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Abstract

In this paper, we are going to obtain characterizations of the space BMO(R"™)
through variable Lebesgue spaces.

1 Introduction

One of the most interesting problems on spaces with variable exponent is the bound-
edness of the Hardy—Littlewood maximal operator. The important sufficient conditions
called “log-Holder” have been obtained by Cruz-Uribe, Fiorenza, and Neugebauer [2] and
Diening [3]. Under the conditions many results on spaces with variable exponent have
been obtained now.

The aim of this paper is to obtain characterizations of BMO(R"™). Recently an attempt
has been made to characterize BMO(R™) through various function spaces. Throughout
this paper |S| denotes the Lebesgue measure and xg means the characteristic function
for a measurable set S C R™. All cubes are assumed to have their sides parallel to the
coordinate axes. Given a function f and a a measurable set S, fg denotes the mean value

of f on S, namely
1
fs = /f x)dr.
577

Definition 1.1. The space BMO(R"™) consists of all measurable functions b satisfying
1
bl Baro®ny = sup — [ |b(z) — bg|dr < oo, (1)
o 1QJo

where the supremum is taken over all cubes Q).

Recently, given a Banach function space X, we have been asking ourselves the following
problem.

*Mathematics Subject Classification 2010 : 42B35.

fOsaka City University Advanced Mathematical Institute, 3-3-138 Sugimoto, Sumiyoshi-ku, 558-8585
Osaka, Japan. E-mail address: mitsuo@math.sci.osaka-cu.ac.jp

tDepartment of Mathematics, Kyoto University, Kyoto, 606-8502, Japan. E-mail address:
yosihiro@math.kyoto-u.ac.jp



Problem 1.2. The norm ||bl| garomny is equivalent to

1bllx = sup Ix@ (b = bg)llx-

Q:cube HXQHX
Here is a series of affirmative results concerning Problem 1.2.

1. X = LP(R™) with 1 < p < co. This is well-known as the John—Nirenberg inequality
(See Lemma 3.1 to follow).

2. X is a rearrangement invariant function space [7]. By rearrangement invariant we
mean that the X-norm of a function f depends only upon the function ¢ € (0, c0) —

{If] > }] € (0, 00).

3. X is a quasi-rearrangement invariant Banach function space with p < py < ¢y < o0
(I8])-

The aim of this paper is to show that this is the case even when X is not rearrangement
invariant. First, we consider the case when X is a Morrey space.

Theorem 1.3. Let 1 < g < p < oo. If we define the Morrey space My(R™) by
11 1/q
Il = s 11+ ([ 1s@lras)
Q:cube Q
then Problem 1.2 is true for X = My(R™).

The second (and main) spaces we take up in this paper are variable Lebesgue spaces. A
measurable function p(-) : R"™ — [1, o0] is called a variable exponent. A variable exponent
space showed up around 1990s [11]. After 2005 the theory which are fundamental in
harmonic analysis is established very rapidly. For more details we refer to the recent book
[5]. Here is a precise definition.

Definition 1.4. Given a variable exponent p(-), one denotes
Qoopi={z €R" : p(x) = 00} = p~'(c0)
o= [ U@PEde o,
R”\ Qeo,p

The variable Lebesgue space is defined by
LPU)(R™) := {f is measurable : pp(f/A) < oo for some A > 0} .
The variable Lebesgue space LP( ')(R”) is a Banach space with the norm
11t r gy i= inf {3 > 0 1 pp(£/A) < o0}

This is a special case of the theory developed by Luxemburg and Nakano [13, 14, 15]. We
additionally set

p— :=essinf{p(z) : z € R"}, p; :=esssup{p(x) : x € R"}.



Theorem 1.5. If a variable exponent p(-) satisfies 1 < p_ < p; < oo and the estimates

'p<1x> - p<1y>' <ty (euzg)

‘ 1 1 ‘ < Cy
p(z)  p(oo)| ~ log(e + [x])
holds for some Cy,Ca,p(c0) > 0, then Problem 1.2 is true for X = LPC)(R™), that is,

and

(x € R™)

1

—||(b=bg)x S < C' b .
”XQ”Lp(‘)(Rn) H( Q) QHLP( ) (R™) H HBMO(]R )

C7 bl paron) < Sgp

holds for all b€ BMO(R™).

Needless to say, LP(")(R™) is not rearrangement invariant. Examples in [17] show that
MY(R™) is rearrangement invariant only when p = gq.

Theorem 1.3 is considerably easy to prove. Indeed, from the definition of the Morrey
norm, we have

1
)HXQ(b —0Q)||Lamny <

W ) [xQ(b— bQ)HMS(Rn)

Ixellmg e

< lIxab = 0Q) | Lrmr)-
HXQHLP(]R") (®)
So the matters are reduced to the case when X = LP(R").
However, a similar argument does not seem to work for Theorem 1.5. Especially the
estimate which corresponds to

)HXQ(b_ bQ) | Lagrn

HXQHL‘I(R” : HXQ(b_ bQ)HM{;(R")

= Txelage
a(R
is hard to obtain.

We organize the remaining part of this paper as follows: Section 2 intends as an review
of variable Lebesgue spaces. We prove Theorem 1.5 in Section 3. Section 4 contains
another characterization of BMO(R™) related to the variable exponent Lebesgue norms.

Finally we give a convention which we use throughout the rest of this paper. A symbol
C always means a positive constant independent of the main parameters and may change
from one occurrence to another.

2 Some basic facts on variable Lebesgue spaces

Given a function f € L{ (R"), the Hardy-Littlewood maximal operator M is defined
by

]' n
M (@) = s oo /Q F@)dy (z€RY),

where the supremum is taken over all cubes @) containing x.



One of the key developments of the theory of variable Lebesgue spaces is that we
obtained a good criterion of the boundedness of the Hardy—Littlewood maximal operators
[3, 4, 5].

Definition 2.1. Let r(-) : R” — (0,00) be a measurable function.

1. The function r(-) is said to be locally log-Holder continuous if

C
rx)—ry)| < ———= (z—y/ <1/2 2
r(z) —r(y)l "ozl =) (lz =yl < 1/2) (2)
holds. The set LHy consists of all locally log-Holder continuous functions.

2. The function r(-) is said to be log-Hélder continuous at infinity if there exists a
constant r(00) such that

C

< Togle + al) ®)

() = r(0)]

The set LH, consists of all log-Holder continuous at infinity functions.

3. Define LH := LHo N LHy, and say that each function belonging to LH 1is globally
log-Hélder continuous.

The next proposition is initially proved by Cruz-Uribe et al. [2], when p; < co. Later
Cruz-Uribe et al. [1] and Diening et al. [5] have independently extended the result even
to the case of p; = .

Proposition 2.2. Suppose that a variable exponent p(-) satisfies 1 < p_— < py < o0 and
1/p(-) € LH. Then M is bounded on LPU)(R™), namely

M fll Loy @y < C Ul o @y (4)
holds for all f € LPC)(R™).

We note that p(-) always satisfies p_ > 1 whenever (4) is true ([5]). In the case of
p— = 1, the weak (p(-),p(-)) type inequality for M holds. The following has been also
proved by Cruz-Uribe et al. [1].

Proposition 2.3. If a variable exponent p(-) satisfies 1 = p_ < py < 0o and 1/p(-) €
LH, then we have that for all f € LPC)(R™),

supt [[xar s>l oy < Ml eny- 5)

We will need the following two lemmas in order to get the main results.

Lemma 2.4. If a variable exponent p( - ) satisfies the weak (p(-),p(-)) type inequality (5)
for all f € LPC)(R™), then

Flallxell @ < € 1F xallpo

holds for all f € LPC)(R™) and all cubes Q.



Proof. Take f € LPC)(R") and a cube @ arbitrarily. We may assume |f lo > 0. Let
t = |flo/2. Now that |floxg(z) < M(fxq)(z), we obtain M(f xg)(x) > t whenever
z € Q. Thus we have

Flelx@lzr@n < fle Xt xor@> | g

<|flg- ottt HfXQHLp(J(Rn)
:C”fXQHLP(~)(Rn)-
O

Remark 2.5. Lerner [12] has proved the converse of Lemma 2.4, provided that p(-) is
radial decreasing and satisfies p_ > 1.

The next lemma is due to Diening [4, Lemma 5.5].

Lemma 2.6. If a variable exponent p(-) satisfies 1 < p_ < py < oo and M is bounded
on LPUC)(R™), then there exists a constant 0 < &, < 1 such that for all 0 < § < &1, all
families of pairwise disjoint cubes Y, all f € LL _(R") with |flg > 0 (Q € Y) and all
>0 (QeY),

f b
ZtQ‘fQ XQ <0 |3 toxe
QeYy Lp()(R) QeYy L) (&)
In particular
5 5
756 gy = € 1901 Ixla .

holds.

3 Main results

We describe some known facts before we state the main results.

Lemma 3.1. If 1 < g < o0, then we have that for allb € BMO(R"),

1 1/q
10l Brro(mny < sup <@|/Q |b(x) — bQ|qu> < Coq ||bll Brrorn) (7)

where Cy > 0 is a constant independent of q.

The left hand-side inequality of (7) directly follows from the Holder inequality. The
right one is a famous consequence of an application of the John—Nirenberg inequality (cf.
[10]).

Proposition 3.2. There exist two positive constants Cy, Co depending only on n such
that for all b € BMO(R™), all cubes Q and allt > 0,

{z € Q : [b(z) — bol > t}| < C1|Qlexp (—Cat/|Ibl Bmogwn)) -



Lemma 3.1 can additionally be generalized to the case of variable exponents. Now we
are going to prove Theorem 1.5. Recall that we announced that we are going to prove;

If a variable exponent p(-) satisfies 1 < p_ < py < oo and M is bounded on
LPC)(R™), then we have that for all b € BMO(R"),

1

I =be)xQll L) @y < C b (8
IxQl o) @) 16 = ba)xell poc) ey 16l BrroRn(8)

C7 bl Bromn) < Sgp

The author [9] has initially proved Theorem ?7. Later we will give an another proof
of it.

In view of Lemma 3.1, it may be a natural question to prove (8) for the case of p_ = 1.

Now we shall prove Theorem 1.5.

Proof of Theorem 1.5. Take a cube Q and b € BMO(R™) arbitrarily. By virtue of Lemma
2.4 we have

1
@,/Q [b(x) = bal dz - [ xQll Lot ) mny < C 10— b0)xQll Lot en)

This gives us the left hand side inequality of the theorem. Next we shall prove the right
hand side one. Let us fix a number r so that rp_ > 1 and write u(-) := rp(-). Then
the variable exponent u(-) satisfies 1 < u_ and 1/u(-) € LH. Hence the boundedness
of M on L“()(R™) holds by Proposition 2.2. Using Lemma 2.6, we can take a constant
0 € (0,1/r) so that

0 0
17°%6]| . gy < O 1P Ix@lec

for all f € L (R™). Now we obtain

loc

r

fT(SXQ‘

L O(RRY HféXQ Lu()(RR)

<C 1ol Ixalljuc any
:C‘eréHXQHLpM(Rn)- (9)

If we put f := |b— bg|"/(") and apply Lemma 3.1 with ¢ = 1/(rd) > 1, then we get

rd
T 1 T
|MH=QQAW@—WM®W>SCWWWWy (10)
Combing (9) and (10) we obtain

16 = ba)xll Lo ®ny < ClIbllBMO® [IXQN Lot ) (RA) -
This leads us to the desired inequality and completes the proof. ]

Proof of Theorem ?7. We have only to follow the same argument as the proof of Theorem
1.5 with » = 1. O



4 Related inequalities

According to Lemma 3.1, we have

1 l/q
(Q| /Q |b<w>—bQ|‘Ida:) < Coalbllsarogn,

where Cjy > 0 is independent of ¢ € [1,00). This can be rephrased as

dr <1
1@l / (COQHb|BMO(R") -

for all cubes ). Observe that the estimate above is uniform over 1 < ¢ < oco. Therefore,
the following inequality seems to hold;

/ ( b(z) — bo| )M o<1
Xz
Q| Cop(x Hb”BMO(Rn) -

Suppose that p(-) : R™ — [1,00) be a variable exponent which is not necessarily
continuous or bounded. Then define

S C L[ (@) = b\
Hpr(.)—sgp (mf{)\>0. |Q’/Q< REH ) dr <1

for measurable functions b. Now we are going to prove;

Theorem 4.1. If a variable exponent p(-) satisfies p(x) < oo for almost every x € R,
then we have

Ibll., < Clibllsaron)-

Furthermore, if p(-) is bounded, then the norms || - H;(_) and || - || prromny are mutually
equivalent.

Proof. According to the John-Nirenberg inequality, we have

Ab(x —bQ|> }
—1rdx <1
[Ql / { ( bl Brro®n)
for some A > 0. Since

(i) = () ()
[p(z)] [p(z)+1] ) — p(z)
Smi“{([zaéz)]) (1) } <W>

<oxp (el o,

10/l Baro @)

Hence it follows that
IB115 .y < 33 Ibll Basoen)-

7



If p(-) is bounded, then

_ (z)
HbHJr >sup <1nf{)\ >0 : |22| /Q (W)P dx < 1})

oo {1+ (458 )
oo P

(2p4) 10l Brro@n)-

~—

Therefore, these norms are mutually equivalent. O

Remark 4.2. Let ® be a Young function. Namely, ® : [0,00) — [0,00) is a homeo-
morphism which is convex. If we assume that ®(¢t) < t*(¢t > 2) for some a > 1 and

define . b(z) — bo
T : Lt L) — 0 -
Il = sup (1 {20 |Q|/Q‘I’< o) w<1})

for measurable functions b, then ||bH:§> is equivalent to ||b|]|mo. Indeed, as we have shown
in [16], the norm ||b||:r1) remains unchanged if we redefine ®(¢) = ®(2)(¢/2)* for 0 < ¢ < 2.
Therefore, HbHT{) < C||bllsmo by virtue of Lemma 3.1. The reverse inequality is also clear
since we have ®(t) > ®(1)t for ¢t > 1.
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