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Abstract. The famous Banach-Tarski paradox claims that the three dimen-

sional rotation group SO(3) acts on the two dimensional sphere S2 paradoxi-
cally. In this paper, we generalize their result to show that the classical group
G(n,K) acts on the flag manifold F (d1, d2, · · · , dk,K) paradoxically.

1. Introduction

Let X be a non-empty set on which a group G acts. In this case X is called a
G-space. In particular if any non-identity element of G acts on X without fixed
points, we say that G acts on X freely. For example G acts naturally on itself by
left translation freely.

Non-empty subsets A and B of G-space X are called G-equidecomposable if
there exist finite elements of G, g1, g2, · · · , gn ∈ G, and n-partitions of A and B
respectively, A = ⊔n

i=1Ai, B = ⊔n
i=1Bi such that

Ai = giBi, ∀i ∈ {1, 2, · · · , n}.

Non-empty subset E of G-space X is called G-paradoxical if there exist disjoint
subsets A and B of E such that A is G-equidecomposable to E while B is also G-
equidecomposable to E.

For example, the rank two free group F2 is F2-paradoxical (as F2-space): In
practice take free generators a and b. For x ∈ {a, b, a−1, b−1}, let W (x) be the set
of reduced words whose prefix is the letter x. Then ((W (a) ⊔W (a−1)) ⊔ ((W (b) ⊔
W (b−1)) ⊂ F2 and F2 = W (a)⊔aW (a−1) = W (b)⊔bW (b−1). The following claims
are easy consequences from the definitions [5].

Proposition 1. (1) Suppose that H is a subgroup of G and X is a G-space.
If X is H-paradoxical, then X is also G-paradoxical.

(2) If G-spaces X and Y are disjoint and G-paradoxical, then the disjoint union
X ⊔ Y is also G-paradoxical.

(3) For non-empty subsets A and B of G-space X, suppose that A and B are
G-equidecomposable and A is G-paradoxical. Then B is also G-paradoxical.

(4) If G is G-paradoxical (as G-space) and acts on X freely, then X is also
G-paradoxical.

(5) Suppose that X and Y are G-spaces and there is a G-equivariant map from
X to Y . If Y is G-paradoxical, then X is also G-paradoxical.
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Banach and Tarski showed that the 3-dimensional rotation group SO(3) acts on
the 2-dimensional sphere S2 paradoxically, which is known as the Banach-Tarski
paradox ([5] Corollary 3.10). Since S2 is the homogeneous space SO(3)/SO(2) =
O(3)/O(2), Several generalizations of this result to other homogeneous spaces were
considered: in practice it is known that the (n − 1)-dimensional sphere Sn−1 =
O(n)/O(n − 1) and the real projective space RPn−1 = O(n)/O(1) × O(n − 1)
are O(n)-paradoxical [5]. In this paper we will show that for any n ≥ 3 and any
sequence of natural numbers (n1, n2, · · · , nk) satisfying n1 + n2 + · · ·+ nk = n, the
real flag manifold O(n)/O(n1) × O(n2) × · · · × O(nk) is O(n)-paradoxical. More
generally we will consider complex and quotanionic flag manifolds also.

We now describe the contents of this paper. In section 2, we will review the
definitions of projective spaces, Grassmann manifolds and flag manifolds over the
real number field R , the complex number field C, and the quotanion algebra H as
homogeneous spaces of the classical groups O(n), U(n), and Sp(n) respectively. We
will show our main theorem for partial flag manifolds and explain that it reduces to
the same result for Grassmann manifolds which will be proved in the final section.
In section 3 we will review the idea of the proof of Banach-Tarski paradox for
spheres following [5] which we will use in section 4. In section 4 we will prove the
Banach-Tarski paradox for projective spaces, and by using this we will show the
Banach-Tarski paradox for Grassmann manifolds in section 5.

2. Notations and the main result

For K = R,C, and H, the n-dimensional right K-vector space Kn has the
following inner product:

(x, y) := x̄1y1 + · · ·+ x̄nyn

for x, y ∈ K, which defines the metric d(x, y) on Kn by

d(x, y) :=
√
(x− y, x− y).

The isometry group of this metric is the compact Lie group O(n), U(n), and Sp(n)
for K = R,C, and H respectively, which we will denote by G(n,K) for simplicity.
In this paper we will consider the paradoxical action of G(n,K) on the following
homogeneous spaces of G(n,K) (in practice they are symmetric spaces in the sense
of differential geometry).

First let us denote the set of all lines through the origin (i.e. 1-dimensional right
K-subspaces) in Kn by KPn−1 and call it the (n−1)-dimensional K-projective
space. G(n,K) acts on KPn−1 transitively so that KPn−1 becomes the G(n,K)-
homogeneous space as follows:

KPn−1 = G(n,K)/G(1,K)×G(n− 1,K).

Next we consider the set of all d-dimensional right K-subspaces in Kn by GrdK
n

and call it a Grassmann manifold. The (n− 1)-dimensional K-projective space
KPn−1 is the Grassmann manifold Gr1K

n. G(n,K) acts on GrdK
n transitively

so that GrdK
n becomes the G(n,K)-homogeneous space as follows:

GrdK
n = G(n,K)/G(d,K)×G(n− d,K).

Finally we define a partial flag of index (d1, d2, · · · , dk) by a strictly increasing
sequence of right K-subspaces of Kn [1, 2, 4]:

{0} = V0 ⊂ V1 ⊂ · · · ⊂ Vk = Kn, di := dimKVi.



THE BANACH-TARSKI PARADOX FOR FLAG MANIFOLDS 3

Let us denote the set of all partial flags of index (d1, d2, · · · , dk) by F (d1, d2, · · · , dk,
K) and call it a flag manifold. The Grassmann manifold GrdK

n is the flag
manifold F (d, n,K). G(n,K) acts on F (d1, d2, · · · , dk,K) transitively so that
F (d1, d2, · · · , dk,K) becomes the G(n,K)-homogeneous space as follows:

F (d1, d2, · · · , dk,K) = G(n,K)/G(n1,K)×G(n2,K)× · · · ×G(nk,K)

where ni denotes di − di−1. Next result is a consequence from the definitions:

Proposition 2. By taking the i-th component Vi of a partial flag V0 ⊂ V1 ⊂ · · · ⊂
Vk, there is a G(n,K)-equivariant map from F (d1, d2, · · · , dk,K) to GrdiK

n.

Our main purpose is to show that the Banach-Tarski paradox holds for the action
of G(n,K) on F (d1, d2, · · · , dk,K):

Theorem 1. Let nK ∈ N be equal to 3 when K = R, and equal to 2 when K = C
or H. Then for any n ≥ nK and any sequence (d1, d2, · · · , dk) satisfying 0 < d1 <
d2 < · · · < dk = n, the flag manifold F (d1, d2, · · · , dk,K) is G(n,K)-paradoxical.

By means of Proposition 1.(5) and Proposition 2, Theorem 1 will be a conse-
quence of the following theorem which we will prove in section 5:

Theorem 2. For any n ≥ nK and any 1 ≤ k ≤ n − 1, GrkK
n is G(n,K)-

paradoxical where nK = 3 when K = R and nK = 2 when K = C or H.

3. Spheres

The linear action of SO(n + 1) on Rn+1 induces the action SO(n + 1) on the
n-dimensional sphere

Sn := {(x1, x2, · · · , xn+1) ∈ Rn+1 |
n+1∑
k=1

x2
k = 1}.

In this section, following [5] Theorem 5.1, we will prove

Theorem 3. Sn is SO(n+ 1)-paradoxical for all n ≥ 2.

We will show this claim by induction on n:

(1) First we consider the case n = 2:

Proposition 3. ([5] Theorem 2.1) SO(3) contains a subgroup isomorphic
to the rank 2 free group F2. More precisely the subgroup H of SO(3) gen-
erated by the following matrices A and B is isomorphic to F2:

A =

 1
3 −2

√
2

3 0
2
√
2

3
1
3 0

0 0 1

 , B =

 1 0 0

0 1
3 −2

√
2

3

0 2
√
2

3
1
3

 .

For any g ∈ H − {id}, let ℓg be the rotation axis for the linear action of
g on R3. Then the countable set D :=

∪
g∈H−{id}(ℓg ∩ S2) is H-invariant

so that H acts on S2 −D freely. Hence Proposition 1.(4) implies

Proposition 4. ([5] Theorem 2.3) S2 −D is SO(3)-paradoxical.

Proposition 5. ([5] Theorem 3.9) S2 and S2−D are SO(3)-equidecomposable.
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(Proof.)
For any m ̸= n ∈ N, there exists g ∈ SO(3)−H such that gm(D)∩gn(D) =
∅. Put A := ∪∞

n=0g
n(D). Then A is a countable set since D is countable.

Hence S2 = (S2−A)⊔A and S2−D = (S2−A)⊔ g(A) imply that S2 and
S2 −D are SO(3)-equidecomposable.

Therefore by means of Proposition 1.3, S2 is SO(3)-paradoxical, which
is known as the Banach-Tarski paradox ([5] Corollary 3.10).

(2) By the induction hypothesis, we assume that there exists k ≥ 2 such that
Sk is SO(k + 1)-paradoxical.

Let Hk+1 ⊂ Rk+2 be the image of Rk+1 under the natural embedding

Rk+1 → Rk+2

(x1, x2, · · · , xk+1) 7→ (x1, · · · , xk+1, 0).

Then Sk ⊂ Rk+1 can be identified with Sk+1 ∩ Hk+1. This identification
realizes the action of SO(k+1) on Sk as the action of the subgroup SO(k+

1)∗ :=

(
SO(k + 1) 0k+1,1

01,k+1 1

)
of SO(k+2) on Sk+1 ∩Hk+1 where 0k+1,1

and 01,k+1 are zero matrices of sizes (k+1)×1 and 1× (k+1) respectively.
By the induction hypothesis, Sk+1 ∩Hk+1 is SO(k + 1)∗-paradoxical.

The natural projection

Sk+1 − {(0, · · · ,±1)} → Sk+1 ∩Hk+1

(x1, · · · , xk+1, xk+2) 7→ 1√∑k+1
i=1 x2

i

(x1, · · · , xk+1, 0)

is SO(k + 1)∗-equivariant.

∩

Figure 1

Hence Proposition 1.5 implies that Sk+1 − {(0, · · · ,±1)} is SO(k +
1)∗-paradoxical, in particular SO(k + 2)-paradoxical by Proposition 1.(1).
Moreover by the same argument of Proposition 5, Sk+1−{(0, · · · ,±1)} and
Sk+1 are SO(k + 2)-equidecomposable. Therefore Proposition 1.3 implies
that Sk+1 is SO(k + 2)-paradoxical.

4. Projective spaces

Theorem 4. Let nK ∈ N be equal to 3 when K = R, and equal to 2 when K = C or
H. Then the (n−1)-dimensional K-projective space KPn−1 is G(n,K)-paradoxical
for any n ≥ nK .
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In the following we will show this claim by induction on n:

(1) First we consider the case n = nK . When K = R, then it claims that RP 2

is SO(3)-paradoxical.
Any line ℓ in Rn passing through the origin intersects the n-dimensional

sphere at antipodal points±Q. Hence there exists a natural 2 to 1 surjective
map

π : Sn → RPn

which identifies antipodal points ±Q. Also because SO(n + 1) action on
Sn comes from the linear action of SO(n+1) on Rn+1, for M ∈ SO(n+1)
and Q ∈ Sn, M(−Q) = −M(Q), which means that the SO(n + 1) action
on Sn induces the action on RPn so that π is SO(n+1)-equivariant. Then
by analogy with Proposition 4

Proposition 6. RP 2 − π(D) is SO(3)-paradoxical.

Also by similar arguments of Proposition 5

Proposition 7. RP 2 and RP 2 − π(D) are SO(3)-equidecomposable.

Therefore by means of Proposition 1.(3), RP 2 is SO(3)-paradoxical.
Next we consider the case when K = C and H: we will show that KP 1

is G(2,K)-paradoxical. The linear action of G(2,K) on K2 reduces to the
action of G(2,K) on KP 1. By means of the stereographic projection it
reduces to the action of SO(3) on S2 when K = C, and the action of
SO(5) on S4 when K = H [3]. Hence from the result of section 2, we can
conclude our claim.

(2) By the induction hypothesis, we assume that there exists k ≥ nK such that
KP k−1 is G(k,K)-paradoxical.

Let Hk ⊂ Kk+1 be the image of Kk under the natural embedding

Kk → Kk+1

(x1, · · · , xk) 7→ (x1, · · · , xk, 0).

Then KP k−1 can be identified with (KP k−1)∗ := {ℓ ∈ KP k | ℓ ⊂ Hk}.
This identification realizes the action of G(k,K) on KP k−1 as the action of

the subgroup G(k,K)∗ =

(
G(k,K) 0k,1
01,k 1

)
of G(k+1,K) on (KP k−1)∗

where 0k,1 and 01,k are zero matrices of sizes k × 1 and 1× k respectively.
By the induction hypothesis, (KP k−1)∗ is G(k,K)∗-paradoxical.

The natural projection

Pk+1 : Kk+1 → Kk

(x1, · · · , xk, xk+1) 7→ (x1, · · · , xk)

induces the following G(k,K)∗-equivariant map

KP k − {xk+1-axis} → (KP k−1)∗

ℓ 7→ Pk+1(ℓ).

Hence Proposition 1.(5) implies that KP k − {xk+1-axis} is G(k,K)∗-
paradoxical, in particular G(k + 1,K)-paradoxical by Proposition 1.(1).
Moreover by the same argument of Proposition 5, KP k − {xk+1-axis} and
KP k are G(k + 1,K)-equidecomposable. Therefore Proposition 1.(3) im-
plies that KP k is G(k + 1,K)-paradoxical.
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Figure 2

5. Grassmann manifolds

In this section we will prove the Banach-Tarski paradox for Grassmann manifolds
which induces our main result Theorem 1 appeared in section 1. Key idea is the
following duality between Grassmann manifolds:

Proposition 8. Let φ : GrkK
n → Grn−kK

n be the map defined by φ(H) =
H⊥ where H⊥ is the orthogonal complement of H in Kn. Then φ is a G(n,K)-
equivariant homeomorphism.

Theorem 5. For any n ≥ nK and any 1 ≤ k ≤ n − 1, GrkK
n is G(n,K)-

paradoxical where nK = 3 when K = R and nK = 2 when K = C or H.

In the following we will show this claim by induction on n:

(1) First we consider the case n = nK . WhenK = R, then it claims that GrkR3

is SO(3)-paradoxical for k = 1, 2. When k = 1, Gr1R3 = RP 2 which is
SO(3)-paradoxical by Theorem 4. When k = 2, because of Proposition
1.(3) and Proposition 8, Gr2R3 is also SO(3)-paradoxical. When K = C or
H, then it claims that Gr1K

2 = KP 2 is G(2,K)-paradoxical which is also
proved by Theorem 4.

(2) By the induction hypothesis, we assume that there exists n0 > nK such
that for any n satisfying nK ≤ n < n0 and any k satisfying 1 ≤ k ≤ n− 1,
GrkK

n is G(n,K)-paradoxical. Under this assumption, we will show that
for any k satisfying 1 ≤ k ≤ n0 − 1, GrkK

n0 is G(n0,K)-paradoxical.
(a) For k = 1, Gr1K

n0 = KPn0−1 which is G(n0,K)-paradoxical by The-
orem 4.

(b) Next we consider the case 2 ≤ k ≤ n0/2.
Let Hn0+1−k ⊂ Kn0 be the image of Kn0+1−k under the natural em-
bedding

Kn0+1−k → Kn0

(x1, · · · , xn0+1−k) 7→ (x1, · · · , xn0+1−k, 0, · · · , 0)
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Then GrkK
n0+1−k can be identified with (GrkK

n0+1−k)∗ := {V ∈
GrkK

n0 | V ⊂ Hn0+1−k}. This identification realizes the action
of G(n0 + 1 − k,K) on GrkK

n0+1−k as the action of the subgroup

G(n0+1−k,K)∗ :=

(
G(n0 + 1− k,K) 0n0+1−k,k−1

0k−1,n0+1−k Ek−1,k−1

)
of G(n0,K)

on (GrkK
n0+1−k)∗, where 0n0+1−k,k−1 and 0k−1,n0+1−k are zero ma-

trices of sizes (n0+1−k)×(k−1) and (k−1)×(n0+1−k) respectively,
and Ek−1,k−1 is the identity matrix of size (k − 1)× (k − 1).
Similarly by identifying Gr1K

n0+1−k with (Gr1K
n0+1−k)∗ := {L ∈

Gr1K
n0 | L ⊂ Hn0+1−k}, the action ofG(n0+1−k,K) onGr1K

n0+1−k

can be realized by the action of G(n0 +1− k,K)∗ on (Gr1K
n0+1−k)∗.

Lemma 1. The following map is G(n0 + 1− k,K)∗-equivariant.

GrkK
n0 − (GrkK

n0+1−k)∗ → (Gr1K
n0+1−k)∗

V 7→ V ∩Hn0+1−k.

0

V

H 0

V H 0∩

Figure 3

Since Gr1K
n0+1−k = KPn0−k is a projective space, hence G(n0 +1−

k,K)-paradoxical by Theorem 4, (Gr1K
n0+1−k)∗ is G(n0+1−k,K)∗-

paradoxical. Therefore Proposition 1.(5) implies that GrkK
n0 − (Grk

Kn0+1−k)∗ is G(n0 + 1− k,K)∗-paradoxical.
On the other hand (GrkK

n0+1−k)∗ ∼= GrkK
n0+1−k and the induction

hypothesis impies GrkK
n0+1−k is G(n0+1−k,K)-paradoxical, hence

(GrkK
n0+1−k)∗ is G(n0 + 1 − k,K)∗-paradoxical. Therefore Propo-

sition 1.(2) implies that GrkK
n0 is G(n0 + 1− k,K)∗-paradoxical, in

particular G(n0,K)-paradoxical by Proposition 1.(1).
(c) Finally we will consider the case when k satisfies n0/2 < k ≤ n0 − 1:

Proposition 8 implies that there is a G(n0,K)-equivariant homeomor-
phism between GrkK

n0 and Grn0−kK
n0 , hence Proposition 1.(3) im-

plies that GrkK
n0 is G(n0,K)-paradoxical.

It might be an interesting question to extend the main result to generalized flag
manifolds G/C(T ) where G is a compact and semisimple Lie group, and C(T ) is a
centralizer of a torus of G [1].
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