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Abstract. We consider the Liouville equation

−∆u = λeu in Ω, u = 0 on ∂Ω,

on a smooth bounded domain Ω in R2, where λ > 0 is a parameter. Let {un}
be an m-point blowing up solution sequence of the problem for λ = λn ↓ 0,
which satisfies

λn

∫

Ω

eundx → 8πm as n →∞

for m ∈ N. We prove that the number of blow up points m is less than or
equal to the Morse index of un for n sufficiently large.

As a corollary, we show that if a solution un of Morse index one has the
property that λn

∫
Ω

eundx = O(1), then the number of blow up points of the
sequence is exactly one. Note that in the last result, we do not need any
geometrical assumption such as the convexity of the domain.
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1. Introduction and Results.

In this note we consider the problem

{
−∆u = λeu in Ω,

u = 0 on ∂Ω
(1.1)
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where Ω is a smooth bounded domain in R2 and λ > 0. The maximum
principle implies that any solution is positive in Ω.

This kind of problem with exponential nonlinearity appears in many fields
of mathematics, such as the study of the prescribed Gauss curvature equation
([4] [5]), Chern-Simons gauge theories ([16] [3]), the vortex theory for the
turbulent Euler flow ([2]), and so on, and it has attracted many authors for
more than decades.

Let {λn} be a sequence of positive numbers satisfying λn → 0 as n →∞.
We are interested in a solution sequence {un} for λ = λn, which satisfies

lim sup
n→∞

λn

∫

Ω

eundx ≤ C (1.2)

for some C < +∞. For the solution sequence {un} satisfying (1.2), Nagasaki
and Suzuki [15] showed that there exists a subsequence (which will be denoted
by {un} again) such that

λn

∫

Ω

eundx → 8πm (n →∞) for some m ∈ N ∪ {0}. (1.3)

Furthermore, if m = 0, then un → 0 uniformly on Ω, and if m ∈ N, then
there exists a set of m-points S = {a1, · · · , am} such that each ai is an interior
point of Ω, ‖un‖L∞(K) = O(1) for any compact set K ⊂ Ω \ S, un|S → +∞,
and

un → 8π
m∑

i=1

G(·, ai) in C2
loc(Ω \ S)

as n → ∞. Here, G = G(x, y) is the Green function of −∆ under the
Dirichlet boundary condition with a pole y ∈ Ω. See also [1] and [14] for
another proof of this fact. In the above sense, we call S the blow up set for
the solution sequence {un} and each ai ∈ S a blow up point of {un}.

In the following, let iM(u) denote the Morse index of a solution u of
(1.1), that is, the number of negative eigenvalues of the linearized operator
Lu = −∆− λeu· acting on H1

0 (Ω).
Now, main result in this note is as follows.

Theorem 1 Let {un} be a solution sequence of (1.1) for λ = λn satisfying
(1.3). Then m ≤ iM(un) for n sufficiently large.

As a corollary, we obtain the following assertion.
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Corollary 2 Let {un} be a solution sequence of (1.1) for λ = λn satisfying
(1.2). Assume the Morse index iM(un) = 1 for any n large. Then we have

λn

∫

Ω

eundx → 8π, as n →∞,

that is, the number of blow up points of {un} is exactly 1.

We remark here that, the number of blow up points of any blowing-up
solution sequence to (1.1) is exactly 1 on convex domains. This nonexistence
of multiple blow up points on convex domains holds true for a wider class of
semilinear problems with blowing-up or concentration phenomena; see [10].
Here, in Corollary 2, we do not need any geometrical assumptions such as
the convexity of the domain.

As for the Morse index of solutions, Gladiali and Grossi [9] proved that
if {un} is a solution sequence to (1.1) with λn

∫
Ω

eundx → 8π, then iM(un) is
1 or 2 on any smooth bounded domain Ω. If Ω is convex, then iM(un) = 1
for n sufficiently large: see Corollary 2.8 in [9].

Related results can be seen in the papers by El Mehdi and Pacella [7] for
higher-dimensional cases and [17] for another problem in two dimension.

2. Proof of Theorem 1.

In this section, we prove Theorem 1. Let un be a solution to (1.1) for
λ = λn with the assumption (1.3). If m = 0, we have nothing to prove.

In the following, we treat the case m ∈ N. By the result of [15], we have
the blow up set S = {a1, · · · , am}, each ai an interior point of Ω. Then we
have a sufficiently small ρ > 0 and m sequences of points {xi

n} such that for
each ai ∈ S,

un(xi
n) = max

Bρ(xi
n)

un(x) →∞, xi
n → ai (i = 1, · · · ,m),

as n →∞. See, for example, Li-Shafrir [12].
Let xi

n be the above local maximum point of un around ai ∈ S. Define
the positive number δi

n and the scaled function ũi
n by

(δi
n)2λneun(xi

n) = 1, (2.1)

ũi
n(y) = un(δi

ny + xi
n)− un(xi

n), y ∈ Bρ/δi
n
(0) (2.2)
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for i ∈ {1, · · · ,m}.
Now we recall the sup + inf type estimate for the blowing-up solutions to

(1.1): For a fixed ρ ∈ (0, 1), there exists a constant C > 0 independent of
i = 1, · · · ,m and λn > 0 such that

∣∣∣∣∣un(x)− log
eun(xi

n)

(
1 + λn

8
eun(xi

n)|x− xi
n|2

)2

∣∣∣∣∣ ≤ C for x ∈ Bρ(x
i
n) (2.3)

holds true. See YanYan Li [11], and also [13] for an alternative proof.
We claim that δi

n = o(1) for any i = {1, · · · ,m} as n →∞. Indeed, since
un is uniformly bounded for x ∈ ∂BR(xi

n) for small R > 0, we have
∣∣∣∣∣log

eun(xi
n)

(
1 + λn

8
eun(xi

n)R2
)2

∣∣∣∣∣ = O(1)

by the sup + inf estimate (2.3). Since

eun(xi
n)

(
1 + λn

8
eun(xi

n)R2
)2 =

1(
e−

1
2
un(xi

n) + λ
1/2
n

8
(δi

n)−1R2
)2

by the definition (2.1), this implies there exist constants c, C > 0 such that

c ≤ λ
1/2
n (δi

n)−1 ≤ C. Thus we have the claim.
Note that ũi

n satisfies




−∆ũi
n = eũi

n in Bρ/δi
n
(0),

ũi
n(0) = 0, ũi

n(x) ≤ 0, ∀x ∈ Bρ/δi
n
(0),∫

B
ρ/δi

n
(0)

eũi
ndy = O(1), (n →∞).

(2.4)

Here, we have used the assumption (1.3).
Next, we claim that

ũi
n → U(y) = −2 log

(
1 +

|y|2
8

)

in C1
loc(R2) as n →∞ (without choosing a subsequence).

In fact, let {ũi
n(k)}, denoted by {ũi

k}, be any subsequence of {ũi
n}. A

result of Brezis-Merle ([1]:Theorem 3) implies that there exists a subsequence
of {ũi

k}, still denoted by the same symbol, satisfying one of the following
alternatives as k →∞:
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(1) ũi
k is bounded in L∞loc(Bρ/δi

k
(0)), or

(2) ũi
k → −∞ uniformly on compact sets in Bρ/δi

k
(0), or

(3) there exists a sequence of points yi
k ∈ Bρ/δi

k
(0) such that ũi

n(yi
k) → +∞.

However, by the fact ũi
k(0) = max

B
ρ/δi

k
(0)

ũi
k(x) = 0, (2) or (3) in the above

alternatives cannot happen. Therefore {ũi
k} is bounded in L∞loc(R2) along

a subsequence, and standard elliptic regularity yields that there exists a
subsequence {ũi

k(l)}, denoted by {ũi
l}, and a function U such that ũi

l → U as

l →∞ in C1
loc(R2). Passing to a limit in (2.4) and using Fatou’s lemma, we

see that U is a solution of



−∆U = eU in R2,

U(0) = 0, U(y) ≤ 0, ∀y ∈ R2,∫
R2 eUdy < +∞.

Thus by a result of Chen and Li [6], we have U(y) = −2 log
(
1 + |y|2
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)
, and

this uniqueness of the limit proves the claim. Note that in terms of ũi
n in

(2.2), the estimate (2.3) can be written as

|ũi
n(y)− U(y)| ≤ C for y ∈ B ρ

δi
n

(0), i = 1, · · · ,m.

Here, we define two elliptic operators

Ln := −∆x − λneun · : H1
0 (Bρ(x

i
n)) → H−1(Bρ(x

i
n)), (2.5)

L̃i
n := −∆y − eũi

n· : H1
0 (Bρ/δi

n
(0)) → H−1(Bρ/δi

n
(0)). (2.6)

The operators (2.5) and (2.6) are related to each other by the formula

(δi
n)2Ln

∣∣∣
un(x)=ũi

n(y)+un(xi
n)

= L̃i
n,

where x = δi
ny + xi

n for x ∈ Bρ(x
i
n) and y ∈ Bρ/δi

n
(0). Also for a domain

D ⊂ Bρ(x
i
n), we have

(δi
n)2λj(Ln, D) = λj(L̃

i
n, D

i
n), Di

n =
D − xi

n

δi
n

, (2.7)

where λj(Ln, D), λj(L̃
i
n, D

i
n) (j ∈ N) denote the j-th eigenvalue of elliptic

operators Ln, L̃
i
n acting on H1

0 (D), H1
0 (Di

n) respectively.
We prove
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Lemma 3 There exists R > 0 such that λ1(Ln, B(xi
n, δ

i
nR)) < 0 for n large

and for any i ∈ {1, · · · ,m}. Here B(xi
n, δi

nR)) denotes an open ball with
center xi

n and radius δi
nR. Furthermore, these m balls are disjoint for n

large.

Proof. Define

wi
n(x) = (x− xi

n) · ∇un(x) + 2, x ∈ Bρ(x
i
n).

Then wi
n satisfies the equation −∆wi

n(x) = λne
unwi

n, x ∈ Bρ(x
i
n), and if we

define w̃i
n as

w̃i
n(y) = wi

n(δi
ny + xi

n) = y · ∇ũn(y) + 2, y ∈ Bρ/δi
n
(0), (2.8)

then w̃i
n satisfies −∆w̃i

n(y) = eũi
nw̃i

n(y) for y ∈ Bρ/δi
n
(0). Since ũi

n → U in
C1

loc(R2), we have

w̃i
n(y) → y · ∇U + 2 = 2

8− |y|2
8 + |y|2 < 0 if |y| = R > 2

√
2

as n →∞. Set Ai
n = {y ∈ B(0, R) : w̃i

n(y) > 0}, Ai
n 6= φ, and define

wi
n(y) =

{
w̃i

n(y) y ∈ Ai
n,

0 y ∈ B(0, R) \ Ai
n.

If we test

λ1(L̃
i
n, B(0, R)) = inf

v∈H1
0 (B(0,R))

∫
B(0,R)

|∇v|2dy − ∫
B(0,R)

eũnv2dy∫
B(0,R)

v2dy

by wi
n ∈ H1

0 (B(0, R)), we see that λ1(L̃
i
n, B(0, R)) ≤ 0. Actually, we have

λ1(L̃
i
n, B(0, R)) < 0, since if equality holds, wi

n would be the first eigenfunc-
tion of L̃i

n on B(0, R), which must be strictly positive. But this contradicts
to the fact that wi

n is 0 near ∂B(0, R). Finally, scaling formula (2.7) proves
the first half part of the Lemma.

Next, we claim that B(xi
n, δi

nR) and B(xj
n, δ

j
nR) are disjoint for n large, if

i 6= j. Indeed, since ũi
n → U, ũj

n → U in C1
loc(R2), U(y) = −2 log(1 + |y|2/8)

is strictly concave and y ·∇ũn(y) → y ·∇U(y) < 0 on B(0, R)\{0}, un is also
strictly concave and (x− xi

n) · ∇un(x) < 0 on B(xi
n, δi

nR) \ {xi
n} for n large.

6



In particular, there is not a critical point in B(xi
n, δi

nR) other than {xi
n}. The

same holds for un on B(xj
n, δ

j
nR) \ {xj

n}, and this concavity property proves
the claim.

Now by Lemma 3, we have m open balls B1, · · · , Bm, Bi = B(xi
n, δ

i
nR),

which are disjoint, and

λ1(Ln, B
i) < 0 for i = 1, · · · ,m. (2.9)

Furthermore, by a variational characterization of m-th eigenvalue of Ln, we
see that

λm(Ln, Ω) ≤
m∑

i=1

λ1(Ln, B
i). (2.10)

Though this fact is well-known, we give a proof in Appendix for the reader’s
convenience.

From (2.9) and (2.10), we have λm(Ln, Ω) < 0. On the other hand, by the
definition of the Morse index of un, we have λiM (un)+1(Ln, Ω) ≥ 0. Therefore
m ≤ iM(un), and this proves Theorem 1.

Proof of Corollary. Let {un} be a solution sequence as in Corollary 2,
and choose any subsequence {un(k)} of {un}, denoted by {uk}. By a result
of [15], there exists a subsequence {uk(l)} of {uk}, denoted by {ul}, such
that λl

∫
Ω

euldx → 8πm for some m ∈ N ∪ {0}. By Theorem 1, we have
m ≤ iM(ul) ≡ 1. If m = 0, then ul coincides with the minimal solution for
l large, and since the Morse index of the minimal solution is 0, this cannot
happen. Thus we have m = 1 and λl

∫
Ω

euldx → 8π as l →∞. Since {uk} is
arbitrarily chosen, we have

λn

∫

Ω

eundx → 8π as n →∞

for the full sequence {un}.

Appendix.

In this appendix, we prove the following lemma, which gives the validity
of (2.10).
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Lemma 4 Let L = −∆ − c(x)· denote a second-order elliptic differential
operator acting on H1

0 (Ω), where Ω ⊂ RN(N ≥ 1) is a smooth bounded
domain and c ∈ C(Ω). If D1, · · · , Dm are disjoint smooth subdomains of Ω,
then we have

λm(L, Ω) ≤
m∑

i=1

λ1(L,Di)

where λj(L,D) denote the j-th eigenvalue of L acting on H1
0 (D) (counted

with multiplicities) for D ⊂ Ω.

Proof. Let ψi ∈ H1
0 (Di) (i = 1, · · · , m) be the first eigenfunction of L on

Di: {
Lψi = λ1(L,Di)ψi in Di,

ψi = 0 on ∂Di,

normalized as ‖ψi‖L2(Di) = 1. We can extend ψi as 0 outside Di and obtain
new function in H1

0 (Ω), which will be denoted again by ψi. Set u =
∑m

i=1 αiψi

for αi ∈ R, u ∈ H1
0 (Ω). Since

‖u‖2
L2(Ω) =

m∑
i=1

α2
i ‖ψi‖2

L2(Di)
=

m∑
i=1

α2
i ,

(u, φ)L2(Ω) =
m∑

i=1

αi(ψi, φ)L2(Di)

for any φ ∈ H1
0 (Ω), we have (α1, · · · , αm) 6= (0, · · · , 0) such that

‖u‖2
L2(Ω) = 1, and (u, φj)L2(Ω) = 0 (j = 1, · · · ,m− 1)

holds true, where φj denotes the j-th eigenfunction corresponding to λj(L, Ω).
By a variational characterization of λm(L, Ω), we have

λm(L, Ω) = inf{(Lv, v)L2(Ω) |‖v‖L2(Ω) = 1,

(v, φj)L2(Ω) = 0 (j = 1, · · · ,m− 1)}.
Testing this by u =

∑m
i=1 αiψi, we obtain

λm(L, Ω) ≤ (Lu, u)L2(Ω) =

(
m∑

i=1

αiLψi,

m∑
i=1

αiψi

)

L2(Ω)

=
m∑

i=1

α2
i λ1(L,Di)‖ψi‖2

L2(Di)
≤

m∑
i=1

λ1(L,Di).
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