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Abstract. In this note, we show that there does not exist any blowing-
up solution sequence with multiple blow up points to a 2p-th order
mean field equation

{
(−∆)pu = ρ V (x)euR

Ω V (x)eudx
in Ω ⊂ R2p,

(−∆)ju = 0 on ∂Ω, (j = 0, 1, · · · p− 1)

for p ∈ N, if a bounded smooth domain Ω is convex and the function
V satisfies some conditions.
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1. Introduction

Recently, many authors have been interested in the study of non-
linear elliptic partial differential equations involving the higher-order
differential operator, because of its connection to the conformal geom-
etry. One of the most important conformally invariant differential op-
erators on a four-dimensional Riemannian manifold (M, g) is a Paneitz
operator, defined as

Pg = ∆2
g − δg

(
2

3
Sg − 2Ricg

)
d

where ∆g denotes the Laplace-Beltrami operator with respect to g, δg

the co-differential, d the exterior differential, Sg and Ricg denote the
scalar and Ricci curvature of the metric g. By this symbol, the equation
of prescribing Q-curvature on (M, g) is described as

Pgu + 2Qg = 2Q̄gue
4u
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where Qg is the Q-curvature of the original metric g, Q̄gu is the Q-
curvature of the new metric gu = e4ug. If (M, g) is R4 with its stan-
dard euclidean metric, the Paneitz operator Pg is nothing but ∆2 = ∆∆

where ∆ =
∑4

i=1
∂2

∂x2
i

is the Laplacian in R4, and the equation of pre-

scribing Q-curvature becomes of the form

∆2u = ρ
V (x)e4u

∫
Ω

V (x)e4udx
.

See for example, [7], [10], [8] and the references therein.
In this paper, we consider a generalization of it, namely, we concern

the following 2p-th order mean field equation (p ∈ N)
{

(−∆)pu = ρ V (x)euR
Ω V (x)eudx

in Ω ⊂ R2p,

(−∆)ju = 0 on ∂Ω, (j = 0, 1, · · · p− 1),
(1.1)

where Ω is a smooth bounded domain in R2p, ρ is a positive parameter
and V ∈ C2,β(Ω) is a positive function. Let us define the variational
functional Iρ : X → R,

Iρ(u) =
1

2

∫

Ω

|(−∆)
p
2 u|2dx− ρ log

∫

Ω

V (x)eudx

where

X = Hp(Ω) ∩ {u | (−∆)ju ∈ H1
0 (Ω), j = 0, 1, · · ·

[
p− 1

2

]
},

and we admit the notation that

(−∆)
p
2 u =

{
∇(−∆)k−1u, (p = 2k − 1),

(−∆)ku, (p = 2k),

for k ∈ N. Then (1.1) is the Euler-Lagrange equation of Iρ.
In the following, let α0(p) denote the best constant for the Adams

version Trudinger-Moser inequality [1]: there exists C(Ω) < +∞ such
that for any α ≤ α0(p) and u ∈ C∞

0 (Ω) with

‖(−∆)
p
2 u‖L2(Ω) ≤ 1,

there holds ∫

Ω

eαu2

dx ≤ C(Ω).

The same holds for u ∈ X by standard density argument. It is known
that α0(1) = 4π, α0(2) = 32π2, and generally, α0(p) = 2p

σ2p
(2π)2p =

22pπpp!, where σN = 2πN/2

Γ(N/2)
denotes the volume of the unit sphere in
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RN . Also G = G(x, y) will denote the Green function of (−∆)p under
the Navier boundary condition:

{
(−∆)pG(·, y) = δy in Ω ⊂ R2p,

G(·, y) = (−∆)jG(·, y) = 0 on ∂Ω, (j = 1, · · · p− 1).

We decompose G as G(x, y) = Γ(x, y) − H(x, y), where Γ(x, y) is the
fundamental solution of (−∆)p on R2p, defined as

Γ(x, y) = Cp log
1

|x− y| , Cp =
1

{2p−1(p− 1)!}2σ2p

,

and H = H(x, y) ∈ C∞(Ω× Ω) is called the regular part of the Green
function. Finally, let R(y) = H(y, y) denote the Robin function of the
Green function of (−∆)p with the Navier boundary condition.

On the asymptotic behavior of blowing-up solutions to (1.1), C-S.
Lin and J-C. Wei proved, among others, the following result; see [13],
[11], [12].

Proposition 1.1. Assume V ∈ C2,β(Ω), infΩ V > 0. Let uρn be a
solution sequence to (1.1) with ρ = ρn > 0 such that ‖uρn‖L∞(Ω) →∞
while ρn = O(1) as n → ∞. Then there exists a subsequence (again
denoted by ρn) and m-points set S = {a1, · · · , am} ⊂ Ω (blow up set)
such that

ρn → 2α0(p)m, (mass quantization)

uρn → 2α0(p)
m∑

j=1

G(·, aj) in C2p
loc(Ω \ S),

ρn
V (x)euρn∫

Ω
V (x)euρndx

⇀ 2α0(p)
m∑

i=1

δai

in the sense of measures. Finally, each blow up point ai ∈ S must
satisfy

1

2
∇R(ai)−

m∑

j=1,j 6=i

∇xG(ai, aj)− 1

2α0(p)
∇ log V (ai) = ~0, (1.2)

for i = 1, · · · ,m. (Characterization of blow up points)

The main difficult point in the proof is to show that the blow up set
S consists of interior points of Ω. In [11], [12], the authors used the
local version of the method of moving planes to overcome the difficulty.
After showing that S ⊂ Ω, the rest of claims follow by the argument
in [13].
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As for the actual existence of multi-bubble solutions to (1.1), which
exhibits the asymptotic behavior described in Proposition 1.1 with m ≥
2, some affirmative results are known by recent papers [2] [6] when
p = 2.

Proposition 1.2. Let p = 2 and m ≥ 2 be an integer. Set Ωm = Ω×
· · ·×Ω (m times) and ∆ = {(ξ1, · · · , ξm) ∈ Ωm|ξi = ξj for some i 6= j}.
Define the Hamiltonian function

F(ξ1, · · · , ξm) =
m∑

i=1

(
R(ξi)− 1

32π2
log V (ξi)

)
−

∑
i6=j

1≤i,j≤m

G(ξi, ξj)

on Ωm \∆. If F has a nondegenerate critical point (Baraket-Dammak-
Ouni-Pacard [2], V ≡ 1 case), or, a “minimax value in an appropriate
subset” (Clapp-Munõz-Musso [6]), that is, if (a1, · · · , am) ∈ Ωm \ ∆
satisfies

1

2
∇R(ai)−

m∑

j=1,j 6=i

∇xG(ai, aj)− 1

64π2
∇ log V (ai) = ~0

for i = 1, 2, · · · ,m and some additional conditions, then there exists a
solution sequence {uρ} which blows up exactly on S = {a1, · · · , am}.

For the precise meaning that F has a “minimax value in an appro-
priate subset”, we refer to [6]. By this proposition, we know that if
Ω has the cohomology group Hd(Ω) 6= 0 for some d ∈ N, or, if Ω is
an m-dumbbell shaped domain (roughly, a simply-connected domain
made by m balls those connected to each other by thin tubes), then
there exist m-points blowing up solutions for any m ≥ 2 [6].

In this paper, on the contrary, we prove the nonexistence of multi-
bubble solutions to (1.1) on convex domains, under an additional as-
sumption on the coefficient function V .

Theorem 1.3. Assume Ω ⊂ R2p be a bounded convex domain. Let
{uρn} be a solution sequence to (1.1) satisfying ‖uρn‖L∞(Ω) is not bounded
while ρn > 0 is bounded as n → ∞. Assume infΩ V > 0 and R −

1
α0(p)

log V is a strictly convex function on Ω. Then there exists a ∈ Ω

such that, for the full sequence, we have

ρn → 2α0(p),

uρn → 2α0(p)G(·, a) in C2p
loc(Ω \ {a}),

ρn
V (x)euρn∫

Ω
V (x)euρndx

⇀ 2α0(p)δa in the sense of measures

as n →∞.



NONEXISTENCE OF MULTI-BUBBLE SOLUTIONS 5

In this theorem, we can claim also that a ∈ Ω is the unique minimum
point of the strictly convex function R− 1

α0(p)
log V .

We remark here that, for the 2nd order case, the Robin function
of −∆ with the Dirichlet boundary condition on a bounded convex
domain Ω in RN is strictly convex on Ω. This fact was first proved
by Caffarelli and Friedman [4] when N = 2, and later extended to
N ≥ 3 by Cardaliaguet and Tahraoui [5]. By using this fact, Grossi and
Takahashi [9] proved that blowing-up solutions with multiple blow up
points do not exist on convex domains for various semilinear problems
with blowing-up or concentration phenomena. It is open whether the
same convexity holds true or not for the Robin function of (−∆)p under
the Navier boundary condition when p ≥ 2. Thus at this stage, we
cannot drop the assumption on V and we do not know whether the
same result as Theorem 1.3 is true when V is a constant.

This paper is organized as follows. In §2, we prove a lemma which is
crucial to our argument. In this lemma, we do not need the assumption
of the convexity of Ω. In §3, we prove Theorem 1.3 by using the key
lemma in §2 and the characterization of blow up points (1.2).

2. New Pohozaev identity for the Green function.

In this section, we prove an integral identity for the Green function
of (−∆)p with the Navier boundary condition, which is a key for the
proof of Theorem 1.3. Corresponding identity when p = 1 was former
proved in [9].

Proposition 2.1. Let Ω ⊂ RN (N ≥ 2p) be a smooth bounded domain.
For any P ∈ RN and a, b ∈ Ω, a 6= b, it holds

p∑

k=1

∫

∂Ω

(x− P ) · ν(x)

(
∂(−∆)p−kGa

∂νx

)(
∂(−∆)k−1Gb

∂νx

)
dsx

= (2p−N)G(a, b) + (P − a) · ∇xG(a, b) + (P − b) · ∇xG(b, a),

where Ga(x) = G(x, a), Gb(x) = G(x, b) and ν(x) is the unit outer
normal at x ∈ ∂Ω.

Proof. We follow the argument used in [9], which originates from
[3]. In order to introduce the idea clearly, first we show a formal
computation. Let us denote Ga(x) = G(x, a), Gb(x) = G(x, b) and
define w(x) = (x − P ) · ∇Ga(x). Since ∆j ((x− P ) · ∇) = 2j∆j +
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((x− P ) · ∇∆j) for j ∈ {0} ∪ N, we have{
(−∆)pw(x) = (x− P ) · ∇δa(x) + 2pδa(x),

(−∆)pGb(x) = δb(x),

where δa, δb are the Dirac delta functions supported on a, b respec-
tively. Multiplying Gb(x), w(x) respectively to the above equations,
and subtracting, we obtain∫

Ω

((−∆)pw(x)) Gb(x)− ((−∆)pGb(x)) w(x)dx

=

∫

Ω

{(x− P ) · ∇δa(x)Gb(x) + 2pδa(x)Gb(x)− δb(x)w(x)} dx. (2.1)

By an iterated use of Green’s second formula, we see

LHS of (2.1) = (−1)p

p∑

k=1

∫

∂Ω

(
∂∆p−kw

∂ν
∆k−1Gb − ∂∆k−1Gb

∂ν
∆p−kw

)
dsx

= (−1)p+1

p∑

k=1

∫

∂Ω

(
(x− P ) · ∇∆p−kGa

) (
∂∆k−1Gb

∂ν

)
dsx

=

p∑

k=1

∫

∂Ω

(x− P ) · ν(x)

(
∂(−∆)p−kGa

∂νx

)(
∂(−∆)k−1Gb

∂νx

)
dsx,

here we have used ∆k−1Gb = 0 and ∆p−kw = (x − P ) · ∇∆p−kGa on
∂Ω.

On the other hand,

RHS of (2.1) = 2pGb(a)− w(b) +

∫

Ω

(x− P ) · ∇δa(x)Gb(x)dx

= 2pGb(a)− w(b) +
N∑

i=1

∫

Ω

(xi − Pi)
∂δa

∂xi

Gb(x)dx

= 2pGb(a)− w(b)−
N∑

i=1

∫

Ω

∂

∂xi

{(xi − Pi)Gb(x)}δa(x)dx

= 2pGb(a)− w(b)−
N∑

i=1

∂

∂xi

{(xi − Pi)Gb(x)}
∣∣∣
x=a

= (2p−N)G(a, b) + (P − a) · ∇xG(a, b) + (P − b) · ∇xG(b, a).

Thus we obtain the conclusion.
To make this argument rigorously, we use standard approximations.

Define δa,ρ(x) = 1
|Bρ|χBρ(a)(x) where χBρ(a) is the characteristic function

of the ball Bρ(a) with radius ρ > 0 and center a ∈ Ω. Denote δε
a,ρ(x) =
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jε ∗ δa,ρ(x) where j(x) ≥ 0, suppj ⊂ B1(0),
∫
RN j(x)dx = 1 and jε(x) =

ε−Nj(x−a
ε

). For a point a ∈ Ω and for ρ > 0 and ε > 0 sufficiently small
such that Bρ+ε(a) ⊂ Ω, δε

a,ρ is well-defined and a smooth function on
Ω. Let uε

a,ρ denote the unique solution of the problem

{
(−∆)puε

a,ρ = δε
a,ρ in Ω,

(−∆)juε
a,ρ = 0 on ∂Ω, (j = 0, 1, · · · , p− 1).

Define δε
b,ρ, u

ε
b,ρ in the same way. Since δε

a,ρ → δa,ρ as ε → 0 in Lq(Ω)

for any 1 ≤ q < ∞, uε
a,ρ → ua,ρ in W 2p,q(Ω) as ε → 0, where ua,ρ is the

unique solution of

{
(−∆)pua,ρ = δa,ρ in Ω,

(−∆)jua,ρ = 0 on ∂Ω, (j = 0, 1, · · · , p− 1).

Since δa,ρ → δa as ρ → 0, we have

lim
ρ→0

lim
ε→0

uε
a,ρ = G(·, a)

in Ck
loc(Ω \ {a}) for any k ∈ N, and the same holds for uε

b,ρ.
Define w(x) = (x − P ) · ∇uε

a,ρ(x). Simple calculation shows that w
satisfies

(−∆)pw = (x− P ) · ∇xδ
ε
a,ρ + 2pδε

a,ρ. (2.2)

Multiply uε
b,ρ to (2.2), w to the equation −∆uε

b,ρ = δε
b,ρ, subtracting,

and integrating on Ω, we have

∫

Ω

(
(−∆)puε

b,ρ

)
w − ((−∆)pw)uε

b,ρdx

=

∫

Ω

[
2pδε

a,ρ(x)uε
b,ρ(x) + (x− P ) · ∇xδ

ε
a,ρ(x)uε

b,ρ(x)− δε
b,ρ(x)w(x)

]
dx.

(2.3)

The LHS of (2.3) is
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(−1)p

p∑

k=1

∫

∂Ω

(
∂∆p−kw

∂ν
∆k−1uε

b,ρ −
∂∆k−1uε

b,ρ

∂ν
∆p−kw

)
dsx

= (−1)p+1

p∑

k=1

∫

∂Ω

(
(x− P ) · ∇∆p−kuε

a,ρ

)
(

∂∆k−1uε
b,ρ

∂ν

)
dsx

=

p∑

k=1

∫

∂Ω

(x− P ) · ν(x)

(
∂(−∆)p−kuε

a,ρ

∂νx

)(
∂(−∆)k−1uε

b,ρ

∂νx

)
dsx

→
p∑

k=1

∫

∂Ω

(x− P ) · ν(x)

(
∂(−∆)p−kGa

∂νx

) (
∂(−∆)k−1Gb

∂νx

)
dsx

as ε → 0 and then ρ → 0.
The RHS of (2.3) is

2p

∫

Ω

δε
a,ρ(x)uε

b,ρ(x)dx+

∫

Ω

N∑
i=1

(xi−Pi)

(
∂δε

a,ρ

∂xi

(x)

)
uε

b,ρ(x)dx−
∫

Ω

δε
b,ρ(x)w(x)dx.

Now, integrating by parts, we have

N∑
i=1

∫

Ω

(xi − Pi)

(
∂δε

a,ρ(x)

∂xi

)
uε

b,ρ(x)dx

= −
N∑

i=1

∫

Ω

∂

∂xi

{
(xi − Pi)u

ε
b,ρ(x)

}
δε
a,ρ(x)dx

= −N

∫

Ω

δε
a,ρ(x)uε

b,ρ(x)dx−
∫

Ω

(x− P ) · ∇uε
b,ρ(x)δε

a,ρ(x)dx,

thus

RHS of (2.3) = (2p−N)

∫

Ω

δε
a,ρ(x)uε

b,ρ(x)dx

−
∫

Ω

(x− P ) · ∇uε
b,ρ(x)δε

a,ρ(x)dx−
∫

Ω

(x− P ) · ∇uε
a,ρ(x)δε

b,ρ(x)dx

→ (2p−N)G(a, b)

−
∫

Ω

(x− P ) · ∇xG(x, b)δa(x)dx−
∫

Ω

(x− P ) · ∇xG(x, a)(x)δb(x)dx

= (2p−N)G(a, b) + (P − a) · ∇xG(a, b) + (P − b) · ∇xG(b, a)

as ε → 0 and then ρ → 0. This proves Lemma 2.1.
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3. Proof of Theorem 1.3.

In this section, we prove Theorem 1.3 along the same line in [9].

Step 1.
We argue by contradiction and assume that there exists a m-points

set S = {a1, · · · , am} ⊂ Ω (m ≥ 2) satisfying (1.2). Set K(x) =
1
2
R(x)− 1

2α0(p)
log V (x).

P ∈ Ω is chosen later. Multiplying P − ai to (1.2) and summing up,
we have

m∑
i=1

(P − ai) · ∇K(ai) =
m∑

i=1

m∑

j=1,j 6=i

(P − ai) · ∇xG(ai, aj) (3.1)

=
∑

1≤j<k≤m

{(P − aj) · ∇xG(aj, ak) + (P − ak) · ∇xG(ak, aj)} .

Step 2.
By proposition 2.1, we obtain

(P − aj) · ∇xG(aj, ak) + (P − ak) · ∇xG(ak, aj)

=

p∑

l=1

∫

∂Ω

(x− P ) · ν(x)

(
∂(−∆)p−lG(x, aj)

∂νx

)(
∂(−∆)l−1G(x, ak)

∂νx

)
dsx.

By the convexity of Ω, we have (x−P ) · ν(x) > 0 on ∂Ω. Also by Hopf

lemma, we obtain
∂(−∆)p−lG(x,aj)

∂νx
< 0, ∂(−∆)l−1G(x,ak)

∂νx
< 0 for x ∈ ∂Ω.

Thus we see the right hand side of (3.1) is positive, and get
m∑

i=1

(ai − P ) · ∇K(ai) < 0. (3.2)

Step 3.
By assumption, K(x) = 1

2
R(x) − 1

2α0(p)
log V (x) is strictly convex.

Thus, all level sets of K is strictly star-shaped with respect to its
unique minimum point P ∈ Ω. Choose P as the minimum point. Then

(a− P ) · ∇K(a) ≥ 0, ∀a ∈ Ω \ {P}. (3.3)

In particular,
m∑

i=1

(ai − P ) · ∇K(ai) ≥ 0.

Now, (3.2) and (3.3) leads to an obvious contradiction. Thus we have
m = 1 and the rest of proof is easily done by Proposition 1.1.
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