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Abstract

In the present paper, we consider sampling theorems on Banach func-
tion spaces. Here we obtain a necessary and sufficient condition. For
the latter half of the paper, we consider sampling theorems in terms of
wavelets.
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1 Introduction

Recently to unify the results in harmonic analysis, we consider Banach function
spaces. Following [3], let us recall the definition of Banach function spaces. By
Banach function norms on Rn, we mean the mapping ∥ · ∥X : L1

loc(Rn) → [0,∞]
satisfying the following conditions below.

1. For all f ∈ L1
loc(Rn), ∥f∥X ≥ 0 and equality holds if and only if f = 0.

2. For all f ∈ L1
loc(Rn) and a ∈ C, ∥a · f∥X = |a| · ∥f∥X .

3. For all f, g ∈ L1
loc(Rn), ∥f + g∥X ≤ ∥f∥X + ∥g∥X .

4. For all f, g ∈ L1
loc(Rn), if |f | ≤ |g|, then ∥f∥X ≤ ∥g∥X .

5. We have

∥∥∥∥sup
j∈N

fj

∥∥∥∥
X

= sup
j

∥fj∥X , whenever {fj}∞j=1 ⊂ L1
loc(Rn) satisfies

0 ≤ f1 ≤ f2 ≤ · · · .

6. If F is of finite measure, then χF , the indicator function of F , satisfies

∥χF ∥X < ∞ and there exists a constant cF > 0 such that

∫
F

|f(x)| dx ≤

cF ∥f∥X .

We denote by X the set of all f ∈ L1
loc(Rn) such that ∥f∥X < ∞. Then X is

a normed space. We assume in the present paper that X is a Banach space. A
Banach function space on Rn is a Banach space that can be realized in this way.
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The sampling theorem is fundamental not only in harmonic analysis but also
in other fields of engineering. We review the classical results. For definiteness,

define Ff(ξ) := 1

(2π)
n
2

∫
Rn

f(x)e−ix·ξ dx, F−1f(x) :=
1

(2π)
n
2

∫
Rn

f(ξ)eix·ξ dξ.

Theorem 1.1. If f ∈ L2(R) has frequency support in [−2πW, 2πW ] for some

W > 0, then the reproducing formula f(t) =
∞∑

k=−∞

f

(
k

2W

)
sin(π(2Wt− k))

π(2Wt− k)

holds, where the right-hand side converges in L2(R) and uniformly over R. Ad-

ditionally we have the norm equality ∥f∥2L2(R) =
1

2W

∞∑
k=−∞

∣∣∣∣f ( k

2W

)∣∣∣∣2 .
This result has a long history. The main people involved are Ogura, Shannon,

Someya and Whitaker. There are a vast amount of literatures and we refer
especially to the original papers [18, 20] and an account [4, 17] for more details.
It is known that the classical theorem above is generalized to the case Lp(Rn)
(1 < p <∞) as the following form.

Theorem 1.2. Let 1 < p < ∞. If f ∈ Lp(Rn) has frequency support on
[−πr, πr]n for some r > 0, then the norm equivalence

C−n
p rn/p∥f∥Lp(Rn) ≤

(∑
k∈Zn

∣∣∣∣f (kr
)∣∣∣∣p
)1/p

≤ Cp
nrn/p∥f∥Lp(Rn)

holds, where Cp ≥ 1 is a constant independent of n, r and f . Moreover the

reproducing formula f(x) =
∑
k∈Zn

f

(
k

r

) n∏
ν=1

sin(π(rxν − kν))

π(rxν − kν)
holds, where the

right-hand side converges unconditionally in Lp(Rn).

Gensun has initially proved Theorem 1.2 in [10] where the statement on
unconditionally convergence is unclear. Later an alternative proof containing
unconditional convergence has been given by Ashino–Mandai [1].

To formulate our results, we introduce notations. Write Q(r) := [−r, r]n for
r > 0. For a closed subset Z of Rn, let us denote by S ′(Rn)Z the set of all
f ∈ S ′(Rn) whose Fourier transform is supported on Z. For j ∈ Z and m ∈ Zn,
we write Qj,m := 2−jm+ [0, 2−j)n. We employ sampling theorems to learn the
size of f ∈ S ′(Rn)Z in terms of a certain norm from the data {f(m)}m∈Zn . Let
A,B ≥ 0 be a real numbers. The notation A . B stands for A ≤ CB for some
constant C > 0 independent of the main parameters. Meanwhile, A & B means
B . A. Finally A ∼ B stands for A . B and B . A. With this notation, we
prove the following theorem first.

Theorem 1.3. Assume that

fN (x) := (1 + |x1|)−2N (1 + |x2|)−2N · · · (1 + |xn|)−2N ∈ X (1.1)

for some N ∈ N.
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(1) We have the following norm equivalence.∥∥∥∥ sup
y∈Rn

|f(·+ y)|
(1 + |y|)2N

∥∥∥∥
X

∼

∥∥∥∥∥ supy∈Rn

1

(1 + |y|)2N
∑

m∈Zn

|f(m)|χQ0,m
(·+ y)

∥∥∥∥∥
X

for all f ∈ S ′(Rn)Q(1).

(2) We denote by K the set of all non-negative sequences λ = {λm}m∈Zn

such that λm = 0 with finite number of exception. Then the following are
equivalent.

(a) For all y ∈ Rn and λ ∈ K,∥∥∥∥∥ ∑
m∈Zn

λmχQ0,m(· − y)

∥∥∥∥∥
X

. (1 + |y|)2N
∥∥∥∥∥ ∑
m∈Zn

λmχQ0,m

∥∥∥∥∥
X

. (1.2)

(b) For all f ∈ S ′(Rn)Q(1), we have

∥f∥X .
∥∥∥∥∥ ∑
m∈Zn

f(m)χQ0,m

∥∥∥∥∥
X

. (1.3)

(3) The following are equivalent.

(c) For all f ∈ S ′(Rn)Q(1) and y ∈ Rn, we have

∥f(· − y)∥X . (1 + |y|)2N∥f∥X . (1.4)

(d) For all f ∈ S ′(Rn)Q(1), we have∥∥∥∥∥ ∑
m∈Zn

f(m)χQ0,m

∥∥∥∥∥
X

∼ ∥f∥X . (1.5)

(4) If we assume (1.4) for all f ∈ S ′(Rn)Q(1), then

∥f∥X ∼
∥∥∥∥ sup
y∈Rn

|f(·+ y)|
(1 + |y|)2N+n+1

∥∥∥∥
X

∼

∥∥∥∥∥ supy∈Rn

1

(1 + |y|)2N+n+1

∑
m∈Zn

|f(m)|χQ0,m(·+ y)

∥∥∥∥∥
X

for all f ∈ S ′(Rn)Q(1).

Motivated by [19], we are led to consider the translation in the theorem
above.

We denote by M (η) the Hardy–Littlewood maximal operator. That is,

M (η)f(x) := sup
Q∈Q(x)

(
1

|Q|

∫
Q

|f(y)|η dy
)1/η
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for a measurable function f : Rn → C, where Q(x) denotes the set of all cubes
whose sides are parallel to the coordinate axis and which contain x. Also, we
write M :=M (1). As a corollary, when the maximal operator is bounded, then
our assumptions are automatically fulfilled.

Corollary 1.4. If there exists η > 0 such that ∥M (η)f∥X . ∥f∥X for all
measurable functions f , then

∥f∥X ∼

∥∥∥∥∥ ∑
m∈Zn

f(m)χQ0,m

∥∥∥∥∥
X

(1.6)

for all f ∈ S ′(Rn)Q(1).

Here are some examples of X we envisage.

Example 1.5.

1. The simplest case is the one when X = Lp(Rn) with 1 ≤ p ≤ ∞. Namely

∥f∥Lp(Rn) ∼

∥∥∥∥∥ ∑
m∈Zn

f(m)χQ0,m

∥∥∥∥∥
Lp(Rn)

holds for all f ∈ Lp(Rn) ∩ S ′(Rn)Q(1). Comparing with Theorem 1.2, we
note that this norm equivalence is true even if p = 1 or p = ∞.

2. Our theory is readily applicable to the weighted Lebesgue space X =
Lp(Rn, (1 + |x|)a dx) for some a ∈ R.
The same can be said for the space X = Lp(Rn, w(x) dx) for some w ∈ Ap

with 1 ≤ p < ∞, where Ap denotes the set of all weights w for which the
quantity

Ap(w) = sup
Q : cubes

(
1

|Q|

∫
Q

w(x) dx

)(
1

|Q|

∫
Q

w(x)−
1

p−1 dx

)p−1

<∞

when 1 < p <∞ and

A1(w) = lim
κ↓1

Aκ(w) <∞

when p = 1.

3. Orlicz spaces fall under the scope of Theorem 1.3. The definition of Or-
licz spaces are given as follows: First, by a Young function, we mean a
continuous bijection Φ : [0,∞) → [0,∞). For such a function Φ, we define

∥f∥LΦ := inf

{
λ > 0 :

∫
Rn

Φ

(
|f(x)|
λ

)
dx ≤ 1

}
.

It is easy to see that ∥·∥LΦ is a Banach function norm. For example, Orlicz
spaces can be used to describe the intersection spaces as the example
Φ(t) = t+ t2 shows.
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4. Let p( · ) : Rn → [1,∞] be a measurable function and consider the variable
Lebesgue space Lp( · )(Rn) (cf. [15]). According to [5, 7], if we assume

(a) For all |x− y| ≤ 1/2,∣∣∣∣ 1

p(x)
− 1

p(y)

∣∣∣∣ . 1

− log(|x− y|)
,

(b) There exists a constant p̃ such that for all x ∈ Rn,∣∣∣∣ 1

p(x)
− p̃

∣∣∣∣ . 1

log(e+ |x|)
,

then M is bounded on Lp( · )/η(Rn) for every number η such that 0 < η <
ess inf{p(x) : x ∈ Rn}. Hence ∥M (η)f∥Lp( · )(Rn) . ∥f∥Lp( · )(Rn) holds for

all f ∈ Lp( · )(Rn).

5. If we modify the argument, then we see that we can take BMO(Rn) which
consists of all functions f satisfying

∥f∥BMO(Rn) := sup
Q : cubes

1

|Q|

∫
Q

∣∣∣∣f(x)− ( 1

|Q|

∫
Q

f(y) dy

)∣∣∣∣ dx <∞.

The quasi-norm ∥ · ∥BMO(Rn) becomes a norm when we identify functions
which differ by a constant. The maximal operator M is shown to be
bounded in [2].

Below we describe how we organized the present paper. Theorem 1.3 is
proved in Section 2. Section 3 deals with sampling theorems from the viewpoint
of wavelet characterization.

2 Proof of Theorem 1.3

The following lemma, which dates back to [8], was the starting point of the
sampling theorem and the (modern) theory of function spaces. This lemma
shall be used in the proof of Theorem 1.3.

Lemma 2.1. Let κ ∈ S(Rn) be an auxiliary bump function satisfying

χQ(3) ≤ κ ≤ χQ(3+1/100).

Then any f ∈ S ′(Rn)Q(3) has the following expansion:

f = (2π)−
n
2

∑
m∈Zn

f(m)F−1κ(· −m), (2.1)

where the convergence takes place in S ′(Rn).
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To prove Theorem 1.3 (2), we need the following lemma as well.

Lemma 2.2. Let N ∈ N be arbitrary and fN given by (1.1). Then there exists
a function φN ∈ S ′(Rn)Q(1) such that φN (x) ∼ fN (x).

Proof. First observe that the function τ of a variable t ∈ R, which is given by

τ(t) := F−1[χ[−1,1]](t) =

√
2

π
· sin t

t
, (2.2)

belongs to S ′(R)[−1,1] and vanishes at 2πZ \ {0}. Therefore, the function given
by

ψ(x) :=
2N∏
j=1

τ(xj)
2N (2.3)

belongs to S ′(Rn)Q(2N). Observe that it is non-negative and that it vanishes at
(2πZ)n \ {(0, 0, · · · , 0)}. If we define

φN (x) :=
10N∑

l1=−10N

10N∑
l2=−10N

· · ·
10N∑

ln=−10N

ψ

(
x− (l1, l2, · · · , ln)

2N

)
, (2.4)

then we see that φN satisfies the desired property.

Proof of Theorem 1.3.

(1) Let us first establish that

sup
z∈Rn

|f(x+ z)|
(1 + |z|)2N

& 1

(1 + |y|)2N
∑

m∈Zn

|f(m)|χQ0,m(x+ y) (2.5)

for all x, y ∈ Rn. To this end, we freeze x and y arbitrarily and let us
estimate the right-hand side. Denote by mx,y the unique integer such that
x+ y ∈ Q0,mx,y . Then we have

1

(1 + |y|)2N
∑

m∈Zn

|f(m)|χQ0,m(x+ y) =
1

(1 + |y|)2N
|f(mx,y)|. (2.6)

Note that
(1 + |x|)(1 + |y|) ≥ 1 + |x+ y|. (2.7)

If we use (2.7) and the fact that |x+ y −mx,y| ≤ n, then we obtain

1 + |x−mx,y| ≤ (1 + |y|)(1 + |x+ y −mx,y|) ≤ (1 + n)(1 + |y|). (2.8)

If we insert (2.8) to (2.6), then we have

1

(1 + |y|)2N
|f(mx,y)| .

1

(1 + |x−mx,y|)2N
|f(mx,y)|

. sup
w∈Rn

1

(1 + |x− w|)2N
|f(w)|,
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which proves (2.5). Next, let us establish that

sup
y∈Rn

|f(x+ y)|
(1 + |y|)2N

. 1

(1 + |y|)2N
∑

m∈Zn

|f(m)|χQ0,m(x+ y). (2.9)

To this end, we fix y ∈ Rn. Then, by virtue of Lemma 2.1, we have

|f(x+ y)|
(1 + |y|)2N

.
∑

m∈Rn

|f(m)| |F
−1κ(x+ y −m)|
(1 + |y|)2N

.

If we use the fact that κ ∈ S(Rn) and (2.7), then we obtain

|f(x+ y)|
(1 + |y|)2N

.
∑

m∈Rn

|f(m)|
(1 + |x+ y −m|)2N (1 + |y|)2N

.
∑

m∈Rn

|f(m)|
(1 + |x−m|)2N

. 1

(1 + |y|)2N
∑

m∈Zn

|f(m)|χQ0,m(x+ y).

This proves (2.9).

From (2.5) and (2.9), we obtain∥∥∥∥ sup
y∈Rn

|f(·+ y)|
(1 + |y|)2N

∥∥∥∥
X

∼

∥∥∥∥∥ supy∈Rn

1

(1 + |y|)2N
∑

m∈Zn

|f(m)|χQ0,m(·+ y)

∥∥∥∥∥
X

and (1) is therefore proved.

(2) Assume (a) and that f belongs to S ′(Rn)Q(1). Then we have by (2.1) and
the fact that κ ∈ S(Rn),

|f(x)| .
∑

m∈Zn

|f(m)|(1 + |x−m|)−2N−n−1.

If we use (2.7), then we obtain

|f(x)| .
∑
l∈Zn

|f(l)|(1 + |x− l|)−2N−n−1

.
∑

m∈Zn

1

(1 + |m|)2N+n+1

(∑
l∈Zn

|f(l)|χQ0,l
(x−m)

)
. (2.10)
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Consequently, we have

∥f∥X .
∥∥∥∥∥ ∑
m∈Zn

1

(1 + |m|)2N+n+1

(∑
l∈Zn

|f(l)|χQ0,l
(· −m)

)∥∥∥∥∥
X

≤
∑

m∈Zn

1

(1 + |m|)2N+n+1

∥∥∥∥∥∑
l∈Zn

f(l)χQ0,l
(· −m)

∥∥∥∥∥
X

=
∑

m∈Zn

1

(1 + |m|)2N+n+1

∥∥∥∥∥∑
l∈Zn

f(l −m)χQ0,l

∥∥∥∥∥
X

= lim
N→∞

∑
m∈Zn

1

(1 + |m|)2N+n+1

∥∥∥∥∥∥
∑

l∈Zn, |l−m|≤N

f(l −m)χQ0,l

∥∥∥∥∥∥
X

.

If we use (a) with λ = {λl}l∈Zn = {|f(l)χ{|k|≤N}(l)|}l∈Zn , then we have

∥f∥X .
∑

m∈Zn

1

(1 + |m|)n+1

∥∥∥∥∥∑
l∈Zn

f(l)χQ0,l

∥∥∥∥∥
X

∼

∥∥∥∥∥∑
l∈Zn

f(l)χQ0,l

∥∥∥∥∥
X

.

(2.11)

Now assume (b). Since χ[0,1]n . fN , we obtain∥∥∥∥∥ ∑
m∈Zn

λmχQ0,m(· − y)

∥∥∥∥∥
X

.
∥∥∥∥∥ ∑
m∈Zn

λmfN (· − y −m)

∥∥∥∥∥
X

.

By the definition of fN (1.1), we have∥∥∥∥∥ ∑
m∈Zn

λmfN (· − y −m)

∥∥∥∥∥
X

. (1 + |y|)2N
∥∥∥∥∥ ∑
m∈Zn

λmfN (· −m)

∥∥∥∥∥
X

. (1 + |y|)2N
∥∥∥∥∥ ∑
m∈Zn

λmφN (· −m)

∥∥∥∥∥
X

.

Assuming (b), then we have∥∥∥∥∥ ∑
m∈Zn

λmφN (· −m)

∥∥∥∥∥
X

.
∥∥∥∥∥ ∑
m∈Zn

λmχQ0,m

∥∥∥∥∥
X

. (2.12)

If we use (2.12), then we obtain∥∥∥∥∥ ∑
m∈Zn

λmχQ0,m(· − y)

∥∥∥∥∥
X

. (1 + |y|)2N
∥∥∥∥∥ ∑
m∈Zn

λmχQ0,m

∥∥∥∥∥
X

,

which proves (a).
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(3) Assume first (c). We take a function Φ ∈ S(Rn) such that FΦ equals 1
on Q(1). Note that f = cnΦ ∗ f for some constant cn depending only on
n. By using (2.7) we have

|f(x+ y)|
(1 + |y|)2N+n+1

.
∫
Rn

|Φ(x+ y − z)f(z)|
(1 + |y|)2N+n+1

dz

.
∫
Rn

|f(z)|
(1 + |x+ y − z|)2N+n+1(1 + |y|)2N+n+1

dz

.
∫
Rn

|f(z)|
(1 + |x− z|)2N+n+1

dz.

By replacing x with x+ y, we obtain

|f(x+ y)|
(1 + |y|)2N+n+1

.
∫
Rn

|f(z)|
(1 + |x− z|)2N+n+1

dz =

∫
Rn

|f(x− z)|
(1 + |z|)2N+n+1

dz.

Consequently, since X is a Banach function space, we have∥∥∥∥ sup
y∈Rn

|f(·+ y)|
(1 + |y|)2N+n+1

∥∥∥∥
X

.
∥∥∥∥∫

Rn

|f(· − z)|
(1 + |z|)2N+n+1

dz

∥∥∥∥
X

.
∫
Rn

∥∥∥∥ |f(· − z)|
(1 + |z|)2N+n+1

∥∥∥∥
X

dz.

We obtain by using (c)∥∥∥∥ sup
y∈Rn

|f(·+ y)|
(1 + |y|)2N+n+1

∥∥∥∥
X

.
∫
Rn

∥f∥X
(1 + |z|)n+1

dz . ∥f∥X . (2.13)

If we combine (a), (b), (2.11) and (2.13), we obtain (d).

Assume (d). By (2.10) we obtain

|f(x− y)| .
∑

m∈Zn

1

(1 + |m|)2N+n+1

(∑
l∈Zn

|f(l)|χQ0,l
(x− y −m)

)
.

Since (d) implies (a), we have

∥f(· − y)∥X .
∥∥∥∥∥ ∑
m∈Zn

1

(1 + |m|)2N+n+1

(∑
l∈Zn

|f(l)|χQ0,l
(· − y −m)

)∥∥∥∥∥
X

.
∑

m∈Zn

1

(1 + |m|)2N+n+1

∥∥∥∥∥∑
l∈Zn

f(l)χQ0,l
(· − y −m)

∥∥∥∥∥
X

.
∑

m∈Zn

(1 + |y|+ |m|)2N

(1 + |m|)2N+n+1

∥∥∥∥∥∑
l∈Zn

f(l)χQ0,l

∥∥∥∥∥
X

∼ (1 + |y|)2N
∥∥∥∥∥∑
l∈Zn

f(l)χQ0,l

∥∥∥∥∥
X

.
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Assuming (d), we obtain

∥f(· − y)∥X . (1 + |y|)2N∥f∥X .

Hence (c) was obtained.

(4) If we mimic the proof of (1) and recall Lemma 2.1, then we have

∥f∥X .
∥∥∥∥ sup
y∈Rn

|f(·+ y)|
(1 + |y|)2N+n+1

∥∥∥∥
X

∼

∥∥∥∥∥ supy∈Rn

1

(1 + |y|)2N+n+1

∑
m∈Zn

|f(m)|χQ0,m(·+ y)

∥∥∥∥∥
X

for all f ∈ S ′(Rn)Q(1). If we combine this inequality with (2.13), then we
obtain (4).

Proof of Corollary 1.4. To prove Corollary 1.4, we need the following lemma.

Lemma 2.3 (Planchrel–Polya–Nikols’kij [21, p.16]). Let 0 < η <∞. Then for
f ∈ S ′(Rn)Q(1), we have

sup
y∈Rn

|f(x− y)|
(1 + |y|)n/η

.M (η)f(x).

Once we admit Lemma 2.3, we obtain∥∥∥∥∥ ∑
m∈Zn

f(m)χQ0,m

∥∥∥∥∥
X

. ∥M (η)f∥X . ∥f∥X .

Observe also that∣∣∣∣∣ ∑
m∈Zn

λmχQ0,m(x− y)

∣∣∣∣∣ . (1 + |y|)n/ηM (η)

[ ∑
m∈Zn

λmχQ0,m

]
(x) (2.14)

for all x, y ∈ Rn. To see this, first we observe that the left-hand side is made
up of at most 1 term. Let m be such that λmχQ0,m(x− y) ̸= 0. Note that

M (η)
[
λmχQ0,m

]
(x) ∼ |λm|(1 + |x−m|)−n/η.

Consequently, we obtain

|λm|χQ0,m(x− y) = (1 + |y|)n/η(1 + |y|)−n/η|λm|χQ0,m(x− y)

. (1 + |y|)n/η(1 + |x−m|)−n/η(1 + |x−m− y|)n/η|λm|

. (1 + |y|)n/η(1 + |x−m|)−n/η|λm|

. (1 + |y|)n/ηM (η)
[
λmχQ0,m

]
(x).

Thus, (2.14) is proved.
If we use the boundedness of M (η), we see that (a) holds. Therefore, the

reverse inequality being obtained in Theorem 1.3, we obtain the desired result.
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3 The sampling theorems in terms of wavelets

Let φ0 ∈ S(R) be a real-valued function satisfying

(a) Fφ0(ξ) ≡ 1√
2π

(
ξ ∈

(
−2

3
π,

2

3
π

))
,

(b) suppFφ0 ⊂
[
− 4

3
π,

4

3
π
]
,

(c) |Fφ0(ξ)|2 + |Fφ0(2π − ξ)|2 ≡ 1

2π
(ξ ∈ (0, 2π)),

(d) 0 ≤ Fφ0(ξ) = Fφ0(−ξ) ≤ 1√
2π

(ξ ∈ R).

Define φ1 by

Fφ1(ξ) := −
√
2πeiξ/2Fφ0(ξ/2)

{
Fφ0(ξ + 2π) + Fφ0(ξ − 2π)

}
.

Note that φ1 ∈ S(R) is real-valued and its frequency support is contained in

the closed set
[
− 8

3
π,−2

3
π
]
∪
[2
3
π,

8

3
π
]
. Let E := {0, 1}n \ {(0, 0, . . . , 0)}. For

each ϵ = (ϵ1, ϵ2, . . . , ϵn) ∈ E, we define

φ(x) :=

n∏
ν=1

φ0(xν), ψ
ϵ(x) :=

n∏
ν=1

φϵν (xν) (x = (x1, x2, . . . , xn) ∈ Rn). (3.1)

The construction of such functions is due to Meyer [16]. Actually, Meyer estab-
lished that the system

{φ0,k}k∈Zn ∪ {ψϵ
j,k}j∈N∪{0}, k∈Zn, ε∈E

can be arranged so that it is an orthonormal basis in L2(Rn). We also define
the following square functions:

If :=

(∑
k∈Zn

∣∣⟨f, φ0,k⟩χQ0,k

∣∣2)1/2

,

Jf :=

∑
ϵ∈E

∞∑
j=0

∑
k∈Zn

∣∣∣⟨f, ψϵ
j,k⟩2jn/2χQj,k

∣∣∣2
1/2

.

To formulate our results, we recall the following definitions.

Definition 3.1. Let X be a Banach function space on Rn.

11



1. The space X is said to have absolutely continous norm, if f, g ∈ X and
{fj}∞j=1 ⊂ X satisfies

sup
j∈N

|fj(x)| ≤ g(x), lim
j→∞

fj(x) = f(x) (a.e.x ∈ Rn),

then
lim
j→∞

∥fj − f∥X = 0.

2. A series
∞∑
j=1

fj of X is said to converge unconditionally, if, for all bijection

σ : N → N, the series

∞∑
j=1

fσ(j) converges.

Recall that X ′ denotes the associate space X [3, Chapter 1].

Lemma 3.2. Let X be a Banach function space on Rn. Suppose the following:

(A1) The operotors M and J are bounded both on X and on X ′.

(A2) The space X ∩ L2(Rn) is dense in X and the space X ′ ∩ L2(Rn) is dense
in X ′.

Then we have
∥If∥X + ∥Jf∥X ∼ ∥f∥X (3.2)

for all f ∈ X. If X has absolutely continuous norm, then

f =
∑
k∈Zn

⟨f, φ0,k⟩φ0,k +
∑
ϵ∈E

∞∑
j=0

∑
k∈Zn

⟨f, ψϵ
j,k⟩ψϵ

j,k

the convergence takes place unconditionally.

Proof. This theorem seems somehow known. However, it has never explicitly
appeared in any literature at least for Banach function spaces in general. So we
outline the proof. Since M is assumed bounded in X, I is bounded on X as
well. Since J is assumed bounded too, it follows that

∥If∥X + ∥Jf∥X . ∥f∥X .

So the heart of the matter is to prove the reverse inequality, that is,

∥If∥X + ∥Jf∥X & ∥f∥X (3.3)

12



for all f ∈ X. Since X ∩ L2(Rn) is dense in X, it suffices to prove (3.3) for
f ∈ X ∩ L2(Rn). In this case, for all g ∈ X ′ ∩ L2(Rn) we have∣∣∣∣∫

Rn

f(x)g(x) dx

∣∣∣∣
≤
∑
k∈Zn

∫
Rn

|⟨f, φ0,k⟩χQ0,k
(x)⟨g, φ0,k⟩χQ0,k

(x)| dx

+
∑
ϵ∈E

∞∑
j=0

∑
k∈Zn

∫
Rn

|⟨f, ψϵ
j,k⟩2jn/2χQj,k

(x)⟨g, ψϵ
j,k⟩2

jn/2χQj,k
(x)| dx

≤ ∥If∥X∥Ig∥X′ + ∥Jf∥X∥Jg∥X′ .

In view of the density assumption (A2) and the fact that (X ′)′ = X [3, Chapter
1], we obtain the result.

Once we obtain (3.2), the unconditional convergence follows immediately.

Remark 3.3. The idea of using duality dates back to [11].

Here we envisage the following setting as examples.

Examples 3.4.

1. Let 1 < p <∞ and w be a Muckenhoupt’s Ap weight. Then J is bounded
on the weighted Lebesgue space Lp

w(Rn) (cf. [9]). Thus (A1) and (A2)
hold with X = Lp

w(Rn).

2. Let p( · ) : Rn → [1,∞] be a measurable function and consider the variable
Lebesgue space Lp( · )(Rn). The associate space of Lp( · )(Rn) coincides
with Lp′( · )(Rn), where p′( · ) is the conjugate exponent of p( · ). If p+ :=
ess sup{p(x) : x ∈ Rn} < ∞, then the set of all infinitely differentiable
functions is dense in Lp( · )(Rn). According to [5, 6, 7], if we additionally
assume

(a) 1 < p− := ess inf{p(x) : x ∈ Rn},
(b) For all |x− y| ≤ 1/2,

|p(x)− p(y)| . 1

− log(|x− y|)
,

(c) There exists a constant p(∞) such that for all x ∈ Rn,

|p(x)− p(∞)| . 1

log(e+ |x|)
,

then M and J are bounded on Lp( · )(Rn). Hence (A1) and (A2) are true
with X = Lp( · )(Rn), provided the conditions above are satisfied.
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If we apply Lemma 3.2, then we obtain the following results. Theorem 3.6
is recorded in [13].

Theorem 3.5. Let 1 < p <∞, r ≥ 2
3 , a = 3

2r and let w be a Muckenhoupt’s Ap

weight. Then for all f ∈ Lp
w(Rn) ∩ S ′(Rn)Q(πr) we have the norm equivalence∥∥∥∥∥∥

(∑
k∈Zn

∣∣∣∣f (ka
)
χQ0,k

(a · )
∣∣∣∣2
)1/2

∥∥∥∥∥∥
Lp

w(Rn)

∼ ∥f∥Lp
w(Rn), (3.4)

where the implicit constants are independent of r and f . Moreover we obtain
the reproducing formula

f(x) =
∑
k∈Zn

f

(
k

a

)
φ(ax− k), (3.5)

where the right-hand side converges unconditionally on Lp
w(Rn).

Theorem 3.6. Let p( · ) : Rn → [1,∞] be a measurable function satisfying the
following:

1. 1 < p− ≤ p+ <∞,

2. For all |x− y| ≤ 1/2,

|p(x)− p(y)| . 1

− log(|x− y|)
,

3. There exists a constant p(∞) such that for all x ∈ Rn,

|p(x)− p(∞)| . 1

log(e+ |x|)
.

Let r ≥ 2/3, R := rn(1/p−−1/p+), a := 3r/2. Then we have the norm equivalence

R−1∥f∥Lp( · )(Rn) .

∥∥∥∥∥∥
(∑

k∈Zn

∣∣∣∣f (ka
)
χQ0,k

(a · )
∣∣∣∣2
)1/2

∥∥∥∥∥∥
Lp( · )(Rn)

. R ∥f∥Lp( · )(Rn)

for all f ∈ Lp( · )(Rn)∩S ′(Rn)Q(πr), where the implicit constants are independent
of r and f . Moreover we obtain the reproducing formula

f(x) =
∑
k∈Zn

f

(
k

a

)
φ(ax− k), (3.6)

where the right-hand side converges unconditionally on Lp( · )(Rn).
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[15] O. Kováčik and J. Rákosńık, On spaces Lp(x) andW k,p(x), Czechoslo-
vak Math. 41 (116) (1991), 592–618.

[16] Y. Meyer, Wavelets and Operators, Cambridge University Press, Cam-
bridge, 1992.

[17] H. Ogawa, Sampling theory and Isao Someya; a historical note, Sampling
Theory in Signal and Image Processing, 5, no. 3, Sept., (2006), 247–256.

[18] K. Ogura, On a certain trancendental integral function in the theory of
interpolation, Tohoku Math. J. 17 (1920), 64–72.

[19] H. Rauhut and T. Ullrich, Generalized coorbit space theory and in-
homogeneous function spaces of Besov-Lizorkin-Triebel type, J. Funct.
Anal. 260 (2011), 3299–3362.

[20] C.E. Shannon, Communication in the presence of noise, Proc. IRE 37
(1949), 10–21.

[21] H. Triebel, Theory of Function Spaces, Birkhäuser, 1983.
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