THE COHOMOLOGY RING OF THE GKM GRAPH
OF A FLAG MANIFOLD OF CLASSICAL TYPE
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AsstracT. If a closed smooth manifold! with an action of a torug
satisfies certain conditions, then a labeled grghh with labeling in
H2(BT) is associated witi, which encodes a lot of geometrical infor-
mation onM. For instance, the “graph cohomology” riktf (Gm) of Gm

is defined to be a subring @VEV(QM) H*(BT), whereV(Gw) is the set

of vertices ofgy, and is known to be often isomorphic to the equivariant
cohomologyH; (M) of M. In this paper, we determine the ring structure
of H; (Gwm) with Z (resp.Z[%]) coefficients wherM is a flag manifold of
type A, B or D (resp. C) in an elementary way.

1. INTRODUCTION

Let T be a compact torus of dimensionand M a closed smootf -
manifold. The equivariant cohomology ™ is defined to be the ordinary
cohomology of the Borel construction df, that is,

Hz(M) := H*(ET x1 M)

whereET denotes the total space of the universal principaundleET —
BT andETxt M denotes the orbit space BT xM by the diagonal -action.
Throughout this paper, all conomology groups are taken #itbeficients
unless otherwise stated. The equivariant conomologyl afontains a lot
of geometrical information oM. Moreover it is often easier to compute
Hi(M) thanH*(M) by virtue of the Localization Theorem which implies
that the restriction map

(1.1) 0 HE(M) = Hi(MT)

to the T-fixed point setM" is often injective, in fact, this is the case when
H4Y(M) = 0. WhenMT is isolated,H;(MT) = P, H7(p) and hence
Hz(MT) is a direct sum of copies of a polynomial ringrivariables because
H:(p) = H*(BT).
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Therefore we suppose thEiCY(M) = 0 andM" is isolated. Goresky-
Kottwitz-MacPherson [5] (see also [6, Chapter 11]) found that under the
further condition that the weights at a tangeniflamodule are pairwise
linearly independent at eaghe M, the image of* in (1.1) above is de-
termined by the fixed point sets of codimension one subtofi when con-
sidering cohomology witl) coedficients. Their result motivated Guillemin-
Zara[7]to associate a labeled grapfy with M and define the “graph coho-
mology” ring H;(Gwm) of Gu, which is a subring o@peMT H*(BT). Then
the result of Goresky-Kottwitz-MacPherson can be statedHh@)®Q is
isomorphic toH;(Gu) ® Q as graded rings whel satisfies the conditions
mentioned above.

The result of Goresky-Kottwitz-MacPherson can be applied to many im-
portantT-manifoldsM such as flag manifolds, compact smooth toric va-
rieties and so on. WheN is such a nice manifoldii;(M) is known to
be often isomorphic tdi;(Gw) without tensoring witiQ (see [9], [10] for
example). In this paper, we determine the ring structurelidGv) (resp.
H;(Gm) ® Z[3]) in an elementary way whel is a flag manifold of type A,

B or D (resp. C).

The equivariant cohomology ring; (M) of a flag manifoldM of classi-
cal type is determined (see [4] for example) and our computatiét ()
confirms that (respH; (M)®Z[3]) is isomorphic toH:; (Gw) (resp.H; (Gm)®
Z[%]) when M is of type A, B or D (resp. C). The main point in our com-
putation is to show thati;(Gwu) is generated by some elements which have
a simple combinatorial description. Whéw is a flag manifold of type
A,_1, those elements,,..., 7, in H3(Gm) correspond to the equivariant
first Chern classes iH; (M) of complex line bundles oveM obtained from
the flags. One can show that those first Chern classes gehtidif over
H*(BT) using topological techniques. However, our concern is to compute
the graph cohomologh; (Gw) directly, and so we show that, . .., 7, gen-
erateH;(Gwu) overH*(BT) in a purely combinatorial or elementary way.

This paper is organized as follows. In Section 2 we introduce the notion
of a labeled graph and its graph cohomology following the notion of GKM
graph and its graph cohomology. We treat type A in Section 3, which is a
prototype of our argument. Type C is treated in Section 4 and the argument
is almost the same as type A if we work O\Hr%] coefficients. Types B
and D can also be treated similarly but more subtle arguments are necessary
when we work oveEZ codficients. This is done in Sections 5 and 6.

This paper is the detailed and improved version of the announcement [1].
Recently the first author ([2]) has determined the ring structuteé;¢&v)
along the line developed in this paper whidnis the flag manifold of type
Go.
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2. LABELED GRAPHS AND GRAPH COHOMOLOGY

Let T be a compact torus of dimension Any homomorphismf from
T to a circle grougs?! induces a homomorphisift : H*(BS!) — H*(BT),
so assigning to f*(u), whereu is a fixed generator dfi?2(BS?), defines a
homomorphism from Hond(, S?) (the group of homomorphisms fromto
S to H3(BT). As is well-known, this homomorphism is an isomorphism
so that we make the following identification

Hom(T, S) = H3(BT)

and useH?(BT) instead of Hom(, S?) throughout this paper.
Let G be a graph with labeling

{(e) e H3(BT) for each edge of G.

We callG alabeled graphn this paper. Remember thit (BT) is a poly-
nomial ring ovelZ generated by elements H?(BT).

Definition. The graph cohomology ring af, denotedH;(G), is defined
to be the subring of MaM(G), H*(BT)) = D, H*(BT), whereV(G)
denotes the set of vertices Gf satisfying the following condition:

h e Map(V(g), H*(BT)) is an element oH; (&) if and only
if h(v) — h(V) is divisible by¢(e) in H*(BT) whenever the
verticesv andv’ are connected by an edgén G.

Note thatH; (&) has a grading induced from the grading-tf(BT).

Remark. Guillemin-Zara [7] introduced the notion of GKM graph moti-
vated by the result of Goresky-Kottwitz-MacPherson [5]. It is a labeled
graph but requires more conditions on the labeliragnd encodes more ge-
ometrical information on & -manifold M when it is associated witM.
However, what we are concerned with in our paper is the graph cohomol-
ogy of G defined above and for that purpose we do not need to require any
condition on the labeling although the labeled graphs treated in this paper
are all GKM graphs.

Here is an example of a labeled graph arising from a root system, which
is our main concern in this paper.

Example. For a root systen® in H2(BT) (with an inner product) we define
alabeled graply, as follows. The vertex s&t(Gq) of G is the Weyl group
W, of @, which is generated by reflections, determined byr € ®. Two
verticesw andw’ are connected by an edge, denogd,, if and only if
there is an element of ® such thatv = wo,,, and we label the edgg,v
with wa. Sinceo, = o_,, this labeling has ambiguity of sign but the graph
cohomology ringH; (Go) is independent of the sign.
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If Gis a compact semisimple Lie group widhas the root system and
is a maximal torus o6, then the labeled (or GKM) graph associated with
G/T is Go, See [8, Theorem 2.4].

3. Tyee A1

Let {t}", be a basis ofH?(BT), so thatH*(BT) can be identified with
the polynomial ringZ[t, ta, . . . , t,]. We choose an inner product ¢+7(BT)
such that the basi$}! , is orthonormal. Then

(3.1) O(An 1) = (2t —t) [ 1<i<j<n)

is a root system of typ#,,_;. We denote byA, the labeled graph associated
with ®(A,_1). The graphA, has the permutation group, on n letters
[n] = {1,2,...,n} as the vertex set. We use the one-line notatior-
w(1)w(2)...w(n) for permutations. Two vertice,w' are connected by
an edgee,,, if and only if there is a transposition, () € S, such that
w =w- (i, j), in other words,

w(@i) =w(j), W(j)=w(i) and w(r)=w(r) forr i, ],

and the edgey, is labeled byt — tw ).
For each = 1,...,n, we define elements, t; of Map(V(A,), H*(BT))
by
(3.2) Ti(W) 1= tys, ti(w):=t forwesS,.
In fact, bothr; andt; are elements dﬂ%(&—’ln).

Remark. Let0c E; c --- c E, be the tautological flag of bundles over a
flag manifold ofA,_; type. They admit natural -actions and one can see
that r; corresponds to the equivariant first Chern cleﬁ(fi/ Ei_,) of the
equivariant line bundIl&; /E;_;.

Example. The casen = 3. The root systend(Ay) is {+(ti —t))I1 <i< j<
3}. The labeled graptfi; andr; fori = 1, 2, 3 are as follows.

123  t-t3 132 t1 11 t i3 13 1o

(1-13 / : ; \ / : ; \
213 312 to t3 t1 1 t3 to

t1-tp

231 321 to 13 t3 to 11 11

The labeled grapl¥is T1 T2 73
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Theorem 3.1. Let A, be the labeled graph associated with the root system
®(An-1) of type A-1in (3.1). Then

Hi (An) = Z[71, -, 0, t1, - ta] /(&(7) —&(t) [1 = 1,--,1),
where ¢(7) (resp. gt)) is the " elementary symmetric polynomiakiq -, 7,
(resp. t, - tn).

The rest of this section is devoted to the proof of Theorem 3.1. We first
prove the following.

Lemma 3.2. H;(A,) is generated by, -, 7o, t1, -, ty @S a ring.

Proof. We shall prove the lemma by induction anWhenn = 1, H} (A1)
is generated by, sinceA; is a point; so the lemma holds.

Suppose that the lemma holds for 1. Then it siffices to show that any
homogeneous elemehtof Hi(A,), say of degreek can be expressed as
a polynomial in ther;’s andt;’s. For each = 1,...,n, we set

Vi:={we S, |w(i)=n}

The setsV; give a decomposition db, into disjoint subsets. We consider
the full labeled subgraplf; of A, with V; as the vertex set, where the full
subgraph means that any edgely connecting vertices iV; lies in £;.
Note that the vertices of; can naturally be identified with permutations on
{1,2,...,n}\{i} and.£; is isomorphic ta#A,_; for anyi.

Let
(3.3) 1<qg<minfk+1,n}
and assume that
g-1
(3.4) h(v) =0 foranyve U Vi
i=1

and thai is the minimal integer with the properties (3.3) and (3.4).

Note that a vertex in V is connected by an edge i, to a vertexv in
V; fori # gifand only ifv = w- (i, g). In this casen(w) — h(v) is divisible
by tuiy — twg) = twi) — th andh(v) = 0 whenevei < g by (3.4), soh(w) is
divisible byt — t, fori < g. Thus, for eaclw € V,, there is an element
g(w) € Z[ty, -, ty] such that

(3-5) h(W) = (tw(l) - tl’l)(tW(Z) - tn) s (tw(q—l) - tn)gq(w)
wheregd(w) is homogeneous and of degre&k 2(1 — ) becausé(w) is

homogeneous and of degrele 2
One expresses

k+1-q

(3.6) g'W) = > gl
r=0
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with homogeneous polynomiaif(w) of degree +1—q-r) in Z[ty, -, to_1].

Claim. For eachr with 0 < r < k+ 1 — g, there is a polynomiaB; in 7;'s
(exceptr,) andty’s (exceptt,) with integer coéicients such thaG/(w) =
gr(w) for anyw € V.

Proof of Claim. If the vertexv in V; is connected by an edge ifi, to a
vertexv in Vg, then there is an elemernt |) € S, such thatv = w- (i, j)
wherei andj are not equal tg. Sincehis an element ofi; (A,), h(w)-h(v)
has to be divisible by, — tu), in other words,

(3.7) h(w) = h(v) n10dtmm)—-hwn.
On the other hand, it follows from (3.5) that we have

g-1 q-1
38)  hw) ='W [ [(tus —tn).  h(W) = W) [ [(twy — to)-
s=1 s=1

Here, sincer = w- (i, j), we havew(i) = v(j), w(j) = v(i) andw(s) = V()
for s # i, j. Moreoverw(i) andw(j) are not equal tm because and j are
not equal tag. Therefore

g-1 g-1
[ [two -t =] [(tuo ~t) 20 modtug) - tugy.
s=1 s=1

This together with (3.7) and (3.8) implies that
g'(w) = g'(v) mod tug) — tu)

and hence

g'(w) = g/(v) modt,g —ty; foranyr
becausen(i) andw(j) are not equal ta. Thereforegi(w) — gr(v) is di-
visible byt — tu) for anyr. This means thag restricted to£ is an
element ofH;(Ly). The vertices ofL, can be identified with permutations
on{l,...,n}\{g} and henceL, is naturally isomorphic tcA,_1, so the in-
duction assumption omimplies that there is a polynomi@l in 7;’s (except

74) andt’s (excepttn) with integer coéicients such thad,(w) = g(w) for
anyw € Vg = V(Lg), proving the claim.

Sincer;(w) =ty andw(i) = nfor w € V;, we have

g-1 g-1
(3.9) ]—[(T,- —t))(w) =0 foranywe UV"
i=1

=1
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Therefore, it follows from (3.5), (3.6), the claim above and (3.9) that putting
Gl = 209G, we have

g-1 q-1
(h=G*[ [(zj = ta))(W) =h(w) — g*W) [ ] (tugy) - tn)

=1 =1

q
=0 for anyw e U V..
i=1

Therefore, subtracting the polynomiaF H‘j‘;i(rj - t,) from h, we may
assume that

q
h(v) =0 foranyve U Vi.
i=1

The above argument implies thafinally takes zero on all vertices ofi,,
(which means = 0) by subtracting polynomials in’s andt;’s with integer
codficients, and this completes the induction step. O

Let k be a commutative ring. We take= Z or Z[%] later. Remember
that the Hilbert series of a gradéehlgebraA” = (B, Al, whereAl is the
degregj part of A* and assumed to be of finite rank okers a formal power
series defined by

[

F(A",s) := Z(ranlq( A))sl.
j=0
Lemma 3.3. F(H;(Ay), S) = @ [T, (1 - s%).
Proof. We first note thaH; (A,) is free ovelZ because it is a submodule of

Pes, H*(BT). Letdy(k) := rank; HX(A,). Then

(3.10) F(H7(An). 9 = > ch(K)S™
k=0
Forgwith 0 < q<k+ 1, we set

q
F&“ = {h e H¥(A,) | h(w) = O for anyw € U Vi)

i=1
Then we have a filtration

H¥(A) = F* o F2 5. D F*o FZ& =0
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and sincey in (3.6) belongs 4249 £,) = HZ*9 (A, 1) as shown
in the claim andy! can be chosen arbitrarily, we have
k+1-q k+1l-q

rank; F3“ - rank F2¢, = Z Ohi(k+1-q-r1)= Z dn_1(r).

Therefore, noting (3.3), we have

min{k+1,n} k+1-q

(3.12) d(K) = Z Zdn 1(r).

If we setd,_1(j) = O0for j <O, then an elementary computation shows that
(3.11) reduces to
(3.12)

o (K) = Sh i dhg(k+1-1) ifk<n-1,
TS i Ok + 10y +n 2L dy gk +1-0)  ifk=n.

We shall abbreviaté (H; (A,), s) asFq(s). Then, plugging (3.12) in (3.10),
we obtain

Fn(s) = i (On1(K) + 201 (k = 1) + - + nch g (k + 1 = n))s*
k=0

+ ni (Ohs(k = N) + - + Opg(1) + d_1(0))5*
k=n
:Fn 1(5) + ZSZFn 1(5) + .+ nszn_an_l(S)
+n(dh 1(O)s2n 5 + Opg (1) —— ! +-)

1-¢
n-2 Szn
:Fn_l(s)(l +28 + .+ n& ) N—s Frn1(9)
_1-" gn
On the other hands(s) = 1/(1 - s?) sinceH; (A1) = Z[t;]. Therefore the
lemma follows. O

We abbreviate the polynomial ring[zy, -, T, t, -, tn] @s Z[z,t]. The
canonical mafZ[r,t] — Hj(A) is a degree-preserving homomorphism
which is surjective by Lemma 3.2. Lef(r) (resp.&(t)) denote the™ ele-
mentary symmetric polynomial iy, -, 7, (resp.ty, -, t,). It easily follows
from (3.2) thate(r) = g(t) fori = 1,.,n. Therefore the canonical map
above induces a degree-preserving epimorphism

(3.13) Uy = Z[nt]/(a(r) —a®) | =1,..n) - Hi(A).



COHOMOLOGY RING OF THE GKM GRAPH 9
We note thatl; is aZ[t]-module in a natural way.
Lemma 3.4. 2 is generated bpr 1rp p < N — p} as aZ[t]-module.

Proof. Clearly the elementﬂp 1Tp, with no restriction on exponents,

generat@l; as aZ[t]-module. Therefore, it dtices to prove thazt” Pl can
be expressed as a polynomiakin ..., 7, andt’s with the exponent of,
less than or equal to— p.

Let hi(t) (resp.hi(7)) be thei™ complete symmetric polynomial i, -, t,
(resp.71, -, Tn) @andhg(t) = ey(t) = 1. Sinceg(r) = g(t) for anyi, we have

[a-=9=]]a-t9
i=1 i=1

wherex is an indeterminate. It foIIows that

D hi(rs, o)X = ]_[ T

i>0
(3.14) ~[]a- T'X)nl—t
i= p+1 iX
Z( 16 (Tpea. - )X )( Y hOX).

i>0
Comparing cofficients ofx™1-P in (3.14), we have

n-p
(315)  hnap(ri7p) = ) (1) @(Tpea, - Tdes p()

i=0
while it easily follows from the definition af; that
n-p

(3.16) Mne1-p(T1, -, Tp) = Tn+l P T'p ne1-p-i(T1, - Tp-1)-
i=0

By (3.15) and (3.16) we have

n+l i
P = Z Tp n+1 p-i (Tls e Tp 1)
i=0

(3.17) np
+ Z( l) € (Tp+l’ y Tn)hn+1—p—|(t)-
i=0

On the other hand, it follows from(7) = g(t) that

|
> ei(rr - tp)e(Tpis - o) = &(1)  for anyi,
j=0
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that is,

i
&(Tpit - Tn) = &(t) = D €(71, - Tp)&(Tpi1, - 7n)  fOr anyi.
j=1

Thus one obtains

e1(Tp+1, - Tn) = et) —elry, -, Tp)

€(Tp+1s > Tn) e(t) — e(t1, -, Tp) — €1(71, -, Tp)eL(Tps1, ~» Tn)
&(t) — &(r1, -+ 7p) — €t -, Tp)(Eu(t) — €71, 7p))s
and so on. This shows tha{(rp.1, -, Tn) can be written as a linear combi-
nation ofl"[i'f:1 75, with iy < i, overZ[t]. Therefore, it follows from (3.17)

thatrr,:‘,”‘IO is written as a polynomial i, -, 7, andt;’s with the exponent
of 7, less than or equal to— p. O

Now we are in a position to complete the proof of Theorem 3.1.

Proof of Theorem 3.1If two formal power seriea(s) = 3>, as andb(s) =
>, bis with real codficientsa, andb; satisfya; < b for everyi, then we
express this as(s) < b(s).

The Hilbert series of the freg[t]-module generated bj;-1 T:(k is given
by @szz?ﬁik, so it follows from Lemma 3.4 that

1 n-1;
FOUL S < — St
( n» S) = (1 _ SZ)n 0<ikZ<n_k !

and the equality above holds if and only if generatpfgj r‘g’ with i, <
n— p are linearly independent ovEft]. Here the right hand side above is
equal to

1 n-1 . 1 n-1 i

n-1
= (1_—152)nn(1+52+---+32q)

= 2)2n l—[(

which agrees withF(H7(An), s) by Lemma 3.3. Therefor& (2}, s) <
F(H;(An), 9). On the other hand, the surjectivity of the map (3.13) im-
plies the opposite inequality. Therefdf€l;;, s) = F(H;(A,), 9). Since the
map (3.13) is surjective arfel(2;, s) = F(H;(An), s), we conclude that the
map (3.13) is actually an isomorphism. This proves Theorem 3.1. O
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4. Tyee C,

The argument developed in Section 3 works for the case of@ypeith
a little modification. In this section we shall state the result and mention
necessary changes in the argument.

The root systen®(C,) of typeC, is given by

(4.1)  ®(Cp) = {=(t +1), £t —t), +2 |1<i<j<n 1<k<n)

and its Weyl group is the signed permutation grougfm := {£1, ..., +n},
which we denote by5,. Namelyw e S, permutes elements ia[n] up
to sign. Again we use the one-line notatian= w(1)w(2)...w(n). The
number of elements i8, is 2'n!.

_ LetCy be the labeled graph associated with the root syské@y). It has
Sy as vertices and two vertice@s w’ € S, are connected by an edgg,, if
and only if one of the following occurs:

(1) there is a paifi, j} c [n] such that
W (i), w(j)) = =(w(j),w(i)) and w(r)=w(r) forr (=i, ) [n],
(2) there is an € [n] such that
w(i)=-w(@i) and w(r) =w(r) forr (#1i)€[n].
We understand
t.m = —t,, for a positive integem.

Then the edge,,v is labeled by, — twg in case (1) above and by.g,
in case (2) above, and the elementandt; fori = 1,...,n defined by

(42) Ti(W) = tW(i) and ti(W) =1
belong toH2(Cy).
If M, is a flag manifold of typ&,,, then the restriction map
H (M=) — €D H'(BT)
weS,

is injective and the image is known to be described as

Z[Tl’ =5 Th, tl’ " tn]/(a (Tz) - a(tz) | I = 15 ) n)a

whereg (t?) (resp. &(t?)) is thei elementary symmetric polynomial in
712, -, % (resp. ti2, ., t,2), see [4, Chapter 6]. So, one may expect that
Hi(C:) is generated by, ..., t1,...,ty as a ring, but this is not true in
general as shown in the following example. This fact was pointed out by T.
Ikeda, L. C. Mihalcea and H. Naruse.
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Example. Taken = 2. One can check th&t € Map(S,, H*(BT)) defined
by

0 if v(1) =2,v(2) =2 or (\(1),v(2)) = (-2,1)
hy - |2l - R) (D)) = (1.-2)
288t + ) if (v(1),v(2)) = (-1,-2)
2tito(ty + t2) if (V(1),v(2)) = (-2,-1)

is an element oH;(C>), see Figure 1. In fact, the eleménagrees with

12 24 12 0 0
t1+t2
21 2-1 0 0
2t,

21 2-1 0 2t (t1+tp)
-ty
12 -1-2 2t (t -tp) (ty ) 26(1,+ty)

Ficure 1

1
E(Tl L) (- L) (T -T2+t + 1))
and this shows thdtis not a polynomial inry, 75, t1, t, overZ.

The problem is caused by the presence of the factor 2 in the root system
(4.1) and if we work ove%[%] instead ofZ, then the argument developed
in the previous section works with a little modification and we obtain the
following.

Theorem 4.1. LetC, be the labeled graph associated with the root system
®(C,) of type G, as above. Then

HHCEEL5] = ZL2TTs - o b o (@) — () [ = L)

where ¢(7?) (resp. ¢(t?)) is the i" elementary symmetric polynomial in
T127 ty Tnz (resp' ﬁ_za ) tnz)-

The proof of Theorem 4.1 is almost same as that of Theorem 3.1 and we
shall outline it. First we prove the following.
Lemma 4.2. H;(C,)®Z[3] is generated by, -, 7y, t1, - t, @s a ring.

Proof. The proof goes as in Lemma 3.2. Whee 1, C; has only one edge
with vertices 1 and-1, and the label of the edge i 2Sincer;(+1) = +t;,
it is easy to check that the lemma holds wimea 1.
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The key step in the proof of Lemma 3.2 was that # H; (A,) vanishes
onV, fori < g, then one could modiffa so that it vanishes oy fori < g+1
by subtracting a polynomial iny’s andt;’s with integer coéicients fromh,
where the polynomial was of the for@f Hiq:‘ll(ri —t,). In the case of type
C,, we consider

VE = {we S, | w(i) = +n}
and the full labeled subgrapfi* of C,, with V* as the vertex set, wheg"
and.£; are both isomorphic t@,_; for eachi = 1,...,n.

The same argument as in the case of thpg shows that ith € H3(Cy)
vanishes oV;" for i < g, then one can modifg so that it vanishes ov* for
i < g+ 1 by subtracting fronh a polynomial of the fornGS [T} (7« — tn)
in 7;'s andt;’s with codficients inZ[%]. Moreover, ifh vanishes on alV/*
ande‘ for j < gwith someq > 1, then one can modifig so that it vanishes
on all' v/ ande‘ for j < q+ 1 by subtracting fronh a polynomial int;’s
andt’s with coeficients inZ[] of the form G2 [Tp_;(r« — tn) [T, (71 +
t,). Therefore we finally reach an element which vanishes ov;alby
subtracting polynomials im’s andt;’s with codficients inZ[%] from h, and
this proves the lemma. m|

It easily follows from (4.2) thag (%) = g(t?) fori = 1,.,n. Therefore
we have a degree-preserving epimorphism

1 . 1
(43)  ZGnt/(E6) - &) |i = L..n) - HH(COZL5]
and the same argument as in Lemma 3.4 proves the following.
Lemma 4.3. The left hand side i§4.3) is generated by]i-1 TLK with iy <
2(n - K) as aZ[3][t]-module.

Then, comparing the Hilbert series of the both sides in (4.3), we see that
the map (4.3) is an isomorphism. The details are left to the reader.

5. Tyee B,

In this section we treat typ,. The root systend(B,,) of type B, is given
by
(5.1) ®(B,) = {£(t + tj), +(t — tj), +|1<i<j<n 1l<k<n}

and its Weyl group is the same as that of tfhei.e. the signed permutation
groupsS,.

Let B, be the labeled graph associated with the root sysd¢Ba). This
labeled graph has the same vertices and edgés 8heir labels are almost
same. The only diierence is that the ed@g,, with w, w such thaw' (i) =
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—w(i) for somei € [n] andw'(r) = w(r) for r (# i) € [n] is labeled byt in
B, while it is labeled by £ in C,,.

We definer; andt; fori = 1,...,n by (4.2). They belong ttiZ(B,). As
remarked above, the onlyftkrence betwee®, andC, is the factor 2 in
the labels on the edges,, mentioned above. Therefore, if we work over
Z[%] instead ofz, then the same argument as in the case of §pproves
the following.

Lemma5.1.
1 1 .
H1(Bn) ® Z[5] = Z[S]l71, - 7, b, - o] /(& (?) -e(®i=1,-n).

The above lemma is not true without tensoring v@ﬂ%]. We need to
introduce another family of elements to genertg8;,) as a ring. Since
&(7)(w) = g(t)(w) (mod 2) for anyw in S, e(r) — &(t) is divisible by 2
and one sees that

fi:=(a(r) —a(t)/2
is actually an element ¢17(8,). Note thatfy = 0 sincegy = 1 by definition.
The purpose of this section is to prove the following.

Theorem 5.2. Let B, be the labeled graph associated with the root system
®(B,) of type B in (5.1). Then

H'T'(Bn) = Z[Tl’ ) Tna tl’ ) tn’ fla ) fn]/l
where | is the ideal generated by

2k

DD (o + aci®)  (k=1,-.1)

j=1
where § = e;(t) = 0for £ > n.

Remark. If we sett; = --- =t, = 0, then the right hand side of the identity
in Theorem 5.2 reduces to

Z[T]., ) Tn’ fla e fﬂ] /‘]

whereld is the ideal generated by

2k-1

2fi - Q(T) (l = 1, "y n), Z(—l)j fj f2k_j + f2k (k = 1, ey n)

=1

wheref, = 0 for £ > n, and this agrees with the ordinary cohomology ring
of the flag manifold of typd3,, see [11, Theorem 2.1].
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The idea of the proof of Theorem 5.2 is same as before but the argument
becomes more complicated because of the elemigatsWe first observe
relations betweerk’s in H;(8,) and those irH; (8,-1).

Lemma 5.3. For w in S, with w(g) = +n, let W be an element ir§,_;
represented by () - - - w(g— 1)w(g+ 1) - - - w(n). We denote; in H7(8,) by
. Then

(D) = { Zj W) ~ifw(e) =n,

! i FU Wt + 2o &t - te)th ifw(g) = —n.
Proof. We have
Q(tl, e tn) - a(tl, e tn—l) = a—l(t]_’ e tn—l)tn

and

& (11(W), -, Tn(W)) — & (T2 (W), -, Th-1(W)) = €_1(T1 (W), -, Tn_1(W)) 7q(W).
Therefore

_ 1
(0w~ 17wW) = S(ar). - (W) - &t - 1)
1
~5(8(EW). - Tns (W) ~ &t - tn-1))
1
= E(Q—l(Tl(W), oy Tne1(W)) (W) — €1 (ty, ---,tn—l)tn)
{ o Wt it w(a) = n,
(27 (W) + e_a(ty, - thn))ty i W(q) = —n.
Using the above identity repeatedly, we obtain the followingviowith
w(q) = n:
0wy = 1Om) - 7w,
= fOw) - (FOW) - {5 W)t)ty
= W) - FOWty + (FOw) - £ w)t3

i-1

= > 0wt

j=0
The casev(g) = —n can be treated in the same way. O
Lemma 5.4. H;(8,) is generated by, -, Ty, ty, -, 1, f1, -, fy as aring.

Proof. We use induction on as before. When = 1, 8; has only one edge
with vertices 1 and-1, and the label of the edgetis Sincer;(+1) = +t;,
it is easy to check that the lemma holds wimea 1.
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As before, we considev* := {w e S, | w(i) = +n} and the full la-
beled subgraphl of B, with V* as the vertex set, whet€" and L
are both isomorphic t@,_; for eachi = 1,...,n. If h € H;(8,) van-
ishes onV/" for i < ¢, then one can modiff so that it vanishes ox;* for
i < g+1 by subtracting fronm an integer coicient polynomial of the form
G! ]‘[(k‘j(rk —t,) in 7i's, t's and fi’s. In fact, we obtairG? as an element
of Map(S,, H*(BT)) whose restriction tal§ belongs toH;(Ly). SinceL;
is isomorphic taB,-1 andH;(B,-1) is generated by;’s, ti's and fi's by the
induction assumption, we can ta&d as a polynomial inr’s, ti's and f;'s
with integer coéicients, where we use Lemma 5.3.

If h vanishes on al;" andV; for j < q with someq > 1, then one can
also modifyh so that it vanishes on al” andV; for j < g+1 by subtracting
from h some polynomial irr;’s, t;'s and f;’s with integer coéficients. How-
ever, this polynomial is not of the for@? [Tj_, (tk—tn) [T\, (1 +t,) because
[Teo1(tk — tn)(w) is divisible by 2 forw € V. Instead of[J,_; (7« — tn), we
use the following element

1 n
> l_[(Tk —tn)
k=1

52) = D e
k=0

3 D Dt
k=0

n

— Z (_ 1)n—k fktnn_k’

k=1
so that the polynomial which we subtract is of the form

q-1

G (Zha (- i) | |1 + o)

=1

whereG? is a polynomial inr;’s, t;’s and f;’s with integer coéficients. Thus
we finally reach an element which vanishes or\dllby subtracting poly-
nomials int;’s, t’'s and f;’s with integer coéicients fromh, and this proves
the lemma. O

Lemma 5.5. Y (-1) fi(fai + exi(t)) = 0fork = 1,..,n.

Proof. Cleaely we have (?) = g(t?) fori = 1,2,...,n, namely

(53) ﬁ(l—rizxz) = ﬁ(l—tizxz).
i=1 i=1
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Therefore
0 = ﬁ(l - Ti2X2) - ﬁ(l - tiZXZ)
= (D De@X)( D e@x) - (D (-Dia®X)( D &mx)
i=0 j=0 i=0 j=0
= (D vefi+amx)( > @f +emx) - (D (-amxX)( Y enx)
1=0 j=0 i=0 j=0
= 4i(—l)i fi iji+j + Zi(—l)i(fiej(t) + fja(t))XiJrj
I’Jn:1 2k o n 2k
= 42 Z(—l)i fi fa i X2 + 42 Z(—l)i fiemi ()X
k=1 i=1 k=1 i=1
where we usedy = 0. This implies the lemma because the fticent of
x* must vanish. O

We abbreviate the polynomial ritij 74, --, Tn, t1, -, th, 1, -, fn] @SZ[ 7, 1, f].
Since & = g(r) — g(t) by definition, it follows from Lemma 5.5 that the
canonical mag[r,t, f] — H;(8,) induces a grade preserving map

(5.4) Z[1,t, f]/1 - H7(Bn),

wherel is the ideal in Theorem 5.2, and it is an epimorphism by Lemma 5.4.
SinceH;(8,) is a submodule of a direct sum of sof]'s, Hi(8,) is free
overZ. In addition, its Hilbert series is given Qy_iT)Zn [1",(1 - s*). This

can be shown by a similar computation to the proof of Lemma 3.3. In order
to prove that the epimorphism (5.4) is actually an isomorphism fiices

to verify the following Lemmas 5.6 and 5.7.

Lemma 5.6. Z[1,t, ]/l is free overZ.

Proof. By Lemma 5.1Z[r,t, f]/1 ® Z[§] = Z[r,]/| ®Z[3] is isomorphic to
H1(8n) ®Z[%]. SinceH;(8,) is free overz, this means thdk[r,t, f]/| has
no odd torsion and hence itf$ices to show thék[,t, f]/I has no 2-torsion.
If Z[r,t, f]/] has 2-torsion, then

FZ[r,t, ]/l ®Z/2,9) > F(H{(Bn) ® Z/2, S);
so we will prove that
(5.5) FZ[r,t,f]/1 ®2/2,5) < F(H7(B,) ®Z/2, 9).

Claim. Z[r,t, f]/| ® Z/2 is generated by elemenfy_, 7} [Th; ¥, with
ik <n-kandjg <1, overzZ/2[t].
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We admit the claim for the moment and complete the proof of the lemma.
If the elementdT;_, 7 [T, f* are linearly independent ov&y2[t], then
the Hilbert series of[,t, f]/l1 ® Z/2 (over the fieldZ/2) is given by

1 Z Z Sz(zﬂzliwzﬂzlkjk)’

(1 - Sz)n O<ik<n—-k 0<jy<1
so we have
FZ[rt, f]/l ®2/2,9) < = - Z Z S Zica et Ziea K
(1 - 52) O<ik<n— k0<jk<1
= RIEONIES
(1 ) O<iksn-k k=1 0<jk<1 k=1
(5.6) e SZ)Zn(l 5% ]_[(1 + Z &) ll_[(l+ &)

= SZ)an_[(l 52')1—[(1+sz'

—(1_ o7 D(l_
F(H:(8,) ®Z/2, 9).

This proves the desired inequality (5.5).

In the sequel it remains to show the claim above and for thatffices to
verify the following (1) and (lI):
() EIementsHk_lrk [Tie, £, with ic < n—k, generateZ[r,t, f]/I as a
Z[t]-module, in partlcular they generdfg?2[t,t, f]/1 as az/2[t]-module.
(I) Elementsf)* - .- £ can be written as a linear combinationfdf - - - f,"

with jy <1 overZ/Z[t]

Proof of (1). Clearly the elementg][;_, Tikk [Ty fkjk, with no restriction on
exponents, generai#r,t, f]/l as aZ[t]-module. We have an identity

p
ﬂl_lﬁx 1_[(1 T,x)n(1+T.X)n1 w

i= p+1

(o)

(Z(—l)ia(rp+1, )X Z ei(ra 7)) ) (e

—~
o
~

~

Il

n-p
(> (-De(rp, - m)X) Z(Zf + (1) Zh(tz)x2k
i=0

j=0
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where the first equality in (5.7) follows from (5.3).
Comparing cofficients ofx"1-P in (5.7), we have
(5.8) _
hie1-p(T1, - Tp) = > (~1)&(rps1, - Tn)(2F; + €(D)N(?).

i+j+2k=n+1-p, j+k>0

On the other hand, we have

i
Z €(t1, - Tp)&-j(Tps1, - Tn) = &(7) = 2f + &(t) foranyi,
=0

that is,

|
(5.9) e(rpi1, ) = 2fi+e(t)_z €j(t1, - Tp)e-j(Tpi1, - Tn) foranyi.

=1
Then the same argument as in the latter part of the proof of Lemma 3.4
using (5.9) shows tha(rp.1, -, Tn) can be written as a linear combination
of [10_, 7 [Te, f¥, with i, < i, overZ[t]. This fact and (5.8) together
with (3.16) show thaty™*? is a polynomial inzy, -, 7p, ti’s and f’'s with
the exponent ofr, less than or equal ta — p. Therefore the elements
[T, 7 T, £ with iy < n—k, generaté&|[r, t, f]/1 as aZ[t]-module.

Proof of (Il). It follows from Lemma 5.5 that

k-1

2k
2= (142 (-1 fifaci + ) (-1 fieaci(t)) fork=1,....n.
i=1

i=1

In Z[z,t, f]/1 ® Z/2, we can disregard 2/} f; f,_1; so > can be written
as a linear combination df’'s overZ/2[t]. This proves (ll) and completes

the proof of the claim. O
1 L .

Lemma 5.7. F(Z[r,t, f]/1,9) = S ];[(1 — &,

Proof. The epimorphism (5.4) means

(5.10) F(H7(Bn), 9 < F(Z[7,t, f]/1,9).

In addition, sinceZ[r,t, f]/l1 andH;(8,) are free over,

(5.11) F(H7(Bn) ®Z/2,9) = F(H{(8B:), 9)

and

(5.12) FZ[r.t, f]/l ®Z/2,9) = F(Z[7,t, f]/I, 9).



20 Y. FUKUKAWA, H. ISHIDA, AND M. MASUDA

It follows from (5.6), (5.10), (5.11) and (5.12) that
(M I T
FEmt 1119 = FH: (80,9 = gy | (1Y)
proving the lemma. O

Thus the proof of Theorem 5.2 has been completed.

6. Tyee D,
In this section we will treat typ®,,. The root systen®(D,) of type D,
is given by
®(Dy) = {=(t +1t), =t —t)11<i<j<n}
and its Weyl group is the index two subgro8p of S, defined by
St := {we S, | the number of € [n] with w(i) < 0 is even.

Theorem 6.1. Let D, be the labeled graph associated with the root system
®(D,) of type D} above. Then
(6'1) H'T'(Z)n) = Z[Tl, y Tn’ t]., e tn, fl’ ) fn—l]/l 9
where | is the ideal generated by
2fi—e(@+e) (=1-.n-1)

2k

DU f(fac + i) (k=1,-.m),

j=1

&n(7) — en(t),
where f = 0for £ > nand g(t) = Ofor £ > n.
Remark. (1) Similarly to D,, one can define a labeled graghy, with
Sn\S;; as the vertex set on which; acts. One sees thét; (D;) agrees
with the right hand side of (6.1) witg, (1) — e,(t) replaced bye,(r) + ex(t).

(2) If we sett; = --- = t, = 0, then the right hand side of the identity in
Theorem 6.1 reduces to
Z[Tl’ =5 Ths fla ) fn—l]/J

wherelJ is the ideal generated by
k-1

2fi—a(0) (i=1--n=1), > (-Dfifaj+fa (k=1-.n), )
ji=1

wheref, = 0 for ¢ > n, and this agrees with the ordinary cohomology ring
of the flag manifold of typé,, see [11, Corollary 2.2].
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Outline of proof.The proof is almost same as the case of tBpéut needs
some modification. We shall list them.

(1) en(r) = &n(t) in the typeD, case since the number dfe [n] with
w(i) < Oisevenfow e Si. Sof, = (e (1) —en(t))/2 = 0 in the case of type
Dn.

(2) LetV;* and L* be defined similarly to the case of tyBg. ThenL is
naturally isomorphic t@,_, but £; is not because the numberjof [n]\({i}
with w(j) < 0 is odd forw € S*. Therefore the induction argument as in
Lemma 3.2 does not work. To overcome this, we need to apply the induction
argument taD, and®;, simultaneously becausg is isomorphic taD,, .
Note that if we start withlD;, then£" (for D)) is isomorphic taD;_, while
Ly (for Dy)) is isomorphic taD;,_;.

(3) If h e H;(Dy) vanishes o;" for i < g, then one can modifig so that
it vanishes orV;" for i < q+ 1 by subtracting fromh a polynomial of the
form G$ [T (v« — t») in 7/’s andt’s with integer coéficients. Therefore,
we may assume thatvanishes on aVN;*. Thenh(w) for w € V7 is divisible
by [T (twio — tn) = TTeea(7k — ta)(W). (Note thaiw is connected to a vertex
in V" by an edge for > 1, but not to any vertex iv;. This is the reason
why i = 1 is missing in the product above.) However, sifge= 0 (i.e.
en(r) = e,(t)) as mentioned in (1) above in the case of typg it follows
from (5.2) that

1 n n-1
2 Pi=-— —t) = » ()RR
(6.2) i, | [t = 2 g

P is a polynomial int;’s and fi’s with integer coéicients, vanishes on all
V;" and takes the valug[y_,(tw — tn) onw € V. Therefore, using the
polynomial P in (6.2), one can modifyr so that it vanishes on all.” and
V[ by subtracting a polynomial in’s andt;’s with integer coéicients. Ifh
vanishes on al;* andV; for j < qwith someq > 2, then one can modify
h so that it vanishes on &l andV; for j < q+ 1 by subtracting fronin an

integer coéficient polynomial of the fornGP [1*(r; + t,). Therefore we
finally reach an element which vanishes on all vertice®gf This shows
thatH; (D) is generated by;’s, ti's and fi's as a ring. The same argument
shows thatH;(D;) is also generated by’s, ti's and fi’s as a ring.

(4) A similar argument to the case of tyjs shows that the right hand
side in (6.1) is torsion free ovef and the Hilbert series of the both sides in
(6.1) coincide, in fact, they are given lﬁ_‘s% 151 - s%). The same is
true forH; (Dy). O
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