3 are asymptotic to special Lagrangian cones in Q3
0 which are the

cones over the orbits through

1√
2

(
e
√
−1 kπ−θ

2 , 0,
√
−1e

√
−1 kπ−θ

2 , 0
)

(k ∈ Z)

by the action of SO(2)× SO(2).
(2) When the curve σ in µ−1(c1θ12+c2θ34)∩Φ(Σ) passes through z = (± cosh(ξ2),

√
−1 sinh(ξ2),

0, 0) or (0, 0,± cosh(ξ3),
√
−1 sinh(ξ3)), the map Ψ : I×S1×S1 → Q3 degenerates at that

point. Especially when σ passes through z = (±1, 0, 0, 0) or (0, 0,±1, 0), then 2 special
Lagrangian submanifolds of Q3 meet at the singular set S1.

5.5. Case of p = 1, q = 2. We express z ∈ Φ(Σ) as

z = (z1, z2, z3),

where

z1 = cos t cosh ρ−
√
−1

ξ1
ρ
sin t sinh ρ,

z2 = sin t cosh ρ+
√
−1

ξ1
ρ
cos t sinh ρ,

z3 =
√
−1

ξ2
ρ
sinh ρ.

Then the condition to be z ∈ µ−1(c1θ23) is

c2 = −u′(cosh(2ρ))
ξ2
ρ
sin t sinh(2ρ).

This equation approaches to the condition to be z ∈ µ−1(0) as ρ → ∞. Thus µ−1(c1θ23)∩Φ(Σ)
is asymptotic to µ−1(0)∩Φ(Σ) as ρ → ∞. Therefore, we shall describe the asymptotic behavior
of special Lagrangian submanifolds in the case of c1 = 0.

When c1 = 0, the orbit space µ−1(0)/G of the G-action on µ−1(0) is parametrized as

µ−1(0) ∩ Φ(Σ) =
{
(cos τ, sin τ, 0) | τ = t+

√
−1ξ1 (t, ξ1 ∈ R)

}
.

Let τ be a regular curve in the complex plane C. We define a curve σ in µ−1(0) ∩ Φ(Σ) by

σ(s) = (cos τ(s), sin τ(s), 0).

Then the G-orbit L = G · σ through σ is a Lagrangian submanifold. For a curve τ , L coincides
with the image of the following map:

Ψ0 : I × S1 −→ Q2

(s, y) 7−→ (cos τ(s), sin τ(s)y1, sin τ(s)y2).
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When τ passes through mπ (m ∈ Z), the map Ψ0 degenerates at that point. If τ does not pass
through mπ (m ∈ Z), then L is diffeomorphic to I × S1 and immersed in Q2 by the map Ψ0.
Moreover, L is a special Lagrangian submanifold of phase θ if and only if τ satisfies

(5.4) Im
(
e
√
−1θτ ′ sin τ

)
= 0.

This condition is equivalent to

Im
(
e
√
−1θ cos τ

)
= c2

for some c2 ∈ R. In the phase space C, the orbit space of G-action on µ−1(0) can be reduced to

{τ = t+
√
−1ξ1 | 0 ≤ t ≤ π, ξ1 ∈ R}.

In this area, (5.4) has singularities at 0 and π. When θ = 0, the real segment [0, π] is a trivial
solution, and its corresponding special Lagrangian submanifold is the zero-section S2 of T ∗S2.

Then we obtain the following observations.

Proposition 5.6. In the case of p = 1, q = 2, cohomogeneity one special Lagrangian sub-
manifolds L invariant under SO(2) are diffeomorphic to I × S1 and embedded in T ∗S2 ∼= Q2

generically.

(1) Two ends of L in Q2 are asymptotic to special Lagrangian cones in Q2
0 which are the

cones over the orbits through

1√
2

(
e
√
−1(kπ−θ),

√
−1e

√
−1(kπ−θ), 0

)
(k ∈ Z)

by the action of SO(2).
(2) When the curve σ in µ−1(c1θ23) ∩ Φ(Σ) passes through z = (±1, 0, 0), the map Ψ :

I × S1 → Q2 degenerates, and 2 special Lagrangian submanifolds of Q2 meet at the
singular point z = (±1, 0, 0).
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