
Some identities of Green’s function for the
polyharmonic operator with the Navier

boundary conditions and its applications

Futoshi Takahashi
Osaka City University

Department of Mathematics & OCAMI
3-3-138 Sugimoto, Sumiyoshi-ku

Osaka, 535-8585, Japan
Tel: (+81)(0)6-6605-2508

E-mail: futoshi@sci.osaka-cu.ac.jp

Abstract

We prove several integral identities for Green’s function of the
polyharmonic operator (−∆)p, p ∈ N under the Navier boundary con-
ditions. As an application, we prove the nondegeneracy of the critical
point of the Robin function associated to the Green function on some
symmetric domains.

1 Introduction.

Recently, many authors have been interested in the study of linear and nonlin-
ear elliptic partial differential equations involving the higher-order differential
operator, see for example, the recent book [5] and the reference therein.
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In the following, we fix p ∈ N and let G = G(x, y) denote the Green
function of (−∆)p under the Navier boundary condition:

{
(−∆)pG(·, y) = δy in Ω,

G(·, y) = (−∆)jG(·, y) = 0 on ∂Ω (j = 1, · · · p− 1),

where Ω is a smooth bounded domain in RN , N ≥ 2p. Decompose G as
G(x, y) = Γ(x, y) − H(x, y), where Γ(x, y) is the fundamental solution of
(−∆)p on RN defined as

Γ(x, y) =

{
CN,p |x− y|2p−N , N > 2p,

Cp log 1
|x−y| , N = 2p,

where

CN,p =
2Γ(N

2
− p)

22p(p− 1)!Γ(N
2
)σN

, N > 2p, (1.1)

Cp =
1

{2p−1(p− 1)!}2σ2p

, N = 2p, (1.2)

and σN = 2πN/2

Γ(N/2)
is the volume of the (N −1) dimensional unit sphere in RN .

H = H(x, y) ∈ C∞(Ω × Ω) is called the regular part of the Green function,
and satisfies

{
(−∆)pH(·, y) = 0 in Ω,

(−∆)jH(·, y) = (−∆)jΓ(·, y) on ∂Ω (j = 0, 1, · · · p− 1).

Note that the coefficients in the expression of Γ(x, y) are determined by the
formula

(−1)p

∫

∂Br(0)

∂∆p−1Γ(x, 0)

∂νx

dsx = 1, (1.3)

here ν is the unit normal vector to ∂Br(0). Finally, let R(y) = H(y, y) denote
the Robin function of the Green function of (−∆)p with the Navier boundary
condition.

In this paper, we prove the nondegeneracy of critical points of the Robin
function on some symmetric domains. More precisely, let Ω be a smooth
bounded domain in RN , N ≥ 2p, which is symmetric with respect to hyper-
planes {xi = 0} and convex in xi-directions for i = 1, · · · , N . This kind of
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domains are sometimes called Gidas-Ni-Nirenberg domains (GNN domains
for short) after the famous paper [6]. We will prove the Hessian matrix of the
Robin function associated to the Green function of (−∆)p under the Navier
boundary condition computed at the origin is diagonal and all diagonal el-
ements are strictly positive. For the second order case (p = 1), this result
was former proved by M. Grossi [7]. Basically our strategy of the proof is
to follow his argument faithfully. However, in the course of the proof, we
need to generalize some integral identities relating boundary integrations of
the Green function to the Robin function, which, in turn, originate from the
paper by Brezis and Peletier [1].

As for the second order case, it is known that the Robin function of −∆
with the Dirichlet boundary condition is strictly convex and has a unique
nondegenerate critical point (global minimum point) on a bounded convex
domain. This important fact was first proved by Caffarelli-Friedman [2] when
N = 2, and later extended to N ≥ 3 by Cardaliaguet-Tahraoui [3]. Whether
the same result holds true for the Robin function of (−∆)p with the Navier
boundary condition is completely open. We hope the theorem mentioned
above could shed light on this subject.

This paper is organized as follows. In §2, we recall some well-known facts
on the Green function of (−∆)p under the Navier boundary conditions. §3
will be devoted to the proof of integral identities mentioned above, and we
hope that this part would be useful in itself for some readers. In §4, we will
prove the nondegeneracy of the critical point of the Robin function on GNN
domains. C will denote various constants from line to line until otherwise
stated.

2 Preliminaries.

In this section, we recall some elementary facts that are useful later. First,
we recall Green’s 2nd identity

∫

Ω

[(∆pf)g − f(∆pg)] dx

=

p∑

k=1

∫

∂Ω

[(
∂∆k−1f

∂νx

) (
∆p−kg

)− (
∆k−1f

) (
∂∆p−kg

∂νx

)]
dsx, (2.1)

which holds for smooth f, g.
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In the following, we set Gj(x, y) = (−∆x)
jG(x, y) for j = 0, 1, · · · , p− 1.

Then Gj satisfies





−∆xGj = Gj+1 in Ω, (j = 0, 1, · · · , p− 2),

−∆xGp−1 = δy in Ω,

Gj > 0 in Ω, (j = 0, 1, · · · , p− 1),

Gj = 0 on ∂Ω, (j = 0, 1, · · · , p− 1).

(2.2)

Note that Gp−1 is the Green function of −∆ under the Dirichlet boundary
condition. By using these symbols, the well-known Green’s representation
formula for the unique solution to the linear problem

{
(−∆)pu = f in Ω,

(−∆)ju = gj on ∂Ω (j = 0, 1, · · · p− 1),

where f and gj are smooth functions, can be written as follows:

u(y) =

∫

Ω

G(x, y)f(x)dx−
p∑

k=1

∫

∂Ω

(
∂Gk−1(x, y)

∂νx

)
gp−k(x)dsx (2.3)

for y ∈ Ω.
Also we need a version of Pohozaev identity for the polyharmonic equation

(−∆)pu = f(u) in Ω, u ∈ C2p(Ω) (2.4)

without boundary conditions.

Lemma 2.1 Assume f ∈ C1(R,R). Then

∫

Ω

[
NF (u)−

(
N − 2p

2

)
uf(u)

]
dx =

∫

∂Ω

(x · ν)

(
F (u)− 1

2
uf(u)

)
dsx

+
(−1)p−1

2

p∑

k=1

∫

∂Ω

[(
∂∆k−1u

∂ν

)
∆p−k(x · ∇u)− (

∆k−1u
) ∂∆p−k(x · ∇u)

∂ν

]
dsx

(2.5)

holds for a solution u ∈ C2p(Ω) to (2.4), where F (u) =
∫ u

0
f(s)ds.
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More general version is known, see [8], [9] and so on. We show a proof of the
above lemma in order to make this paper self-contained.

Proof. By Green’s 2nd identity (2.1) with f = u, g = (x · ∇u), we have∫

Ω

[(∆pu)(x · ∇u)− u∆p(x · ∇u)] dx

=

p∑

k=1

∫

∂Ω

[(
∂∆k−1u

∂νx

)
∆p−k(x · ∇u)− (

∆k−1u
) (

∂∆p−k(x · ∇u)

∂νx

)]
dsx

=:

p∑

k=1

Bk.

Note also that

∆j(x · ∇u) = 2j∆ju + (x · ∇∆ju), (j = 0, 1, 2, · · · )
which is easily shown by induction. Thus,∫

Ω

u∆p(x · ∇u)dx = 2p

∫

Ω

u∆pudx +

∫

Ω

u(x · ∇∆pu)dx

= 2p(−1)p

∫

Ω

uf(u)dx + (−1)p

∫

Ω

u(x · ∇f(u))dx

= (−1)p

{
2p

∫

Ω

uf(u)dx +

∫

Ω

div (x(uf(u)− F (u))) dx +

∫

Ω

N(F (u)− uf(u))dx

}

= (−1)p

{∫

Ω

{NF (u)− (N − 2p)uf(u)} dx +

∫

∂Ω

(x · ν)(uf(u)− F (u))dsx

}
,

where we have used (2.4) and the formula u(x·∇f(u)) = div (x(uf(u)− F (u)))+
N(F (u)− uf(u)).

On the other hand,∫

Ω

(∆pu)(x · ∇u)dx = (−1)p

∫

Ω

f(u)(x · ∇u)dx

= (−1)p

∫

Ω

{div(xF (u))−NF (u)} dx = (−1)p

{∫

∂Ω

(x · ν)F (u)dsx −
∫

Ω

NF (u)dx

}
.

Combining all together, we have

(−1)p

{∫

∂Ω

(x · ν)F (u)dsx −
∫

Ω

NF (u)dx

}
−

p∑

k=1

Bk

= (−1)p

{∫

Ω

NF (u)− (N − 2p)uf(u)dx +

∫

∂Ω

(x · ν)(uf(u)− F (u))dsx

}
,

5



which implies the lemma.

3 Integral identities for Green’s function of

(−∆)p with the Navier boundary conditions.

In this section, we will prove some identities for the Green function of (−∆)p

under the Navier boundary conditions. Part of these formulas were former
proved by Brezis and Peletier [1] when p = 1, N > 2, Ren and Wei [10] when
p = 1, N = 2, Chou and Geng [4] when p = 2, N > 4, and Takahashi [11]
when p = 2, N = 4.

Theorem 3.1 For any y ∈ Ω, we have

(1)

p∑

k=1

∫

∂Ω

(x− y) · ν
(

∂Gk−1(x, y)

∂νx

)(
∂Gp−k(x, y)

∂νx

)
dsx = (N − 2p)R(y)

(3.1)
when N > 2p, and

p∑

k=1

∫

∂Ω

(x− y) · ν
(

∂Gk−1(x, y)

∂νx

)(
∂Gp−k(x, y)

∂νx

)
dsx = Cp (3.2)

when N = 2p, where Cp is defined in (1.2).

(2)

p∑

k=1

∫

∂Ω

(
∂Gk−1(x, y)

∂νx

)(
∂Gp−k(x, y)

∂νx

)
νi(x) dsx =

∂R

∂yi

(y) (3.3)

for i = 1, · · · , N when N ≥ 2p.

(3)

2

p∑

k=1

∫

∂Ω

(
∂Gk−1(x, y)

∂xi

)
∂

∂yj

(
∂Gp−k(x, y)

∂νx

)
dsx =

2

p∑

k=1

∫

∂Ω

(
∂Gp−k(x, y)

∂xi

)
∂

∂yj

(
∂Gk−1(x, y)

∂νx

)
dsx =

∂2R

∂yi∂yj

(y) (3.4)

for 1 ≤ i, j ≤ N , N ≥ 2p.
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Here ν = ν(x) is the outer unit normal at x ∈ ∂Ω.

Proof. First we prove (3.1). We may assume y = 0 and choose r > 0
small such that Br := Br(0) ⊂⊂ Ω. We apply the Pohozaev identity (2.5) in
Lemma 2.1 to{

(−∆)pG(·, 0) = 0 in Ω \Br,

G(·, 0) = (−∆)jG(·, 0) = 0 on ∂Ω (j = 1, · · · p− 1).

Thus we obtain
p∑

k=1

∫

∂Ω

(
∂∆k−1G

∂νx

)
∆p−k(x · ∇G)dsx

=

p∑

k=1

∫

∂Br

[(
∂∆k−1G

∂νx

)
∆p−k(x · ∇G)− (

∆k−1G
) (

∂∆p−k(x · ∇G)

∂νx

)]
dsx,

(3.5)

where G = G(x, 0). Since ∆p−k(x · ∇G) = 2(p− k)∆p−kG + (x · ∇∆p−kG) =(
∂∆p−kG

∂ν

)
(x · ν) on ∂Ω, we have

LHS of (3.5) =

p∑

k=1

∫

∂Ω

(x · ν)

(
∂∆k−1G(x, 0)

∂ν

)(
∂∆p−kG(x, 0)

∂ν

)
dsx. (3.6)

On the other hand, inputting G(x, 0) = Γ(x)− g(x) where Γ(x) = Γ(x, 0) =
CN,p|x|2p−N , g(x) = H(x, 0), we see

RHS of (3.5) =

p∑

k=1

(I1,k − I2,k − I3,k + I4,k) , (3.7)

where

I1,k =

∫

∂Br

[(
∂∆k−1Γ

∂νx

)
∆p−k(x · ∇Γ)− (

∆k−1Γ
) (

∂∆p−k(x · ∇Γ)

∂νx

)]
dsx,

I2,k =

∫

∂Br

[(
∂∆k−1Γ

∂νx

)
∆p−k(x · ∇g)− (

∆k−1Γ
) (

∂∆p−k(x · ∇g)

∂νx

)]
dsx,

I3,k =

∫

∂Br

[(
∂∆k−1g

∂νx

)
∆p−k(x · ∇Γ)− (

∆k−1g
) (

∂∆p−k(x · ∇Γ)

∂νx

)]
dsx,

I4,k =

∫

∂Br

[(
∂∆k−1g

∂νx

)
∆p−k(x · ∇g)− (

∆k−1g
) (

∂∆p−k(x · ∇g)

∂νx

)]
dsx.
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First, we easily see that I4,k = o(1) as r → 0 for any k = 1, 2, · · · , p.
Next, we set Γ(r) = CN,pr

2p−N for r = |x|. Then by induction, we have

∆lΓ(r) = CN,p

l−1∏
i=0

(2p−N − 2i)
l∏

j=1

(2p− 2j)r2p−N−2l

=: Al r
2p−N−2l (l = 0, 1, 2, · · · , ) (3.8)

where in this formula, we agree the convention that
∏i=−1

i=0 (· · · ) =
∏j=0

j=1(· · · ) =
1. Also, on ∂Br, we see that

(
∂∆lΓ

∂νx

)
=

(
∆lΓ

)′
(r) = (2p−N − 2l)Alr

2p−N−2l−1,

(
x · ∇∆lΓ

)
(x) = r

(
∆lΓ

)′
(r) = (2p−N − 2l)Alr

2p−N−2l,

∆l (x · ∇Γ) = 2l∆lΓ +
(
x · ∇∆lΓ

)
= (2p−N)Alr

2p−N−2l,

∆l (x · ∇Γ)

∂νx

=
(
∆l (x · ∇Γ)

)′
(r) = (2p−N)(2p−N − 2l)Alr

2p−N−2l−1

(3.9)

holds for l = 0, 1, 2, · · · . Note that, by the formula (1.3), we have

(−1)p =

∫

∂Br(0)

∂∆p−1Γ(x, 0)

∂νx

dsx = (2−N)Ap−1σN . (3.10)

Therefore by (3.8) and (3.9), the integrand of I1,k is

(
∂∆k−1Γ

∂νx

)
∆p−k(x · ∇Γ)− (

∆k−1Γ
) (

∂∆p−k(x · ∇Γ)

∂νx

)

= Ak−1(2p−N − 2k + 2)r2p−N−2k+1 · (2p−N)Ap−kr
2k−N

− Ak−1r
2p−N−2k+2 · Ap−k(2p−N)(2k −N)r2k−N−1

= 2(2p−N)r2p−2N+1Ak−1Ap−k(p− 2k + 1),

thus
I1,k = 2σN(2p−N)r2p−NAk−1Ap−k(p− 2k + 1).

Since we easily check that

p∑

k=1

Ak−1Ap−k(p− 2k + 1) = 0
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for any p ∈ N, we obtain that
∑p

k=1 I1,k = 0.
For I2,k, by (3.9) we see that

∫

∂Br

(
∂∆k−1Γ

∂νx

)
∆p−k(x · ∇g)dsx = Cr2p−2k · r1−N

∫

∂Br

(smooth function) dsx

= o(1) as r → 0, k ∈ {1, 2, · · · , p− 1}.
Also when k = p,

∫

∂Br

(
∂∆p−1Γ

∂νx

)
(x · ∇g)dsx = Cr1−N

∫

∂Br

r

(
∂g

∂ν

)
dsx → 0 as r → 0.

Similarly, we have

∫

∂Br

(
∆k−1Γ

) (
∂∆p−k(x · ∇g)

∂νx

)
dsx = Cr2p−2k+1 · r1−N

∫

∂Br

(smooth function) dsx

= o(1) as r → 0, k ∈ {1, 2, · · · , p}.
Combining these, we obtain I2,k = o(1) as r → 0 for all k = 1, · · · , p.

For I3,k, we see by (3.9),

∫

∂Br

(
∂∆k−1g

∂νx

)
∆p−k(x · ∇Γ)dsx = Cr2k−1 · r1−N

∫

∂Br

(smooth function) dsx

= o(1) as r → 0, k ∈ {1, 2, · · · , p}.∫

∂Br

(
∆k−1g

) (
∂∆p−k(x · ∇Γ)

∂νx

)
dsx = Cr2k−2 · r1−N

∫

∂Br

(
∆k−1g

)
dsx

= o(1) as r → 0, k ∈ {2, 3, · · · , p}.
On the other hand, when k = 1,
∫

∂Br

g(x)

(
∂∆p−1(x · ∇Γ)

∂νx

)
dsx = (2p−N)(2−N)Ap−1 · r1−N

∫

∂Br

g(x)dsx

→ (2p−N)(2−N)Ap−1 · σNg(0)

= (2p−N)(−1)pg(0)

as r → 0, here we have used (3.10). Combining these, we obtain that

−
p∑

k=1

I3
k =

∫

∂Br

g(x)

(
∂∆p−1(x · ∇Γ)

∂νx

)
dsx+o(1) = (N−2p)(−1)p−1g(0)+o(1)
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as r → 0.
Returning to (3.6), (3.7) with these estimates, we obtain

p∑

k=1

∫

∂Ω

(x · ν)

(
∂∆k−1G(x, 0)

∂ν

)(
∂∆p−kG(x, 0)

∂ν

)
dsx = (−1)p−1(N − 2p)g(0),

which leads to (3.1) when N > 2p.
Next, we prove (3.2) when N = 2p. We treat the case when p ≥ 2 only,

since the formula for p = 1 (N = 2):
∫

∂Ω

(x− y) · ν(x)

(
∂G(x, y)

∂νx

)2

dsx =
1

2π
(= C1)

holds for any y ∈ Ω similarly.
Now, Γ(r) = −Cp log r where Cp is defined as (1.2), therefore, we have on

∂Br,

∆lΓ(r) = 2l−1(l − 1)!Cp

l∏
i=1

(2i− 2p)r−2l =: Bl r
−2l,

(
∂∆lΓ

∂νx

)
=

(
∆lΓ

)′
(r) = (−2l)Bl r

−2l−1,

(
x · ∇∆lΓ

)
(x) = r

(
∆lΓ

)′
(r) = (−2l)Bl r

−2l,

∆l (x · ∇Γ) = 2l∆lΓ +
(
x · ∇∆lΓ

)
= 2lBlr

−2l + (−2l)Blr
−2l = 0,

∆l (x · ∇Γ)

∂νx

=
(
∆l (x · ∇Γ)

)′
(r) = 0 (3.11)

for l = 1, 2, · · · , p. Note that ∆pΓ(r) = 0. Just as before, we have (3.5),
(3.6), (3.7), and I4,k = o(1) as r → 0 for k = 1, · · · , p.

For I1,k, since ∆p−k(x · ∇Γ) = ∆p−k(x·∇Γ)
∂νx

= 0 for k 6= p, we have I1,k = 0
for k ∈ {1, 2, · · · , p− 1}. On the other hand, since

x · ∇Γ = r (Γ(r))′ = −Cp,

∂∆p−1Γ

∂ν
=

(
∆p−1Γ

)′
(r) = Bp−1(2− 2p)r1−2p, (p ≥ 2),

we see

I1,p =

∫

∂Br

[(
∂∆p−1Γ

∂νx

)
(x · ∇Γ)− (

∆p−1Γ
) (

∂(x · ∇Γ)

∂νx

)]
dsx

=

∫

∂Br

(−Cp)Bp−1(2− 2p)r1−2pdsx = Bp−1Cp2(p− 1)σ2p.
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Again we check that 2(p− 1)Bp−1σ2p = (−1)p−1 by (1.3). Thus we have

I1,k =

{
0, k ∈ {1, 2, · · · , p− 1},
(−1)p−1Cp, k = p.

Also, since ∆k−1Γ(r) = Bp−1r
−2(k−1), ∂∆k−1Γ

∂ν
(r) = Bk−1(2 − 2k)r1−2k for

k ∈ {2, 3, · · · , p}, we easily check that I2,k = o(1) as r → 0 just as before for
k ∈ {2, 3, · · · , p}. For I2,1, we see

I2,1 =

∫

∂Br

[(
∂Γ

∂νx

)
∆p−1(x · ∇g)− Γ

(
∂∆p−1(x · ∇g)

∂νx

)]
dsx

=

∫

∂Br

(−Cp)

(
1

r

)
∆p−1(x · ∇g)dsx + Cp

∫

∂Br

log r

(
∂∆p−1(x · ∇g)

∂νx

)
dsx

=
(
r2p−2 + r2p−1 log r

) ∫

S2p−1

(smooth function) dω

= o(1)

as r → 0 when p ≥ 2. Thus we have I2,k = o(1) for all k ∈ {1, 2, 3, · · · , p}.
For I3,k, since ∆p−k(x · Γ) = 0 for k 6= p, we see I3,k = 0 for k 6= p. Also,

since x · ∇Γ = −Cp, we see

I3,p =

∫

∂Br

[(
∂∆p−1g

∂νx

)
(x · ∇Γ)− (

∆p−1g
) (

∂(x · ∇Γ)

∂νx

)]
dsx

= (−Cp)

∫

∂Br

(
∂∆p−1g

∂νx

)
dsx = o(1)

as r → 0.
Returning to (3.6), (3.7), we obtain

p∑

k=1

∫

∂Ω

(x · ν)

(
∂∆k−1G(x, 0)

∂ν

)(
∂∆p−kG(x, 0)

∂ν

)
dsx = (−1)p−1Cp,

which ends the proof of (3.2).
To prove (3.3), we apply Green’s 2nd identity (2.1) for f = G = G(x, 0),

g = Gxi
on Ω \Br(0). Since ∆pG = (∆pG)xi

≡ 0 on Ω \Br(0), we get

0 =

p∑

k=1

∫

∂(Ω\Br)

[(
∂∆k−1G

∂νx

) (
∆p−kG

)
xi
− (

∆k−1G
)
(

∂
(
∆p−kG

)
xi

∂νx

)]
dsx,

11



which leads to

p∑

k=1

∫

∂Ω

(
∂∆k−1G

∂νx

) (
∆p−kG

)
xi

dsx

=

p∑

k=1

∫

∂Br

[(
∂∆k−1G

∂νx

) (
∆p−kG

)
xi
− (

∆k−1G
)
(

∂
(
∆p−kG

)
xi

∂νx

)]
dsx.

(3.12)

Since
(
∆p−kG

)
xi

=
(

∂∆p−kG
∂νx

)
νi(x) on ∂Ω, we see

LHS of (3.12) =

p∑

k=1

∫

∂Ω

(
∂∆k−1G(x, 0)

∂νx

)(
∂∆p−kG(x, 0)

∂νx

)
νi(x)dsx.

(3.13)
On the other hand, inputting G(x, 0) = Γ(x) − g(x), g(x) = H(x, 0) as

before, we obtain

RHS of (3.5) =

p∑

k=1

(J1,k − J2,k − J3,k + J4,k) , (3.14)

where

J1,k =

∫

∂Br

[(
∂∆k−1Γ

∂νx

) (
∆p−kΓ

)
xi
− (

∆k−1Γ
)
(

∂
(
∆p−kΓ

)
xi

∂νx

)]
dsx,

J2,k =

∫

∂Br

[(
∂∆k−1Γ

∂νx

) (
∆p−kg

)
xi
− (

∆k−1Γ
)
(

∂
(
∆p−kg

)
xi

∂νx

)]
dsx,

J3,k =

∫

∂Br

[(
∂∆k−1g

∂νx

) (
∆p−kΓ

)
xi
− (

∆k−1g
)
(

∂
(
∆p−kΓ

)
xi

∂νx

)]
dsx,

J4,k =

∫

∂Br

[(
∂∆k−1g

∂νx

) (
∆p−kg

)
xi
− (

∆k−1g
)
(

∂
(
∆p−kg

)
xi

∂νx

)]
dsx.

Again, we see that J4,k = o(1) as r → 0 for any k = 1, 2, · · · , p, N ≥ 2p.
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Now, we treat the case N > 2p. In this case, since ∆lΓ = Alr
2p−N−2l by

(3.8), we have
(
∆lΓ

)
xi

= Al(2p−N − 2l)r2p−N−2l−1νi(x),

∂
(
∆lΓ

)
xi

∂νx

=
x

r
· ∇ (

∆lΓ
)

xi

=
x

r
· Al(2p−N − 2l){(2p−N − 2l − 2)r2p−N−2l−3xi

x

r
+ r2p−N−2l−2ei}

= Al(2p−N − 2l)(2p−N − 2l − 1)r2p−N−2l−2νi(x) (3.15)

for l = 0, 1, 2, · · · on ∂Br, here ei = ∇xi and we have used νi(x) = xi

r
on ∂Br

for i = 1, 2, · · · , N . By (3.8) and (3.15), we have

J1,k =

∫

∂Br

[(
∂∆k−1Γ

∂νx

) (
∆p−kΓ

)
xi
−∆k−1Γ

(
∂

(
∆p−kΓ

)
xi

∂νx

)]
dsx

= C

∫

∂Br

r2p−N−2k+1 · r2k−N−1νi(x)dsx − C ′
∫

∂Br

r2p−N−2k+2 · r2k−N−2νi(x)dsx

= C ′′r2(p−N)

∫

∂Br

νi(x)dsx = 0, k ∈ {1, 2 · · · , p},

here we have used
∫

∂Br
νi(x)dsx = 0.

As for the estimate of J2,k, as in the proof of (3.1), we see

∫

∂Br

(
∂∆k−1Γ

∂νx

) (
∆p−kg

)
xi

dsx = Cr2(p−k) · r1−N

∫

∂Br

(smooth function) dsx

= o(1), (k = 1, 2, · · · , p− 1)∫

∂Br

(
∂∆p−1Γ

∂νx

)
gxi

dsx = Ap−1(2−N)r1−N

∫

∂Br

gxi
dsx

→ Ap−1(2−N)σNgxi
(0) = (−1)pgxi

(0),
∫

∂Br

(
∆k−1Γ

)
(

∂
(
∆p−kg

)
xi

∂νx

)
dsx = Cr2p−2k+1 · r1−N

∫

∂Br

(smooth function) dsx

= o(1) (k = 1, 2, · · · , p).

Thus we have

J2,k =

{
o(1), k ∈ {1, 2, · · · , p− 1},
(−1)pgxi

(0) + o(1), k = p,

13



as r → 0.
As for the estimate of J3,k, we see

∫

∂Br

(
∂∆k−1g

∂νx

) (
∆p−kΓ

)
xi

dsx = Cr2k−2 · r1−N

∫

∂Br

(
∂∆k−1g

∂νx

)
νi(x)dsx

= o(1), (k = 2, 3 · · · , p),
∫

∂Br

(
∆k−1g

)
(

∂
(
∆p−kΓ

)
xi

∂νx

)
dsx = Cr2k−3 · r1−N

∫

∂Br

(
∆k−1g

)
νi(x)dsx

= o(1), (k = 2, 3 · · · , p),

thus we have J3,k = o(1) for k ∈ {2, 3, · · · , p}. Now, we estimate J3,1. For
smooth g, we have

∫

∂Br

(
∂g

∂νx

)
νi(x)dsx =

∫

∂Br

(
N∑

j=1

∂g

∂xj

νj(x)

)
νi(x)dsx

=
N∑

j=1

∫

∂Br

(
∂g

∂xj

(x)− ∂g

∂xj

(0)

)
νjνidsx +

N∑
j=1

∫

∂Br

∂g

∂xj

(0)νjνidsx

= O(r) ·O(rN−1) +
∂g

∂xi

(0)
σN

N
rN−1,

where we have used

∫

∂Br

νiνjdsx =

{
0, (i 6= j),
σN

N
rN−1, (i = j).

Thus we obtain
∫

∂Br

(
∂g

∂νx

) (
∆p−1Γ

)
xi

dsx = Ap−1(2−N)r1−N

∫

∂Br

(
∂g

∂νx

)
νi(x)dsx

→ Ap−1(2−N)
σN

N
gxi

(0), as r → 0.

Also by Taylor expansion, we have

∫

∂Br

g

(
∂ (∆p−1Γ)xi

∂νx

)
dsx

= Ap−1(2−N)(1−N)r−N

∫

∂Br

(
g(0) +∇g(0) · x + O(|x|2)) νi(x)dsx.

14



Since

r−N

∫

∂Br

g(0)νi(x)dsx = 0,

r−N

∫

∂Br

O(|x|2)νi(x)dsx = O(r2−N)×O(r1−N) = O(r) → 0,

r−N

∫

∂Br

(∇g(0) · x) νi(x)dsx = r1−N

N∑
j=1

∂g

∂xj

(0)

∫

∂Br

νjνidsx =
σN

N

∂g

∂xi

(0),

we obtain that

∫

∂Br

g

(
∂ (∆p−1Γ)xi

∂νx

)
dsx → Ap−1(2−N)(1−N)

σN

N

∂g

∂xi

(0)

as r → 0. Thus, by (3.10), we have

J3,1 → Ap−1(2−N)
σN

N
gxi

(0)− Ap−1(2−N)(1−N)
σN

N
gxi

(0)

= Ap−1(2−N)σNgxi
(0) = (−1)pgxi

(0).

Returning to (3.13), (3.14) with the above estimates, we have

p∑

k=1

∫

∂Ω

(
∂∆k−1G(x, 0)

∂νx

)(
∂∆p−kG(x, 0)

∂νx

)
(x, y)νi(x)dsx

= 0− J2,p − J3,1 + o(1) = −(−1)pgxi
(0)− (−1)pgxi

(0) + o(1)

= (−1)p−1Rxi
(0) + o(1)

where we have used that gxi
(0) = ∂

∂xi
H(x, 0)

∣∣∣
x=0

= 1
2
Rxi

(0). Letting r → 0,

we have (3.3) when N > 2p.
Next, we prove (3.3) when N = 2p. The argument is almost the same

as before, so we should be brief. Again we only treat the case p ≥ 2, since
the formula was proved in [10] when p = 1. Recall Γ(r) = −Cp log r and
∆lΓ = Blr

−2l for l = 1, 2, · · · , on ∂Br, here Bl is defined in (3.11). Note that
Bl = 0 for l ≥ p. Thus if we put

B̃l := (−2l)Bl = −Cp2
ll!

l∏
i=1

(2i− 2p)
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and we agree the convention that B̃0 = −Cp, we have
(
∆lΓ

)
xi

= B̃lr
−2l−1νi(x),

∂
(
∆lΓ

)
xi

∂νx

= −(2l + 1)B̃lr
−2l−2νi(x) (3.16)

for l = 0, 1, 2, · · · , on ∂Br. By using (3.11) and (3.16), we obtain, as before,

J1,k = 0, k ∈ {1, 2, · · · , p},

J2,k =

{
o(1), k ∈ {1, 2, · · · , p− 1},
B̃p−1σNgxi

(0) + o(1), k = p,

J3,k = o(1), k ∈ {2, 3, · · · , p},
J3,1 = B̃p−1

σN

N
gxi

(0)−
{
−(2p− 1)B̃p−1

σN

N
gxi

(0)
}

+ o(1)

= B̃p−1σNgxi
(0) + o(1)

as r → 0, where B̃p−1σN = (−1)p by (1.3). Thus returning to (3.13), (3.14),
we obtain (3.3) when N = 2p.

Finally, we prove (3.4). Differentiating (3.3) with respect to yj, we obtain

∂2R

∂yi∂yj

(y)

=

p∑

k=1

∫

∂Ω

[{
∂

∂yj

(
∂Gk−1

∂νx

)}(
∂Gp−k

∂νx

)
νi(x) +

(
∂Gk−1

∂νx

)
νi(x)

∂

∂yj

(
∂Gp−k

∂νx

)]
dsx.

Note that
(

∂Gj

∂νx
(x, y)

)
νi(x) =

∂Gj

∂xi
(x, y) for any j = 0, 1, · · · , p − 1 on ∂Ω

since Gj = 0 on ∂Ω. Thus we have

∂2R

∂yi∂yj

(y) =

p∑

k=1

∫

∂Ω

[{
∂

∂yj

(
∂Gk−1

∂νx

)}(
∂Gp−k

∂xi

)
+

(
∂Gk−1

∂xi

)
∂

∂yj

(
∂Gp−k

∂νx

)]
dsx

= 2

p∑

k=1

∫

∂Ω

(
∂Gp−k(x, y)

∂xi

)
∂

∂yj

(
∂Gk−1(x, y)

∂νx

)
dsx

= 2

p∑

k=1

∫

∂Ω

(
∂Gk−1(x, y)

∂xi

)
∂

∂yj

(
∂Gp−k(x, y)

∂νx

)
dsx.
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4 Nondegeneracy of critical points of the Robin

function on symmetric domains.

In this section, we prove the nondegeneracy of the critical point of the Robin
function associated to the Green function of (−∆)p with the Navier boundary
conditions on some symmetric domains. Let Ω ⊂ RN , (N ≥ 2p) be a smooth
bounded domain. We call Ω a GNN domain, if the followings hold.

(H1) Ω is symmetric with respect to hyperplanes {xi = 0} (i = 1, · · · , N).

(H2) Ω is convex with respect to xi-directions (i = 1, · · · , N).

See [6]. Note that a GNN domain need not be convex.
In this section we prove the following theorem, which extends the result

obtained by Grossi [7] when p = 1 to the general case p ∈ N.

Theorem 4.1 Let Ω ⊂ RN , (N ≥ 2p) be a smooth bounded domain with
(H1), (H2). Let R = R(y) be the Robin function of (−∆)p under the Navier
boundary condition. Then we have

∇yR(0) = 0,
∂2R

∂yi∂yj

(0) =

{
0 (i 6= j),

ai > 0 (i = j)

holds true.

We proceed as in [7]. First, we prepare some lemmas. In the following,
let us denote x = (x1, x

′) ∈ Ω, x′ = (x2, · · · , xN) ∈ RN−1.

Lemma 4.2 Assume Ω is symmetric with respect to the hyperplane {x1 = 0}
and set Ω0 = Ω ∩ {x1 = 0}. Then for any y0 ∈ Ω0, we have

Gk((x1, x
′), y0) = Gk((−x1, x

′), y0), ∀k = 1, 2, · · · , p− 1.

Proof. By Lemma 2.1 of [7], we know that Gp−1(x, y0) is even with
respect to x1-variable. Let us fix any φ ∈ C∞

0 (Ω). By (2.2), −∆Gp−2(x, y0) =
Gp−1(x, y0) for x ∈ Ω. Since Ω is symmetric with respect to the plane {x1 =
0} and y0 ∈ Ω0, we also have −∆Gp−1((−x1, x

′), y0) = Gp−1((−x1, x
′), y0),

thus −∆Gp−1((−x1, x
′), y0) = Gp−1(x, y0) for x ∈ Ω, since Gp−1(x, y0) is even

with respect to x1.
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Multiplying φ to these equations, we get
∫

Ω

{∇Gp−2((x1, x
′), y0)−∇Gp−2((−x1, x

′), y0)
} · ∇φ(x)dx = 0

for any φ ∈ C∞
0 (Ω). This implies that Gp−2(·, y0) is even with respect to x1.

By induction, we obtain the result.

Lemma 4.3 Assume Ω is symmetric with respect to the hyperplane {x1 = 0}
and let gk (k = 0, 1, 2, · · · , p− 1) be odd functions with respect to x1. Then,
the unique solution u of the problem

{
(−∆)pu = 0 in Ω,

(−∆)ku = gk on ∂Ω (k = 0, 1, · · · p− 1),
(4.1)

is also an odd function with respect to x1.

Proof. For x = (x1, x
′) ∈ Ω, let us denote x∗ = (−x1, x

′). By the
symmetry, we see x∗ is also a point in Ω. Define v(x) = −u(x∗) for x ∈ Ω.
Then, by the oddness of gk, we obtain

(−∆)pv(x) = − ((−∆)pu) (x∗) = 0, x ∈ Ω,

(−∆)kv(x) = − (
(−∆)ku

)
(x∗) = −gk(x

∗) = gk(x) = (−∆)ku(x), x ∈ ∂Ω,

for k = 0, 1, · · · p− 1. That is, v is also a solution of (4.1). Therefore by the
uniqueness of the solution, we obtain that v = u, which proves the lemma.

Now, we prove Theorem 4.1.

Proof of Theorem 4.1.
By Lemma 4.2, we see that

(
∂Gk

∂x1

)
(·, y0) is an odd function with respect

to x1 for k = 0, 1, · · · , p−1. Now, let u be the unique solution of the problem
{

(−∆)pu = 0 in Ω,

(−∆)ku = −
(

∂Gk

∂x1

)
(·, y0) on ∂Ω (k = 0, 1, · · · p− 1).

(4.2)

By Lemma 4.3, we confirm that u is also odd in x1. Therefore, we have u ≡ 0
on the hyperplane {x1 = 0}, which implies

(
∂u

∂xj

)
(y0) = 0 for j = 2, 3, · · · , N. (4.3)
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Note that the same oddness holds for uk(x) = (−∆)ku(x) for k = 0, 1, · · · , p−
1. We see uk satisfies




−∆uk = uk+1 in Ω, (k = 0, 1, · · · , p− 2),

−∆up−1 = 0 in Ω,

uk = −
(

∂Gk

∂x1

)
(·, y0) on ∂Ω, (k = 0, 1, · · · , p− 1).

(4.4)

Recall Gk(x, y0) > 0 for x ∈ Ω and Gk(x, y0) = 0 for x ∈ ∂Ω for any

k ∈ {0, 1, · · · , p− 1}. By the assumption (H2), we have
(

∂Gk

∂x1

)
(·, y0) ≥ 0 on

{x1 < 0} ∩ ∂Ω. Also uk ≡ 0 on Ω ∩ {x1 = 0} by the oddness of uk in x1.
Then the maximum principle applied to the cooperative system (4.4) on the
domain Ω ∩ {x1 < 0} implies that uk(x) < 0 for x ∈ Ω ∩ {x1 < 0} for any
k = 0, 1, · · · , p − 1. By applying Hopf lemma in the domain Ω ∩ {x1 < 0},
we also have

(
∂uk

∂x1

)
(y0) > 0 for all k = 0, 1, · · · , p−1. In particular, we have

u(x) < 0 in Ω ∩ {x1 < 0} and
(

∂u

∂x1

)
(y0) > 0. (4.5)

On the other hand, by Green’s representation formula (2.3), we see the
unique solution of (4.2) can be written as

u(y) =

p∑

k=1

∫

∂Ω

(
∂Gk−1(x, y)

∂νx

)(
∂Gp−k(x, y0)

∂x1

)
dsx.

Differentiating both sides with respect to yj leads to

∂u

∂yj

(y) =

p∑

k=1

∫

∂Ω

∂

∂yj

(
∂Gk−1(x, y)

∂νx

)(
∂Gp−k(x, y0)

∂x1

)
dsx.

Now, compared this to the formula (3.4) in Theorem 3.1:

1

2

∂2R

∂y1∂yj

(y) =

p∑

k=1

∫

∂Ω

∂

∂yj

(
∂Gk−1(x, y)

∂νx

)(
∂Gp−k(x, y)

∂x1

)
dsx,

and using (4.3), (4.5), we confirm that

1

2

(
∂2R

∂y1∂yj

)
(y0) =

(
∂u

∂yj

)
(y0) = 0, (j = 2, · · · , N),

1

2

(
∂2R

∂y2
1

)
(y0) =

(
∂u

∂y1

)
(y0) > 0.
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By changing x1-axis to another one, we obtain the desired result.
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