Multi-bubble solutions and the geometry of
the domains: a survey
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Abstract. In this paper, we consider several types of semilinear elliptic
equations with concentration phenomena. We will give a concise survey
about the relation between the existence and/or non-existence of solutions
with multiple blow up (or concentration) points and the geometry of the
domain. This survey is based on a recent joint work of the author [13] with
M. Grossi at Universita di Roma “La Sapienza’”.
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1. Results.

Let © be a smooth bounded domain in RV, N > 2. In the following, G
will denote the Green function of —A under the Dirichlet boundary condition

—A,G(z,y) =0y(x), 2€Q, G(z,y) =0, €N

with a pole y € €2, and

llog‘x_y‘_la (N:2)7
Hr = {—% hexle —yP Y, (V2 3)
(N—2)on Yy ; =

the fundamental solution, where oy is a measure of the unit sphere of R¥.
Let

Yy—x

denote the Robin function.



Among semilinear elliptic problems with concentration phenomena, first,
we consider the Liouville equation

{—Au = Xe in €, (1.1)
u=20 on 0f)

where € is a smooth bounded domain in R? and A > 0 is a parameter.
The maximum principle implies any solution is positive on 2. This kind of
problem with exponential nonlinearity appears in many fields of mathemat-
ics, such as the study of prescribed Gauss curvature equation on a compact
Riemann surface, Chern-Simons gauge theories, the vortex theory for the
turbulent Euler flow, and so on, and it has attracted many authors for more
than decades.

This simple-looking problem is shown to have much richer mathemati-
cal structure than expected before, and the following fundamental fact was
proved by Nagasaki and Suzuki [16] around 1989, which may be considered
as a concrete example of the general principle of concentration-compactness
alternatives by P. L. Lions [18] [19] in two-dimensional critical problems.

Proposition 1 (Nagasaki-Suzuki [16]) Let uy, be a solution sequence of
(1.1) for X = X\, | 0. Then A, [,e"»dx accumulates only on values 8l
for some | € {0} UNU {400} (mass quantization). According to these val-
ues, the subsequence of solutions {uy,} behaves as follows:

(a) If 1 =0, then |Jux,| L= — 0.
(b) If | = +o0, then uy, (z) — +oo (VY € Q).

(c) If 1 € N, then there exists a set of | distinct points S = {aq, -+ ,a;} C
Q, which is called a blow up set, such that ||uy,||L=x) = O(1) for any

compact sets K C Q\'S, {uy, (2)} has a limit for any v € Q\ S, and
uy,|s — +oo (I-points blow up).

Moreover, in the last case, we have

uy, = 87 G(a;) inCLQ\S) (n— o0)

=1

and each a; € S must satisfy

l
1 = ,
§VR(CL1) - E VwG(ai, CLJ’) = 0, (Z = 1, 2, ce ,l) (12)

=1,



Here, G and R denotes the Green function of —A acting on H} () and the
Robin function, respectively.

For the proof, the authors in [16] used the complex function theory, more
precisely, a representation formula of solutions to (1.1), called the Liouville
integral formula was a key ingredient. For other proofs of Proposition 1 by
using real analysis and PDE theory, see also Brezis-Merle [3] and Ma-Wei
[14].

More generally, we consider the mean field equation:

. V(x)e .
{ Au = )‘—f T in €, (1.3)

u=>0 on Of?

where A > 0 and V is a given function in C?(Q). In this case, Ma and Wei
[14] proved the following result.

Proposition 2 (Ma-Wei [14]) Assume V € C%(Q),infq V > 0. Let {uy} be
a sequence of solutions to (1.3) which is not uniformly bounded from above
for X bounded. Then there exists a subsequence N\, and a set of | distinct
points S = {ay, -+ ,a} such that \, — 8wl, | € N, and uy, blows up at
ai,---,a; i S, that is,

V(z)e'rn
n — 8 5a
oo =

in the sense of measures on ) asn — oo. Moreover, blow up points {a, -+ ,a;}
must satisfy

—VR (a;) Z V.G(a;,a;) — —Vlog Via;) =0 (1.4)

J=1,j#i
fori=1,2,--- [
After the appearance of these results, the existence of blowing-up solu-

tions with multiple blow up points became the next problem to be studied.
On this issue, several affirmative results are now available as follows.



Let [ > 1 be an integer. Assume Q' = {x € Q|V(z) > 0
()Y = () x - x () (I times) and A = {(&,---,&) € (@)
¢; for some i # j}. Now, define the Hamiltonian function

—
N
— S
[@)]
o)
-+

l

!
Flen &) =Y RE) - Y Geg) — = lgV(e)  (15)
on (2)'\ A. Note that the former necessary conditions (1.2) or (1.4) for
[-distinct points {aq,--- ,a;} to be blow up points is nothing more than that
(a1, -+, @) is a critical point of the Hamiltonian F on (Q)!\ A.

We recall some definitions from the critical point theory.

Definition 3 ([17], [8]) Let D C RY and F : D — R is a C' function. A
bounded set K of critical points of F is called a C*-stable critical set of F' if
for any pu > 0, there exists & > 0 such that if G : D — R is a C' function
with the property that

max (|G(x) — F(z)|+ |VG(z) — VF(x)]) <4,

dist(z,K)<p
then G has at least one critical point x with dist(z, K) < .

Definition 4 ([7]) Let D C RY and F : D — R be a C' function. We say
that F links in D at critical level c relative to B and By if the followings
hold: B, By closed subsets of D with B connected, By C B, and if we set

I = {® e C(B,D)]3T € C([0,1] x B, D)
5.t 0(0,) = Id, U(1,-) = &, W(t, )| g, = Idp, (vt € [0,1])}

and
= inf F(o
¢ = jnf sup F(2(y),
then we have sup,cp F(y) < c and for any y € 0D with F(y) = c, there
ezists a vector T, tangent to D such that VF(y) - 1, # 0.

Under the circumstances of Definition 4, it is standard to assure that there
exists a critical point y € D such that F(y) = ¢. Therefore the value ¢ is
called a nontrivial critical level of F in D.



Proposition 5 (Existence of [-blowing up solution) Assume Q' = {z €
QV(x) > 0} # ¢. If the Hamiltonian F defined by (1.5) satisfies one of the
following assumptions:

(1) F has a nondegenerate critical point (ay,--- ,a;) € (V)'\ A (Baraket-
Pacard [2]), or

(2) there exists a stable critical set K for F in ()'\ A (Esposito-Grossi-
Pistoia [8]), or

(3) there exists an open set D compactly contained in (Q)'\ A where F
has a nontrivial critical level ¢ (del Pino-Kowalczyk-Musso [7])

then there exists a solution sequence {uy} to (1.3) such that uy blows up
ezactly on S = {ay, - ,a}.

It is known that a bounded set K of critical points of F is a stable critical
set if K is a set of strict local minimum points of F: F(z) = F(y) for any
x,y € K and for some open neighborhood U of K it holds F(z) < F(y) for
r € Kandy € U\ K. Also a strict local maximum set is a stable critical set.
Moreover, if the Brower degree deg(VF, U, 0) # 0 for any € > 0 small, where
U, is an e-neighborhood of K, then K is stable. Furthermore, if Q C R? is
not simply-connected, for example, if it has a small hole, then it is proved
in [7] that such a set D in which F has a nontrivial critical level actually
exists for any [ > 1. Therefore in this case, we have a blowing-up solution
sequence to (1.1) or (1.3), whose blow up set S consists of [-distinct points
for any [ € N.

Even on simply-connected domains, we sometimes have the existence of
multi-bubble solutions. To state the next result, we define [-dumbbell shaped
domain for | € N. Prepare | smooth bounded domains €, - -, in R? with
0, NQ; = ¢ifi+#j. Assume that

QG {(zy) eR|a; <z <b}, UN{y=0}#0¢

for some a; < b; < a;11 < biy1,(i=1,---,1—1)and set Qy = Q U---UQ,.
Let
05:{($,y) ER2 | |y| Sg,aq <£L‘<bl}

and let €. be a simply-connected domain such that Qo C Q. C QU C.. We
call €, a [-dumbbell shaped domain.



Proposition 6 ([8] [-points blow up solution on dumbbell shaped domains)
Let | > 2 and V(x) = 1. Then there exists l-dumbbell shaped domain (in
particular, it is simply connected but not conver) Q) and an l-points set S =
{a1, -+, a;} such that there ezists a solutions {uy} to (MFE) satisfying

el

l
Momds 8720

=1

as A — 87l on ).

However, on conver domains, there does not exist any blowing up solu-
tions with multiple blow up points. The nonexistence result for the Liouville
equation proved in [13] is the following:

Theorem 7 (Grossi-Takahashi [13]) Assume Q is convex. Let {uy\} be a
solution sequence of (1.1) with ||ux||z=@) — +00 as A — 0. Then we have

)\/ e dx — 8w
Q

as A — 0.
Theorem 7 and a direct application of some results in [11] [12] yields

Corollary 8 (Grossi-Takahashi [13]) Let uy and €2 be as in Theorem 7. Then
the Morse index of uy is exactly 1 for A > 0 sufficiently small. Furthermore,

uy has only one critical point x) which is the global maximum point of uy,
and it holds
(x —xy) - Vur(x) <0, VeeQ\{x}.

In particular, the level sets of uy are strict star-shaped with respect to xy. If
0 has strictly positive curvature at any point, then the level sets of uy have
strictly positive curvature at any point different from xy for A > 0 sufficiently
small. In particular, the level sets are strictly convex.

Almost the same argument as in Theorem 7 yields the following:

Theorem 9 (Grossi-Takahashi [13]) Assume Q is convex. Let {uy} be a
solution sequence of (1.3) with ||uy|| () not bounded from above while A > 0
bounded. Assume infq V> 0 and R — ﬁlogv is a convex function on €.
Then A accumulates only on 8m. In particular, if V> 0 is a concave function
on €2, we have the same conclusion.



This is a striking contrast with the known existence theorems of multiple-
blowing-up solutions on domains which meet some topological conditions, see
the results of [2], [8], [7] described in Proposition 5.

We may consider a different type of problem in 2-dimension, which is
socalled a large exponent problem:
~Au=(uy)? mQCR? p>1, (1.6)
u=0 on Jf2.

Here ) is a smooth bounded domain in R? and p > 1 is a large exponent.

In [20] [21], the authors showed that least energy solutions u, to (1.6)
(which may be chosen positive on 2) is bounded from above and below away
from zero in L* norm sense uniformly for p large. Also, after taking a subse-
quence, p|Vu,|*dz — 8med, in Radon measures, where a € Q is a minimum
point of the Robin function R [10]. In this sense, least energy solutions to
(1.6) exhibit single point condensation phenomena on any smooth bounded
domain in R2.

Recently, Santra and Wei [23] studied the asymptotic behavior of con-
centrating solutions to (1.6) with multiple concentration points. Under the
assumption

p [[(wyrtias = o), (p— o) (1.7)

they obtained the following result.

Proposition 10 (Santra-Wei [23]) Let u, be a solution sequence to (E,)
satisfying the assumption (1.7). Then there exists a subsequence p, — 00
such that

pn/((upnm”"dx — 8myel, 1eN
Q

holds. Moreover,

(1) Nup, [l oe(@) = Ve as pn — o,

(2) there exists l-points set S = {ay,--- ,a;} C Q such that

I
DPnllp, — 87T\/EZ G(,a;)) nCE(Q\S) (p, — 00).
i=1



(3) a; € S satisfies

!
1 >
§VR(CL7;) — E V.G(a;,a;) =0, i=1,2--- L (1.8)

j=1,j#i

Santra and Wei treated the more general problem which includes the
polyharmonic operator with the Dirichlet boundary conditions.

On the existence of concentrating solution sequence with multiple con-
centration points, Esposito, Musso and Pistoia [9] proved the existence of
such sequence to the problem

—Au = uP in €,
u >0 in €2,
u=20 on 0f)

when (2 satisfies some topological conditions. In particular, for example, un-
der the assumption that €2 is not simply connected, they proved the existence
of solution sequence {u,} which satisfies

l

p|Vu,|*dr — 8re Z b, weakly in the sense of measures of
j=1

as p — oo for some [-different concentration points {a;},_, C Q, with {a;}
satisfying the characterization (1.8).

However, the same argument as in Theorem 7 yields the following nonex-
istence result.

Theorem 11 Let Q C R? be a bounded conver domain and let {u,} be a
solution sequence satisfying the assumption (1.7). Then there exists a € €,

for which

lim p/Q((up)Jr)pdx =8mye, pu, — 8m/eG(-,a) inCE.(Q\ {a})

p—00
holds true.

Thus the assumption on the domain in [9] is sharp for the construction of
multiple concentrating solution.



We may consider the higher-dimensional problem:

—Au=uP" inQCRY(N>3),
u>0 in, (1.9)
u=0 ondQ

where p = (N + 2)/(N — 2) is the critical Sobolev exponent with respect to
the embedding H}(Q) — LPTY(Q), and € > 0 is a parameter. To describe
the result by Bahri, Li and Rey [1] on the blowing-up sequence to (1.9), we
prepare some notations.

For ¥ = (x1,--+,2;) € Q2 x --- x Q (I times), we define [ x | matrix
M(Z) = (mijh<ij< as

my = R(x;), m;; = _G(l'i?mj) (i # J)

where R is the Robin function on Q. Let p(Z) denote the least eigenvalue
of M(Z), which is known to be simple, and let 7(Z) € R! be the eigenvector
associated with p(Z). Tt is proved in [1] that all components of r(Z) may be
chosen to be positive. When p(Z) > 0, the function
Fz(A) = % PAM(Z)A —log Ay -+ -

defined for positive vector A = *(Ay,--- ,A;) € (R)! is strictly convex, so it
has a unique minimum point, which is denoted by A(Z) € (R)".

Bahri-Li-Rey first proved the following proposition when N > 4. After
several years, Rey [22] proved that the same results as Bahri-Li-Rey’s hold
true even for N = 3.

Proposition 12 (Bahri-Li-Rey [1], Rey [22]) Let N > 3 and {u}.~0 be a
sequence of solutions to (1.9) which blows up at {ai, - ,a;} CQ ase — 0,
in the sense that

l N l
VP — SN2 "6, ul? = SNy "4,
=1 i=1

where S is the best constant for the Sobolev inequality on RY . Then

(1) @=(ay, - ,a;) € Q (interior points)



(2) p(@) >0 (no collision of blow up points occurs)
(3) it holds

—VRCLlAQ Z V.G(a;, a;)A A,:(j (Vi=1,2,--- 1)

J=1j#i

where
A(a) if p(a) >0
A: t(Ala"' >Al): <_C,Z) pr(?) )
r(@) ifp(@) =0
As for the existence of multi-peak solutions in higher dimensional case,
Musso and Pistoia [15] constructed solutions to (1.9) which blow up and
concentrate at [-different points {aq, - ,a;} in Q, if {ay, -+ ,q;} satisfies,
among other things,

—VRaZA2 ZVGaz,aJ N =0, (=1,2,---,0), (1.10)
J=Llj#i

where A; > 0,(i =1,--- 1) are some positive constants. We refer to [15] for
the precise notion of solutions which “blow up and concentrate at [-different
points” and the other assumption imposed on the prescribed blow-up points

{ar, - a}.

Their method can produce also multispike solutions to the equation

N+2

—Au=uN-2 +cu in €,
u>0 in Q, (1.11)
u=>0 on 0f),

which blow up and concentrate on [-different points satisfying (1.10), when
N > 5. Also they exhibited an example of contractible domains for which
the problem (1.9), or (1.11) has a family of solutions which blow up and
concentrate at [-different points.

However, like Theorem 7 and Theorem 11, we have the nonexistence
results on convex domains.

10



Theorem 13 ([13]) Let Q be a smooth bounded, convex domain in RN N >
3. Then any solution sequence {u.} of the problem

N42
—Au=u~v—2"° in QQ,
u>0 n €,
u=>0 on 02

must exhibit the single point blow-up as ¢ — 0, i.e.,

2N

\Vu.|[*dz — SN2g, X s N2,
for some a € (2, where S s the best constant of the Sobolev inequality.

Theorem 14 Assume Q C RN N > 4 is convex. Then for | > 2, there does
not exist a solution sequence {u.} of (1.11), which blows up and concentrate
at [-different points {ay,--- ,a;} in §, those points satisfying (1.10).

2. Outline of Proof.

All nonexistence results in the former section come from the following
Main Theorem.

Main Theorem. Let Q) be a smooth bounded domain in RN, N > 2 and let
[ > 2 be an integer. Set Q' =Q x -+ x Q (I times), and A = {(&,--+ ,&) €
Q| & = & for somei#j}. For given constants A,B > 0 and A =
(Ay, -, \y), Ay >0, 1 <i <, define a function Fp : Q' \ A — R,

l

Falér, &) =AY (R(&) + K(E) A =B Y G(&, &),

1=1 i#£]
1<4,5<1

where K € C*(Q) is such that R+ K is a convex function on (.
Assume  is convex. Then there does not exist any critical point (ay,- - ,a;)
of Fn in Q'\ A. That is, there does not exist (ay, -+ ,a;) € Q' \ A such that

l

=1

11



fori=1,2,--- 1.

Main Theorem is proved by a contradiction argument, which uses the follow-
ing two facts:

Theorem 15 (Caffarelli-Friedman [5] (N = 2), Cardaliaguet-Tahraoui [6]
(N > 3)) The Robin function on a domain ) is strictly convex if ) is a
smooth bounded convex domain.

Lemma 16 Let Q C RY, N > 2 be a smooth bounded domain. For any
P cRY and a,b € Q,a #b, there holds

0G(x,a) 0G(x,b)
/ag(x —P)-v(z) < o, ) ( o, ) ds,
=(2— N)G(a,b) + (P —a)-V,G(a,b)+ (P —10b)-V,G(b,a),

where v(x) is the unit outer normal at x € 5.

Note that in Lemma 16, we need not to assume the convexity of 2.

Proof. We show a formal calculation here for describing the idea of the
proof. However, the standard approximating procedure for the delta function
as in Brezis and Peletier [4] will yield the rigorous proof. Denote G,(x) =
G(x,a),Gy(x) = G(x,b). For given P € RY | define

w(x) = (x — P)-VG4(x).

Then we have

—Aw(z) = 26,(z) + (x — P) - Vi, (x),
—AGy(x) = 0y(x).

Multiplying Gy(x), w(z) to these equations respectively, and subtracting, we
obtain

| (8Gs(a)) (o) = (Au(e) (oo
/ (26, ()G (2) + (z — P) - Vou(2) Gy () — 6y(x)w(x)} da

12



Now, integration by parts gives

LHS = /d (z=P) () (a%‘ly(x)) (aGa*’V(x)) ds,

RHS = 2Gy(a) — w(b) + /Q(z — P) -V, (2)Gp(x)dx

= 2Gy(a) — w(b) + Z/(Iz )giz Gy(x)dx

= 2Gy(a) — w(b) — Z/ﬂ 82: {(z; — P,)Gyp(2)}04(z)dx

i

8 P)Gy(z)} -

=(2— N)G(a,b) + ( —a)-V,G(a,b)+ (P —0b) - V,G(b,a).

= 2Gy(a

This proves Lemma 16. U

Proof of Main Theorem
Essential points of the proof can be seen when the function K is constant,

so we give a proof for this case. We argue by contradiction and assume that

there exists {a1, - ,a;} C Q (I > 2) satisfying
1 !
J=Li#i

P € Q will be chosen later. Multiplying P — a; to (2.1) and summing up,
we obtain

—AZ — a;) - VR(a;)A]

l l
=B Z Z (P - (IZ’) . va(CLi, aj)AiAj
i=1j

=1,j#i
=B >  {(P-a;) VoG(aj,ar) + (P — ar) - VoGlar, a;)} AjAy.

1<j<k<l

13



By Lemma 16, we see that
(P —aj)-V,G(aj,a;) + (P —ay) - V.G(ak, a;)
i B 8G(l’, Clj) 8G($, ak) _ '
- /89@ P) - v(x) ( o, ) ( o, ds; + (N —2)G(aj, az).

The RHS is positive by the convexity of Q2 and the positivity of Green’s
function:

0 0G(x,a;)

(x —P)-v(x) >0, 5 <0, (x €09), G(aj,ar)>0(5#k).

l

> (a; — P)- VR(a;) < 0. (2.2)

i=1
Here, we recall the important fact that the Robin function is strictly

convex on a convex domain, see Theorem 15. Thus, all level sets of R is
strictly star-shaped with respect to its unique minimum point P € €:

(a—P)-VR(a) >0, VaeQ\{P}.

In particular,
!

> (a;— P)- VR(a;) > 0. (2.3)

i=1
A contradiction is obvious from (2.2) and (2.3). O
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