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Abstract

In this paper, we are going to obtain characterizations of the space BMO(Rn)
through variable Lebesgue spaces.

1 Introduction

One of the most interesting problems on spaces with variable exponent is the bound-
edness of the Hardy–Littlewood maximal operator. The important sufficient conditions
called “log-Hölder” have been obtained by Cruz-Uribe, Fiorenza, and Neugebauer [2] and
Diening [3]. Under the conditions many results on spaces with variable exponent have
been obtained now.

The aim of this paper is to obtain characterizations of BMO(Rn). Recently an attempt
has been made to characterize BMO(Rn) through various function spaces. Throughout
this paper |S| denotes the Lebesgue measure and χS means the characteristic function
for a measurable set S ⊂ Rn. All cubes are assumed to have their sides parallel to the
coordinate axes. Given a function f and a a measurable set S, fS denotes the mean value
of f on S, namely

fS :=
1

|S|

∫
S
f(x) dx.

Definition 1.1. The space BMO(Rn) consists of all measurable functions b satisfying

∥b∥BMO(Rn) := sup
Q

1

|Q|

∫
Q
|b(x)− bQ| dx < ∞, (1)

where the supremum is taken over all cubes Q.

Recently, given a Banach function spaceX, we have been asking ourselves the following
problem.
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Problem 1.2. The norm ∥b∥BMO(Rn) is equivalent to

∥b∥∗X = sup
Q :cube

1

∥χQ∥X
∥χQ(b− bQ)∥X .

Here is a series of affirmative results concerning Problem 1.2.

1. X = Lp(Rn) with 1 ≤ p ≤ ∞. This is well-known as the John–Nirenberg inequality
(See Lemma 3.1 to follow).

2. X is a rearrangement invariant function space [7]. By rearrangement invariant we
mean that the X-norm of a function f depends only upon the function t ∈ (0,∞) 7→
|{|f | > t}| ∈ (0,∞).

3. X is a quasi-rearrangement invariant Banach function space with p ≤ pY ≤ qY < ∞
([8]).

The aim of this paper is to show that this is the case even when X is not rearrangement
invariant. First, we consider the case when X is a Morrey space.

Theorem 1.3. Let 1 ≤ q ≤ p < ∞. If we define the Morrey space Mp
q(Rn) by

∥f∥Mp
q(Rn) = sup

Q :cube
|Q|

1
p
− 1

q

(∫
Q
|f(x)|q dx

)1/q

,

then Problem 1.2 is true for X = Mp
q(Rn).

The second (and main) spaces we take up in this paper are variable Lebesgue spaces. A
measurable function p( · ) : Rn → [1,∞] is called a variable exponent. A variable exponent
space showed up around 1990s [11]. After 2005 the theory which are fundamental in
harmonic analysis is established very rapidly. For more details we refer to the recent book
[5]. Here is a precise definition.

Definition 1.4. Given a variable exponent p( · ), one denotes

Ω∞,p := {x ∈ Rn : p(x) = ∞} = p−1(∞)

ρp(f) :=

∫
Rn \Ω∞,p

|f(x)|p(x)dx+ ∥f∥L∞(Ω∞,p).

The variable Lebesgue space is defined by

Lp( · )(Rn) := {f is measurable : ρp(f/λ) < ∞ for some λ > 0} .

The variable Lebesgue space Lp( · )(Rn) is a Banach space with the norm

∥f∥Lp( · )(Rn) := inf {λ > 0 : ρp(f/λ) < ∞} .

This is a special case of the theory developed by Luxemburg and Nakano [13, 14, 15]. We
additionally set

p− := ess inf{p(x) : x ∈ Rn}, p+ := ess sup{p(x) : x ∈ Rn}.
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Theorem 1.5. If a variable exponent p( · ) satisfies 1 ≤ p− ≤ p+ < ∞ and the estimates∣∣∣∣ 1

p(x)
− 1

p(y)

∣∣∣∣ ≤ − C1

log |x− y|

(
|x− y| ≥ 1

2

)
and ∣∣∣∣ 1

p(x)
− 1

p(∞)

∣∣∣∣ ≤ C2

log(e+ |x|)
(x ∈ Rn)

holds for some C1, C2, p(∞) > 0, then Problem 1.2 is true for X = Lp( · )(Rn), that is,

C−1∥b∥BMO(Rn) ≤ sup
Q

1

∥χQ∥Lp( · )(Rn)

∥(b− bQ)χQ∥Lp( · )(Rn) ≤ C ∥b∥BMO(Rn)

holds for all b ∈ BMO(Rn).

Needless to say, Lp( · )(Rn) is not rearrangement invariant. Examples in [17] show that
Mp

q(Rn) is rearrangement invariant only when p = q.
Theorem 1.3 is considerably easy to prove. Indeed, from the definition of the Morrey

norm, we have

1

∥χQ∥Lq(Rn)
∥χQ(b− bQ)∥Lq(Rn) ≤

1

∥χQ∥Mp
q(Rn)

∥χQ(b− bQ)∥Mp
q(Rn)

≤ 1

∥χQ∥Lp(Rn)
∥χQ(b− bQ)∥Lp(Rn).

So the matters are reduced to the case when X = Lp(Rn).
However, a similar argument does not seem to work for Theorem 1.5. Especially the

estimate which corresponds to

1

∥χQ∥Lq(Rn)
∥χQ(b− bQ)∥Lq(Rn) ≤

1

∥χQ∥Mp
q(Rn)

∥χQ(b− bQ)∥Mp
q(Rn)

is hard to obtain.
We organize the remaining part of this paper as follows: Section 2 intends as an review

of variable Lebesgue spaces. We prove Theorem 1.5 in Section 3. Section 4 contains
another characterization of BMO(Rn) related to the variable exponent Lebesgue norms.

Finally we give a convention which we use throughout the rest of this paper. A symbol
C always means a positive constant independent of the main parameters and may change
from one occurrence to another.

2 Some basic facts on variable Lebesgue spaces

Given a function f ∈ L1
loc(Rn), the Hardy–Littlewood maximal operator M is defined

by

Mf(x) := sup
Q∋x

1

|Q|

∫
Q
|f(y)| dy (x ∈ Rn),

where the supremum is taken over all cubes Q containing x.
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One of the key developments of the theory of variable Lebesgue spaces is that we
obtained a good criterion of the boundedness of the Hardy–Littlewood maximal operators
[3, 4, 5].

Definition 2.1. Let r( · ) : Rn → (0,∞) be a measurable function.

1. The function r( · ) is said to be locally log-Hölder continuous if

|r(x)− r(y)| ≤ C

− log(|x− y|)
(|x− y| ≤ 1/2) (2)

holds. The set LH0 consists of all locally log-Hölder continuous functions.

2. The function r( · ) is said to be log-Hölder continuous at infinity if there exists a
constant r(∞) such that

|r(x)− r(∞)| ≤ C

log(e+ |x|)
. (3)

The set LH∞ consists of all log-Hölder continuous at infinity functions.

3. Define LH := LH0 ∩ LH∞ and say that each function belonging to LH is globally
log-Hölder continuous.

The next proposition is initially proved by Cruz-Uribe et al. [2], when p+ < ∞. Later
Cruz-Uribe et al. [1] and Diening et al. [5] have independently extended the result even
to the case of p+ = ∞.

Proposition 2.2. Suppose that a variable exponent p( · ) satisfies 1 < p− ≤ p+ ≤ ∞ and
1/p( · ) ∈ LH. Then M is bounded on Lp( · )(Rn), namely

∥Mf∥Lp( · )(Rn) ≤ C ∥f∥Lp( · )(Rn) (4)

holds for all f ∈ Lp( · )(Rn).

We note that p( · ) always satisfies p− > 1 whenever (4) is true ([5]). In the case of
p− = 1, the weak (p( · ), p( · )) type inequality for M holds. The following has been also
proved by Cruz-Uribe et al. [1].

Proposition 2.3. If a variable exponent p( · ) satisfies 1 = p− ≤ p+ ≤ ∞ and 1/p( · ) ∈
LH, then we have that for all f ∈ Lp( · )(Rn),

sup
t>0

t
∥∥χ{Mf(x)>t}

∥∥
Lp( · )(Rn)

≤ C ∥f∥Lp( · )(Rn). (5)

We will need the following two lemmas in order to get the main results.

Lemma 2.4. If a variable exponent p( · ) satisfies the weak (p( · ), p( · )) type inequality (5)
for all f ∈ Lp( · )(Rn), then

|f |Q∥χQ∥Lp( · )(Rn) ≤ C ∥f χQ∥Lp( · )(Rn)

holds for all f ∈ Lp( · )(Rn) and all cubes Q.

4



Proof. Take f ∈ Lp( · )(Rn) and a cube Q arbitrarily. We may assume |f |Q > 0. Let
t = |f |Q/2. Now that |f |QχQ(x) ≤ M(f χQ)(x), we obtain M(f χQ)(x) > t whenever
x ∈ Q. Thus we have

|f |Q∥χQ∥Lp( · )(Rn) ≤ |f |Q
∥∥∥χ{M(f χQ)(x)>t}

∥∥∥
Lp( · )(Rn)

≤ |f |Q · Ct−1 ∥f χQ∥Lp( · )(Rn)

=C ∥f χQ∥Lp( · )(Rn).

Remark 2.5. Lerner [12] has proved the converse of Lemma 2.4, provided that p( · ) is
radial decreasing and satisfies p− > 1.

The next lemma is due to Diening [4, Lemma 5.5].

Lemma 2.6. If a variable exponent p( · ) satisfies 1 < p− ≤ p+ < ∞ and M is bounded
on Lp( · )(Rn), then there exists a constant 0 < δ1 < 1 such that for all 0 < δ < δ1, all
families of pairwise disjoint cubes Y , all f ∈ L1

loc(Rn) with |f |Q > 0 (Q ∈ Y ) and all
tQ > 0 (Q ∈ Y ), ∥∥∥∥∥∥

∑
Q∈Y

tQ

∣∣∣∣ ffQ
∣∣∣∣δ χQ

∥∥∥∥∥∥
Lp( · )(Rn)

≤ C

∥∥∥∥∥∥
∑
Q∈Y

tQχQ

∥∥∥∥∥∥
Lp( · )(Rn)

.

In particular ∥∥∥f δχQ

∥∥∥
Lp( · )(Rn)

≤ C |fQ|δ ∥χQ∥Lp( · )(Rn) (6)

holds.

3 Main results

We describe some known facts before we state the main results.

Lemma 3.1. If 1 ≤ q < ∞, then we have that for all b ∈ BMO(Rn),

∥b∥BMO(Rn) ≤ sup
Q

(
1

|Q|

∫
Q
|b(x)− bQ|q dx

)1/q

≤ C0q ∥b∥BMO(Rn), (7)

where C0 > 0 is a constant independent of q.

The left hand-side inequality of (7) directly follows from the Hölder inequality. The
right one is a famous consequence of an application of the John–Nirenberg inequality (cf.
[10]).

Proposition 3.2. There exist two positive constants C1, C2 depending only on n such
that for all b ∈ BMO(Rn), all cubes Q and all t ≥ 0,

|{x ∈ Q : |b(x)− bQ| > t}| ≤ C1 |Q| exp
(
−C2t/∥b∥BMO(Rn)

)
.
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Lemma 3.1 can additionally be generalized to the case of variable exponents. Now we
are going to prove Theorem 1.5. Recall that we announced that we are going to prove;

If a variable exponent p( · ) satisfies 1 < p− ≤ p+ < ∞ and M is bounded on
Lp( · )(Rn), then we have that for all b ∈ BMO(Rn),

C−1∥b∥BMO(Rn) ≤ sup
Q

1

∥χQ∥Lp( · )(Rn)

∥(b− bQ)χQ∥Lp( · )(Rn) ≤ C ∥b∥BMO(Rn).(8)

The author [9] has initially proved Theorem ??. Later we will give an another proof
of it.

In view of Lemma 3.1, it may be a natural question to prove (8) for the case of p− = 1.
Now we shall prove Theorem 1.5.

Proof of Theorem 1.5. Take a cube Q and b ∈ BMO(Rn) arbitrarily. By virtue of Lemma
2.4 we have

1

|Q|

∫
Q
|b(x)− bQ| dx · ∥χQ∥Lp( · )(Rn) ≤ C ∥(b− bQ)χQ∥Lp( · )(Rn) .

This gives us the left hand side inequality of the theorem. Next we shall prove the right
hand side one. Let us fix a number r so that rp− > 1 and write u( · ) := rp( · ). Then
the variable exponent u( · ) satisfies 1 < u− and 1/u( · ) ∈ LH. Hence the boundedness
of M on Lu( · )(Rn) holds by Proposition 2.2. Using Lemma 2.6, we can take a constant
δ ∈ (0, 1/r) so that ∥∥∥f δχQ

∥∥∥
Lu( · )(Rn)

≤ C |fQ|δ ∥χQ∥Lu( · )(Rn)

for all f ∈ L1
loc(Rn). Now we obtain∥∥∥f rδχQ

∥∥∥
Lp( · )(Rn)

=
∥∥∥f δχQ

∥∥∥r
Lu( · )(Rn)

≤C |fQ|rδ ∥χQ∥rLu( · )(Rn)

=C |fQ|rδ ∥χQ∥Lp( · )(Rn) . (9)

If we put f := |b− bQ|1/(rδ) and apply Lemma 3.1 with q = 1/(rδ) > 1, then we get

|fQ|rδ =
(

1

|Q|

∫
Q
|b(x)− bQ|1/(rδ) dx

)rδ

≤ C ∥b∥BMO(Rn). (10)

Combing (9) and (10) we obtain

∥(b− bQ)χQ∥Lp( · )(Rn) ≤ C ∥b∥BMO(Rn) ∥χQ∥Lp( · )(Rn) .

This leads us to the desired inequality and completes the proof.

Proof of Theorem ??. We have only to follow the same argument as the proof of Theorem
1.5 with r = 1.
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4 Related inequalities

According to Lemma 3.1, we have(
1

|Q|

∫
Q
|b(x)− bQ|q dx

)1/q

≤ C0q∥b∥BMO(Rn),

where C0 > 0 is independent of q ∈ [1,∞). This can be rephrased as

1

|Q|

∫
Q

(
|b(x)− bQ|

C0q∥b∥BMO(Rn)

)q

dx ≤ 1

for all cubes Q. Observe that the estimate above is uniform over 1 ≤ q < ∞. Therefore,
the following inequality seems to hold;

1

|Q|

∫
Q

(
|b(x)− bQ|

C0p(x)∥b∥BMO(Rn)

)p(x)

dx ≤ 1

Suppose that p(·) : Rn → [1,∞) be a variable exponent which is not necessarily
continuous or bounded. Then define

∥b∥†p(·) = sup
Q

(
inf

{
λ > 0 :

1

|Q|

∫
Q

(
|b(x)− bQ|

p(x)λ

)p(x)

dx ≤ 1

})
for measurable functions b. Now we are going to prove;

Theorem 4.1. If a variable exponent p( · ) satisfies p(x) < ∞ for almost every x ∈ Rn,
then we have

∥b∥†p(·) ≤ C∥b∥BMO(Rn).

Furthermore, if p(·) is bounded, then the norms ∥ · ∥†p(·) and ∥ · ∥BMO(Rn) are mutually
equivalent.

Proof. According to the John-Nirenberg inequality, we have

1

|Q|

∫
Q

{
exp

(
λ|b(x)− bQ|
∥b∥BMO(Rn)

)
− 1

}
dx ≤ 1

for some λ > 0. Since(
λ|b(x)− bQ|

3p(x)∥b∥BMO(Rn)

)p(x)

=

(
1

3p(x)

)p(x)(λ|b(x)− bQ|
∥b∥BMO(Rn)

)p(x)

≤min

{(
1

[p(x)]

)[p(x)]

,

(
1

[p(x) + 1]

)[p(x)+1]
}(

λ|b(x)− bQ|
∥b∥BMO(Rn)

)p(x)

≤ exp

(
λ|b(x)− bQ|
∥b∥BMO(Rn)

)
− 1.

Hence it follows that
∥b∥†p(·) ≤ 3λ−1∥b∥BMO(Rn).

7



If p(·) is bounded, then

∥b∥†p(·) ≥ sup
Q

(
inf

{
λ > 0 :

1

|Q|

∫
Q

(
|b(x)− bQ|

p+λ

)p(x)

dx ≤ 1

})

= sup
Q

(
inf

{
λ > 0 :

1

|Q|

∫
Q

{
1

2
+

1

2

(
|b(x)− bQ|

p+λ

)p(x)
}

dx ≤ 1

})

= sup
Q

(
inf

{
λ > 0 :

1

|Q|

∫
Q

|b(x)− bQ|
2p+λ

dx ≤ 1

})
= (2p+)

−1∥b∥BMO(Rn).

Therefore, these norms are mutually equivalent.

Remark 4.2. Let Φ be a Young function. Namely, Φ : [0,∞) → [0,∞) is a homeo-
morphism which is convex. If we assume that Φ(t) ≤ ta (t ≥ 2) for some a > 1 and
define

∥b∥†Φ = sup
Q

(
inf

{
λ > 0 :

1

|Q|

∫
Q
Φ

(
|b(x)− bQ|

p(x)λ

)
dx ≤ 1

})
for measurable functions b, then ∥b∥†Φ is equivalent to ∥b∥BMO. Indeed, as we have shown

in [16], the norm ∥b∥†Φ remains unchanged if we redefine Φ(t) = Φ(2)(t/2)a for 0 ≤ t ≤ 2.

Therefore, ∥b∥†Φ ≤ C∥b∥BMO by virtue of Lemma 3.1. The reverse inequality is also clear
since we have Φ(t) ≥ Φ(1)t for t ≥ 1.
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