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Abstract. In this paper we investigate what kind of manifolds arise
as the total spaces of iterated S1-bundles. A real Bott tower studied
in [2], [13] and [14] is an example of an iterated S1-bundle. We show
that the total space of an iterated S1-bundle is homeomorphic to an
infra-nilmanifold. A real Bott manifold, which is the total space of
a real Bott tower, provides an example of a closed flat Riemannian
manifold. We also show that real Bott manifolds are the only closed
flat Riemannian manifolds obtained from iterated RP 1-bundles. Finally
we classify the homeomorphism types of the total spaces of iterated
S1-bundles in dimension 3.

1. Introduction

In this paper, an S1-bundle is a fiber bundle with the circle S1 as a fiber
and an iterated S1-bundle of height n is a sequence of smooth S1-bundles
starting with a point:

(1.1) Xn −→ Xn−1 −→ · · · −→ X1 −→ X0 = {a point}.
The total space Xn of an iterated S1-bundle is a closed aspherical manifold
of dimension n. Our concern is what kind of aspherical manifolds arise as
the total space Xn. If all the S1-bundles Xi → Xi−1 in (1.1) are principal,
then one sees that the fundamental group of Xn is nilpotent and hence Xn is
homeomorphic to a nilmanifold, and conversely any closed nilmanifold arises
as the total space of an iterated principal S1-bundle (see [5, Proposition
3.1]). Our first main result is the following.

Theorem 1.1. The total space Xn of an iterated S1-bundle of height n is
homeomorphic to an infra-nilmanifold. In fact, some 2n−1-cover of Xn is
homeomorphic to a nilmanifold.

The projectivization of a plane bundle, called an RP 1-bundle, is an S1-
bundle, so an iterated RP 1-bundle is an iterated S1-bundle. The total spaces
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of iterated RP 1-bundles are somewhat special. For instance, the first Betti
number b1(Xn; Z2) of the total space Xn in (1.1) with Z2-coefficient, where
Z2 = Z/2Z, is at most n and it turns out that Xn is the total space of an
iterated RP 1-bundle if and only if b1(Xn; Z2) = n.

When every plane bundle used to projectivise in the iterated RP 1-bundle
is a Whitney sum of two line bundles, the iterated RP 1-bundle is called a
real Bott tower and the total space Xn is called a real Bott manifold. A real
Bott manifold provides an example of a flat Riemannian manifold and the
diffeomorphism classification of real Bott manifolds has been completed in
[2], see also [13] and [14]. Unless every plane bundle used to projectivise
in the iterated RP 1-bundle is a Whitney sum of two line bundles, the total
space Xn is not necessarily flat Riemannian. However, we may ask whether
more flat Riemannian manifolds than real Bott manifolds can be produced
from iterated RP 1-bundles. The following theorem says that the answer is
no.

Theorem 1.2. If the total space of an iterated RP 1-bundle is homeomorphic
to a closed flat Riemannian manifold, then it is homeomorphic to a real Bott
manifold.

The total space X2 of an iterated S1-bundle of height 2 is either the
torus (S1)2 or the Klein bottle. However, the total spaces X3 of iterated
S1-bundles of height 3 are abundant and we classify them up to homeo-
morphism. It turns out that there are six flat Riemannian manifolds, an
infinite family of nilmanifolds and an infinite family of infra-nilmanifolds,
see Theorem 5.9 for details. It is known that there are ten homeomorphism
classes of closed flat Riemannian manifolds in dimension 3 and our result
shows that six of them arise from iterated S1-bundles while four of them
arise from iterated RP 1-bundles. In a forthcoming paper, we will classify
4-dimensional closed flat Riemannian manifolds arising from iterated S1-
bundles. It is known in [1] that there are 74 homeomorphism classes of
closed flat Riemannian manifolds in dimension 4 and it turns out that 35
of them arise from iterated S1-bundles while 12 of them arise from iterated
RP 1-bundles.

This paper is organized as follows. We study fundamental groups of S1-
bundles in Section 2 and of iterated S1-bundles in Section 3. In Section 4
we prove that the total space of an iterated S1-bundle of height n contains
a nilpotent normal subgroup of index 2n−1 in its fundamental group, which
implies Theorem 1.1. In Section 5 we classify isomorphism classes of possible
fundamental groups of the total spaces of iterated S1-bundles of height 3
and then show that those isomorphism classes can be realized by iterated
S1-bundles of height 3. Section 6 is devoted to the proof of Theorem 1.2.

2. S1-bundles

When ξ is a plane bundle with an Euclidean fiber metric, the unit circle
bundle S(ξ) of ξ is an S1-bundle. Conversely, if the base space B is a closed
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smooth manifold, then any S1-bundle over B can be regarded as the unit
circle bundle of some plane bundle with an Euclidean fiber metric because
the inclusion map O(2) → Diff(S1) is known to be homotopy equivalent
so that the structure group of the circle bundle, that is Diff(S1), reduces
to O(2). This also shows that a smooth S1-bundle over a closed smooth
manifold is isomorphic to a principal S1-bundle if and only if the S1-bundle
is orientable (see [16, Proposition 6.15] for a direct proof).

The projectivization P (η) of a plane bundle η, called the RP 1-bundle, is
also an S1-bundle and fiber-wisely double covered by S(η). If η is orientable,
then η admits a complex structure so that one can form its 2-fold tensor
product η ⊗C η over the complex numbers C and then P (η) = S(η ⊗C η).

Lemma 2.1. Let S1 i→ X
π→ B be an S1-bundle over an arcwise connected

space B and let π1(B) be finitely presented as follows

〈x1, · · · , xp | fj(x1, · · · , xp) = 1 (1 ≤ j ≤ q)〉

and let i∗ : π1(S1) → π1(X) be injective. Then π1(X) has a presentation of
the form

〈x1, · · · , xp, σ | xiσx−1
i = σ±1, fj(x1, · · · , xp) = σaj (1 ≤ i ≤ p, 1 ≤ j ≤ q)〉

for some integers aj.
Moreover, the following are equivalent:

(1) the S1-bundle X → B is fiber-wisely double covered by another S1-
bundle,

(2) every integer aj above is even,
(3) b1(X, Z2) = b1(B, Z2) where b1( , Z2) denotes the first Betti number

with Z2-coefficient.

Proof. The S1-bundle X → B induces a short exact sequence 1 → π1(S1) →
π1(X) → π1(B) → 1. Taking σ as a generator of π1(S1), it can be seen easily
that the first part of the Lemma holds.

(1) =⇒ (2). Assume that the S1-bundle X → B is fiber-wisely double
covered by another S1-bundle Y → B. Then there is a fiber preserving map
φ between them

S1 φ̄−−−−→ S1yi′
yi

Y
φ−−−−→ Xyπ′

yπ

B
=−−−−→ B

where φ : Y → X and the restriction on the fiber φ̄ : S1 → S1 are double
covering projections. Therefore φ induces the following commuting diagram
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between exact sequences of groups

· · · −−−−→ π1(S1)
i′∗−−−−→ π1(Y )

π′
∗−−−−→ π1(B) −−−−→ 1yφ̄∗

yφ∗

y=

· · · −−−−→ π1(S1) i∗−−−−→ π1(X) π∗−−−−→ π1(B) −−−−→ 1

Since i∗ and φ̄∗ are injective, i∗φ̄∗ = φ∗i
′
∗ yields that i′∗ is injective. Let

τ be a generator of π1(S1) of the fiber S1 of the bundle Y → B so that
φ̄∗(τ) = σ2. Recalling that

π1(Y ) = 〈x1, · · · , xp, τ | xiτx−1
i = τ±1, fj(x1, · · · , xp) = τ bj 〉,

π1(X) = 〈x1, · · · , xp, σ | xiσx−1
i = σ±1, fj(x1, · · · , xp) = σaj 〉

for some integers ai and bj , we must have that φ∗(fj(x1, · · · , xp)) = φ∗(τ bj )
and so fj(x1, · · · , xp) = σ2bj . Hence aj = 2bj for all j.

(2) =⇒ (1). Conversely suppose that the fundamental group of the total
space X of the S1-bundle X → B has a presentation of the form as above
with all the integers aj even. Consider the subgroup H of π1(X) generated
by x1, · · · , xp and σ2. Then H has index 2 in π1(X). Let Y be the double
covering space of X corresponding to H with covering projection φ : Y → X.
Then π′ = πφ : Y → B is a bundle with fiber F = φ−1(S1) and we have the
commutative diagram

F
φ̄−−−−→ S1yi′

yi

Y
φ−−−−→ Xyπ′

yπ

B
=−−−−→ B

where φ̄ is the restriction of φ.
Now we will show that F = S1 and φ̄ is a double covering projection.

Notice that φ∗ : π1(Y ) = H → π1(X) is the inclusion H ↪→ π1(X) and
hence the composition π′

∗ = π∗φ∗ : π1(Y ) → π1(B) is surjective by the
choice of H. It follows that π0(F ) = 1, i.e., F is arcwise connected. Hence
φ̄ : F → S1 is a (double) covering projection [15, Lemma 2.1, p. 150] and so
F = S1.

(2) ⇔ (3). We note that H1(X; Z2) = H1(X; Z) ⊗ Z2 which follows from
the universal coefficient theorem for homology groups because H0(X; Z) is
torsion free. Therefore, H1(X; Z2) agrees with the abelianization of π1(X)
over Z2. Looking at the description of π1(X) and π1(B), one easily sees that
every aj is even if and only if the abelianization of π1(X) over Z2 agrees
with that of B. These show the equivalence between (2) and (3). ¤
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The last part of the proof above essentially proves that b1(X; Z2) =
b1(B; Z2) or b1(B; Z2) + 1. This fact can also be seen in terms of 2nd
Stiefel-Whitney class as follows.

Lemma 2.2. Let p : X → B be the unit circle bundle of a plane bundle ξ
over a connected space B. Then b1(X; Z2) = b1(B; Z2) or b1(B; Z2) + 1 and
the former occurs when w2(ξ) 6= 0 and the latter occurs when w2(ξ) = 0.

Proof. Consider the Thom-Gysin sequence associated with the S1-bundle
p : X → B:

0 = H−1(B)
∪w2(ξ)−→ H1(B)

p∗−→ H1(X) −→ H0(B)
∪w2(ξ)−→ H2(B)

where the coefficients are taken with Z2. Here the last map above is injective
if w2(ξ) 6= 0 and zero if w2(ξ) = 0. This implies the lemma since H0(B) ∼=
Z2. ¤

3. Iterated S1-bundles

An iterated S1-bundle of height n is a sequence of smooth S1-bundles
starting with a point:

Xn −→ Xn−1 −→ · · · −→ X1 −→ X0 = {a point}.(3.1)

Each Xi is a closed connected aspherical manifold of dimension i for i =
1, 2, . . . , n and the S1-fibration Xi → Xi−1 induces a short exact sequence:

1 → π1(S1) → π1(Xi) → π1(Xi−1) → 1.

The total space Xn is an n-dimensional torus if every S1-bundle Xi → Xi−1

in (3.1) is trivial. However, the topology of Xn is complicated in general.

Lemma 3.1. π1(Xn) has a presentation of the form〈
s1, · · · , sn

∣∣∣ sisjs
−1
i = s

an
i,j

n · · · s
aj+1

i,j

j+1 s
εij

j (1 ≤ i < j ≤ n)
〉

where εij = ±1 and the ak
i,j are some integers. Moreover, the S1-bundle

Xj → Xj−1 in (3.1) is orientable (equivalently, principal) if and only if
εij = 1 for all i = 1, · · · , j − 1.

Proof. The former statement follows by applying Lemma 2.1 inductively.
The proof of the latter is as follows. Note that the S1-bundle Xj →

Xj−1 is orientable if and only if any loop in the base space Xj−1 induces
the identity map on the first cohomology group of the fiber over the base
point of the loop. Equivalently, π1(Xj−1, b) acts on H1(Fb) trivially for all
b ∈ B. This exactly means that sisjs

−1
i = sj for all the generators si of

π1(Xj−1). ¤

Since the projectivization of a plane bundle, that is an RP 1-bundle, is an
S1-bundle, an iterated RP 1-bundle is an iterated S1-bundle.
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Proposition 3.2. Let Xn be the total space of an iterated S1-bundle (3.1).
Then b1(Xn; Z2) ≤ n. Moreover, the following are equivalent.

(1) Xn is the total space of an iterated RP 1-bundle.
(2) All the exponents ak

i,j in Lemma 3.1 are even.
(3) b1(Xn; Z2) = n.

Proof. The former statement follows from Lemma 2.2. The latter follows by
applying Lemma 2.1 repeatedly. ¤

Finally, we give an example of iterated RP 1-bundle which motivated the
study of this paper.

Example 3.3 (Real Bott tower). An iterated RP 1-bundle of height n:

Bn −→ Bn−1 −→ · · · −→ B1 −→ B0 = {a point},(3.2)

where each fibration Bi → Bi−1 for i = 1, 2, . . . , n is the projectivization
of a Whitney sum of two line bundles over Bi−1 is called a real Bott tower
of height n, and the total space Bn is called a real Bott manifold. At each
stage, one of the two line bundles may be assumed to be trivial without
loss of generality because projectivization remain unchanged under tensor
product with a line bundle. The same construction works in the complex
category and in this case the tower is called a Bott tower and the total
space Bn is called a Bott manifold. A two stage Bott manifold is nothing
but a Hirzebruch surface. A Bott manifold provides an example of a closed
smooth toric variety and a real Bott manifold provides an example of a
closed smooth real toric variety.

A real Bott manifold Bn also provides an example of a flat Riemannian
manifold. In fact, it can be described as the quotient of Rn by a group πn

generated by Euclidean motions si’s (i = 1, . . . , n) on Rn defined by

si(x1, . . . , xn) := (x1, . . . , xi−1, xi +
1
2
, εi

i+1xi+1, . . . , ε
i
nxn),

where εi
j = ±1 for 1 ≤ i < j ≤ n and εi

j ’s are determined by the line bundles
used to define the real Bott tower (3.2). The action of πn on Rn is free
so that πn is the fundamental group of the real Bott manifold Bn. It is
generated by si’s (i = 1, . . . , n) with relations

sisjs
−1
i = s

εi
j

j for 1 ≤ i < j ≤ n.

The subgroup of πn generated by s2
i ’s (i = 1, . . . , n) is the translations Zn

and the quotient πn/Zn is an elementary 2-group of rank n. Note that the
natural projections Rn → Rn−1 → · · · → R1 → R0 = {a point} induce a
real Bott tower.

The diffeomorphism classification of real Bott manifolds has been com-
pleted in [2]. The paper [2] also relates the diffeomorphism classification
of real Bott manifolds with the classification of acyclic digraphs (directed
graphs with no direct cycles) up to some equivalence.
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4. Infra-nilmanifolds

The purpose of this section is to prove Theorem 1.1 in the Introduction.
We continue to use notations in Section 3. A group G is called supersolvable
if there exists a finite normal series

G = Ḡ1 ⊃ Ḡ2 ⊃ · · · ⊃ Ḡc ⊃ Ḡc+1 = 1

such that each quotient group Ḡi/Ḡi+1 is cyclic and each Ḡi is normal in G.

Lemma 4.1. π1(Xn) is a supersolvable group.

Proof. We consider the subgroups π̄j of π1(Xn) generated by sj , · · · , sn.
Then we have a finite normal series

π1(Xn) = π̄1 ⊃ π̄2 ⊃ · · · ⊃ π̄n ⊃ π̄n+1 = 1

such that π̄i/π̄i+1
∼= 〈si〉. By Lemma 3.1, it follows easily that each π̄i is a

normal subgroup of π1(Xn). ¤
However, the normal series in the above proof is not always a central

series. This implies that π1(Xn) is not always a nilpotent group. We will
show in Theorem 4.3 that π1(Xn) is always virtually nilpotent. Note further
that the subgroup π̄i of π1(Xn) is isomorphic to π1(Xn−i+1).

The projection π1(Xi) → π1(Xi−1) sends sj to sj for j = 1, · · · , i − 1
with kernel π1(S1) = 〈si〉. For the simplicity, we will write πi = π1(Xi) and
Ai = π1(S1) with generator si. Thus we have a short exact sequence

1 −→ Ai −→ πi −→ πi−1 −→ 1.(4.1)

Let Γi be the subgroup of πi generated by s2
1, · · · , s2

i . Then Γi is mapped
onto Γi−1 under the projection πi → πi−1 with kernel 〈s2

i 〉, which induces a
short exact sequence

1 −→ 〈s2
i 〉 −→ Γi −→ Γi−1 −→ 1.(4.2)

Lemma 4.2. Γn is a normal subgroup of πn with index 2n.

Proof. For each si, we denote by c(si) the conjugation by si. Since c(si)(sn) =
sεin
n , the conjugate automorphism c(si) on πn induces the following commu-

tative diagram
1 −−−−→ An −−−−→ πn −−−−→ πn−1 −−−−→ 1yc(si)

yc(si)

yc(s̄i)

1 −−−−→ An −−−−→ πn −−−−→ πn−1 −−−−→ 1
where s̄i is the image of si under πn → πn−1. This diagram gives rise to the
following commutative diagram of short exact sequences

1 −−−−→ 〈s2
n〉 −−−−→ Γn −−−−→ Γn−1 −−−−→ 1yc(si)

yc(si)

yc(s̄i)

1 −−−−→ 〈s2
n〉 −−−−→ Γ′

n −−−−→ Γ′
n−1 −−−−→ 1
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where Γ′
n and Γ′

n−1 are the images of Γn and Γn−1 under c(si) and c(s̄i)
respectively. In order to show that Γn is a normal subgroup of πn, it suffices
to show that Γ′

n = Γn. For this purpose we will use induction on n. It is
clear that Γ′

1 = Γ1. Assume that Γ′
n−1 = Γn−1. Consider an element sis

2
js

−1
i

of Γ′
n. It is mapped to the element s̄is̄

2
j s̄

−1
i of Γ′

n−1 = Γn−1. Hence s̄is̄
2
j s̄

−1
i

is a word of s̄2
1, · · · , s̄2

n−1. This therefore implies that sis
2
js

−1
i is a word of

s2
1, · · · , s2

n−1, s
2
n, which means that sis

2
js

−1
i ∈ Γn. Consequently Γ′

n = Γn.
Furthermore, we have the following commutative diagram of short exact

sequences
1 1 1x x x

1 −−−−→ Z2 −−−−→ πn/Γn −−−−→ πn−1/Γn−1 −−−−→ 1x x x
1 −−−−→ An −−−−→ πn −−−−→ πn−1 −−−−→ 1x x x
1 −−−−→ 〈s2

n〉 −−−−→ Γn −−−−→ Γn−1 −−−−→ 1x x x
1 1 1

This, in particular, shows that the order of πn/Γn equals 2n by induction. ¤
Lemma 4.3. Γn is a nilpotent group of rank n. Therefore, πn is a torsion-
free virtually nilpotent group of rank n.

Proof. It suffices to show that Γn has a finite central series

Γn = Γ1 ⊃ Γ2 ⊃ · · · ⊃ Γc ⊃ Γc+1 = 1

such that the quotient groups Γi/Γi+1 are isomorphic to some Zki . We will
use induction on n to show that the series

Γn = 〈s2
1, · · · , s2

n〉 ⊃ 〈s2
2, · · · , s2

n〉 ⊃ · · · ⊃ 〈s2
n−1, s

2
n〉 ⊃ 〈s2

n〉 ⊃ {1}(4.3)

is a required central series with successive quotient groups isomorphic to Z.
The case where n = 1 is obvious and hence we assume the following:

Γn−1 has such a central series. To avoid confusion let us use s̄1, · · · , s̄n−1 in
the presentation of πn−1 given in Lemma 3.1 so that si ∈ πn is mapped to
s̄i ∈ πn−1 for i = 1, · · · , n− 1. Then Γn−1 = 〈s̄2

1, · · · , s̄2
n−1〉 with index 2n−1

in πn−1, and by induction hypothesis, Γn−1 has a central series

Γn−1 = 〈s̄2
1, · · · , s̄2

n−1〉 ⊃ 〈s̄2
2, · · · , s̄2

n−1〉 ⊃ · · · ⊃ 〈s̄2
n−1〉 ⊃ {1}(4.4)

with successive quotient groups isomorphic to Z. Using the short exact
sequence 1 → 〈s2

n〉 → Γn
p→ Γn−1 → 1, we take the pullback of the se-

ries (4.4). Namely, for each subgroup 〈s̄2
i , · · · , s̄2

n−1〉 of Γn−1, we consider
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the subgroup p−1(〈s̄2
i , · · · , s̄2

n−1〉) of Γn. This group fits in a short exact
sequence 1 → 〈s2

n〉 → p−1(〈s̄2
i , · · · , s̄2

n−1〉) → 〈s̄2
i , · · · , s̄2

n−1〉 → 1, which
induces that p−1(〈s̄2

i , · · · , s̄2
n−1〉) = 〈s2

i , · · · , s2
n〉. Therefore, we have the

following commutative diagram

1 −−−−→ 〈s2
n〉 −−−−→ Γn −−−−→ Γn−1 −−−−→ 1x=

x x
1 −−−−→ 〈s2

n〉 −−−−→ 〈s2
2, · · · , s2

n〉 −−−−→ 〈s̄2
2, · · · , s̄2

n−1〉 −−−−→ 1x=

x x
...

...
...x=

x x
1 −−−−→ 〈s2

n〉 −−−−→ 〈s2
n−2, s

2
n〉 −−−−→ 〈s̄2

n−1〉 −−−−→ 1x=

x x
1 −−−−→ 〈s2

n〉 −−−−→ 〈s2
n〉 −−−−→ 1 −−−−→ 1

Finally we note that since the most right vertical is a central series, so is
the induced middle vertical. Clearly the rank of Γn is n. ¤

In fact, πn contains another nilpotent normal subgroup which is slightly
larger than Γn as is shown in the following lemma.

Lemma 4.4. Let Λn be the subgroup of πn generated by s2
1, · · · , s2

n−1, sn.
Then Λn is a nilpotent normal subgroup of πn which has rank n and index
2n−1.

Proof. Under the short exact sequence 1 → 〈sn〉 → πn → πn−1 → 1, we
take the pullback of the subgroup Γn−1 of πn−1. Then we obtain the short
exact sequence 1 → 〈sn〉 → Λn → Γn−1 → 1. Since Γn−1 is normal in πn−1,
it follows that Λn is a normal subgroup of πn.

On the other hand, Λn fits in the following short exact sequence 1 →
Γn → Λn → Z2 → 1. Since sisns−1

i = sεin
n , we have s2

i sns−2
i = sn and

so the extension is central. Hence since Γn is nilpotent, we see that Λn is
nilpotent. ¤

Now we are in a position to prove our first main theorem stated in the
Introduction.

Theorem 4.5. The total space Xn of an iterated S1-bundle of height n is
homeomorphic to an infra-nilmanifold. In fact, some 2n−1-cover of Xn is
homeomorphic to a nilmanifold.

Proof. Let Xn be the total space of an iterated S1-bundle and let πn be
its fundamental group as before. By [12, Corollary 3.2.1], there is an infra-
nilmanifold X whose fundamental group is isomorphic to πn. Therefore,
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two aspherical manifolds Xn and X are homotopic. By [6, Theorem 6.3],
Xn and X are homeomorphic except possibly for n = 3, 4.

Since X4 is aspherical and π4 is virtually nilpotent, X4 has an infra-nil
structure by [7, Corollary 2.21]. (In fact, this is true for all n 6= 3. See also
F. Quinn’s Math Review of the paper [6].) Namely, X4 is homeomorphic to
an infra-nilmanifold.

It is well known that all 3-dimensional infra-nilmanifolds are Seifert man-
ifolds. It is evident that the Seifert manifolds X3 and X are sufficiently
large, see [10, Proposition 2]. By works of Waldhausen [19] and Heil [9,
Theorem A], X3 is homeomorphic to X.

By Lemmas 4.2 and 4.4, πn has a normal nilpotent subgroup Λn of index
2n−1. The covering space associated with the nilpotent group Λn is a 2n−1-
cover of Xn and it is homeomorphic to a nilmanifold. ¤
Remark 4.6. The closed nilmanifolds are precisely the total spaces of iter-
ated principal S1-bundles up to homeomorphism as remarked in the Intro-
duction.

We conclude this section with the following lemma.

Lemma 4.7. πn is isomorphic to a Bieberbach group (in other words, Xn is
homeomorphic to a flat Riemannian manifold) if and only if Γn is isomorphic
to Zn.

Proof. The if part is clear. Suppose that πn is a Bieberbach group. Then
Rn/πn is a flat Riemannian manifold, so is its finite cover Rn/Γn. On the
other hand, it is known by Gromoll-Wolf [8] and Yau [21] that if the funda-
mental group of a compact nonpositively curved manifold is nilpotent, then
it is abelian. Therefore, Γn is isomorphic to Zn. ¤

5. Iterated S1-bundles of height 3

In this section we classify the 3-dimensional total spaces obtained as it-
erated S1-bundles of height 3 up to homeomorphism (equivalently up to
diffeomorphism because diffeomorphism classification is the same as home-
omorphism classification in dimension 3). This classification reduces to the
classification of isomorphism classes of their fundamental groups by Theo-
rem 4.5.

5.1. Isomorphism classes of π3. In the 3-dimensional case, by Lemma 3.1,
the fundamental group π3 of the total space of an iterated S1-bundle of
height 3 is generated by s1, s2, s3 with relations

(5.1) s1s2s
−1
1 = sa

3s
ε
2, s1s3s

−1
1 = sε1

3 , s2s3s
−1
2 = sε2

3

where a ∈ Z and ε, ε1, ε2 ∈ {±1}. We shall denote the group π3 with the
relation (5.1) by Π(a, ε, ε1, ε2).

Lemma 5.1. Π(a, ε, ε1, ε2) is a Bieberbach group if and only if (ε+ ε1)(ε2 +
1)a = 0.
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Proof. By Lemma 4.7, Π(a, ε, ε1, ε2) is a Bieberbach group if and only if
s2
i s

2
j = s2

js
2
i for 1 ≤ i < j ≤ 3. The latter two identities in (5.1) imply that

s3 commutes with s2
1 and s2

2. Therefore it suffices to show that s2
1s

2
2 = s2

2s
2
1

if and only if (ε + ε1)(ε2 + 1)a = 0. We note that the latter two identities in
(5.1) imply

(5.2) sis
b
3 = sεib

3 si for i = 1, 2 and b ∈ Z.

We distinguish two cases according to the value of ε.
The case where ε = 1. In this case s1s2 = sa

3s2s1 by the first identity in
(5.1). Using this together with (5.2), we have

s2
1s

2
2 = s1(s1s2)s2 = s1(sa

3s2s1)s2 = sε1a
3 (s1s2)(s1s2)

= sε1a
3 (sa

3s2s1)(sa
3s2s1) = sε1a+a+ε1ε2a

3 s2(s1s2)s1

= sε1a+a+ε1ε2a
3 s2(sa

3s2s1)s1 = sε1a+a+ε1ε2a+ε2a
3 s2

2s
2
1.

Therefore s2
1s

2
2 = s2

2s
2
1 if and only if the exponent of s3 in the last term above

is zero. This is equivalent to the assertion in the lemma because ε = 1.
The case where ε = −1. In this case s1s2 = sa

3s
−1
2 s1 by the first identity

in (5.1). Moreover, by taking inverse at the both sides of the first identity
in (5.1) and using (5.2), we obtain s1s

−1
2 = s−ε2a

3 s2s1. Using these two
identities together with (5.2), we have

s2
1s

2
2 = s1(s1s2)s1 = s1(sa

3s
−1
2 s1)s2 = sε1a

3 (s1s
−1
2 )(s1s2)

= sε1a
3 (s−ε2a

3 s2s1)(sa
3s

−1
2 s1) = sε1a−ε2a+ε1ε2a

3 s2(s1s
−1
2 )s1

= sε1a−ε2a+ε1ε2a
3 s2(s−ε2a

3 s2s1)s1 = sε1a−ε2a+ε1ε2a−a
3 s2

2s
2
1.

Therefore s2
1s

2
2 = s2

2s
2
1 if and only if the exponent of s3 in the last term above

is zero. This is equivalent to the assertion in the lemma because ε = −1. ¤
Lemma 5.1 implies that when (ε, ε1, ε2) = (1, 1, 1) or (−1,−1, 1), Π(a, ε, ε1, ε2)

is a Bieberbach group if and only if a = 0. This condition that (ε, ε1, ε2) =
(1, 1, 1) or (−1,−1, 1) appears from another viewpoint as is seen in (the
proof of) the following lemma.

Lemma 5.2. Unless (ε, ε1, ε2) = (1, 1, 1) or (−1,−1, 1),

Π(a, ε, ε1, ε2) ∼=

{
Π(0, ε, ε1, ε2) if a is even,

Π(1, ε, ε1, ε2) if a is odd.

Proof. Changing the lift of s1 and s2, we may replace

s1 7→ s−b
3 s1, s2 7→ s−c

3 s2, s3 7→ s3

where b and c can be any integers. Setting

t1 = s−b
3 s1, t2 = s−c

3 s2, t3 = s3,

the second and third identities of (5.1) remain unchanged with s replaced
by t but the first one turns into

(5.3) (tb3t1)(t
c
3t2)(t

b
3t1)

−1 = ta3(t
c
3t2)

ε.
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The left hand side of (5.3) reduces to

tb+ε1c−ε2b
3 t1t2t

−1
1

while the right hand side of (5.3) reduces to{
ta+c
3 t2 when ε = 1,

ta−ε2c
3 t−1

2 when ε = −1.

Therefore the first identity in (5.1) turns into

t1t2t
−1
1 =

{
t
a+(ε2−1)b−(ε1−1)c
3 t2 when ε = 1,

t
a+(ε2−1)b−(ε1+ε2)c
3 t−1

2 when ε = −1.

This implies the lemma. ¤
There are more isomorphisms among groups Π(a, ε, ε1, ε2).

Lemma 5.3. The following isomorphisms hold:
(1) Π(a, ε, ε1, ε2) ∼= Π(−a, ε, ε1, ε2).
(2) Π(a, ε, ε1, ε2) ∼= Π(a, ε, ε1ε2, ε2).
(3) Π(a, 1, ε1, ε2) ∼= Π(a, 1, ε2, ε1).
(4) Π(a, ε,−ε, 1) ∼= Π(a,−ε, ε, 1).

Proof. The following isomorphisms are desired ones for the first three cases:
(1) s1 → s1, s2 → s2, s3 → s−1

3 .
(2) s1 → s1s2, s2 → s2, s3 → s3.
(3) s1 → s2, s2 → s1, s3 → s−1

3 .
It would be obvious that the first two above are the desired isomorphisms.
We shall check it for (3). We set t1 = s2, t2 = s1 and t3 = s−1

3 . Then

t1t2t
−1
1 = s2s1s

−1
2 = s−a

3 s1 = ta3t2,

t1t3t
−1
1 = s2s

−1
3 s−1

2 = s−ε2
3 = tε23 ,

t2t3t
−1
2 = s1s

−1
3 s−1

1 = s−ε1
3 = tε13 ,

and this proves the isomorphism (3) in the lemma.
The proof of (4) is as follows. By Lemma 5.2 we may assume that a = 0

or 1. Then
s1 → s1, s2 → s3, s3 → s2 when a = 0,
s1 → s1, s2 → s2, s3 → s3s

2ε
2 when a = 1.

are the desired isomorphisms. The check is left to the reader. ¤
There are ten diffeomorphism classes of closed flat 3-dimensional Rie-

mannian manifolds; six orientable ones G1, G2, G3, G4, G5,G6 and four non-
orientable ones B1, B2, B3, B4, see [20, Theorems 3.5.5 and 3.5.9]. It is
known that G1, G2, B1, B3 appear as real Bott manifolds ([13], [14]).

Proposition 5.4. The isomorphism classes of π3 = Π(a, ε, ε1, ε2) are clas-
sified into the following three types:

(1) Six Bieberbach groups:
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Π(a, ε, ε1, ε2) a (ε, ε1, ε2)
G1 0 (1, 1, 1)
G2 0 (−1,−1, 1)
B1 even (1, 1,−1), (1,−1, 1), (1,−1,−1), (−1, 1, 1)
B2 odd (1, 1,−1), (1,−1, 1), (1,−1,−1), (−1, 1, 1)
B3 even (−1, 1,−1), (−1,−1,−1)
B4 odd (−1, 1,−1), (−1,−1,−1)

(2) An infinite family of nilpotent groups

Π(a, 1, 1, 1) ∼= Π(−a, 1, 1, 1) with a 6= 0.

(3) An infinite family of virtually nilpotent groups

Π(a,−1,−1, 1) ∼= Π(−a,−1,−1, 1) with a 6= 0.

Proof. (1) First we note that groups Π(a, ε, ε1, ε2)’s for values of (a, ε, ε1, ε2)
in a same row in the table above are isomorphic to each other by Lemmas 5.2
and 5.3. Three dimensional Bieberbach groups are classified and presented
in [20, Theorems 3.5.5 and 3.5.9] with generators and relations, and we shall
identify our groups Π(a, ε, ε1, ε2) with them.

(G1). Clearly Π(0, 0, 0, 0) is Z3 and isomorphic to G1.
(G2). Taking α = s1, t2 = s2 and t3 = s3, we see that Π(0,−1,−1, 1) is

isomorphic to G2.
(B1). We take e = s1, t1 = s2

1, t2 = s3, t3 = s−1
2 . Then {e, t1, t2, t3}

generates Π(0,−1, 1, 1) and satisfies

e2 = t1, et2e
−1 = t2, et3e

−1 = t−1
3 .

This shows that Π(0,−1, 1, 1) is isomorphic to B1.
(B2). We take e = s1, t1 = s2

1, t2 = s−2
1 s3, t3 = s2. Then {e, t1, t2, t3}

generates Π(1,−1, 1, 1) and satisfies

e2 = t1, et2e
−1 = t2, et3e

−1 = t1t2t
−1
3 .

This shows that Π(1,−1, 1, 1) is isomorphic to B2.
(B3). We take α = s1, e = s2, t1 = s2

1, t2 = s2
2, t3 = s3. Then

{α, e, t1, t2, t3} generates Π(0,−1,−1,−1) and satisfies

α2 = t1, αt2α
−1 = t−1

2 , αt3α
−1 = t−1

3 ,

e2 = t2, et1e
−1 = t1, et3e

−1 = t−1
3 , eαe−1 = t2α.

This shows that Π(0,−1,−1,−1) is isomorphic to B3.
(B4). We take α = s1, e = s2, t1 = s2

1, t2 = s2
2, t3 = s−1

3 . Then
{α, e, t1, t2, t3} generates Π(1,−1,−1,−1) and satisfies

α2 = t1, αt2α
−1 = t−1

2 , αt3α
−1 = t−1

3 ,

e2 = t2, et1e
−1 = t1, et3e

−1 = t−1
3 , eαe−1 = t2t3α.

This shows that Π(1,−1,−1,−1) is isomorphic to B4.
(2) The isomorphism in (2) of the proposition follows from Lemma 5.3

(1). Since the first homology group of Π(a, 0, 0, 0) is a cyclic group of order
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|a|, Π(a, 0, 0, 0) is isomorphic to Π(b, 0, 0, 0) if and only if |a| = |b|. For
Π(a, 0, 0, 0) with a 6= 0,

[s1, s2] = sa
3, [s1, s3] = [s2, s3] = 1,

so the group has a central series

Π(a, 0, 0, 0) = 〈s1, s2, s3〉 ⊃ 〈s3〉

and hence is nilpotent.
(3) The isomorphism in (3) of the proposition also follows from Lemma 5.3

(1). For Π(a,−1,−1, 1) with a 6= 0, we have

[s2
1, s2] = s−2a

3 , [s2
1, s3] = [s2, s3] = 1.

So the subgroup Ha = 〈s2
1, s2, s3〉 of Π(a,−1,−1, 1) with a 6= 0 is isomorphic

to the nilpotent group Π(2a, 0, 0, 0) in (2). Moreover, since the subgroup Ha

is of index 2, it is normal and the quotient group Π(2a, 0, 0, 0)/Ha is an order
two cyclic group. Therefore Ha is the unique maximal nilpotent normal
subgroup of Π(2a, 0, 0, 0) and Π(2a, 0, 0, 0) is virtually nilpotent. Finally, if
Π(a,−1,−1, 1) is isomorphic to Π(b,−1,−1, 1), then their maximal normal
nilpotent subgroups Ha and Hb are isomorphic; so |a| = |b| by (2) above. ¤

Remark 5.5. One can see that Π(a,−1,−1,−1) with a 6= 0 is isomorphic
to an almost Bieberbach group (in short, an AB-group) of Seifert bundle
type 3 in [4, Proposition 6.1], or π3 (the subscript 3 also stands for Seifert
bundle type 3) in the list of [3, p. 799]. Since the unique maximal normal
nilpotent subgroup Ha of Π(a,−1,−1,−1) is isomorphic to Π(2a, 0, 0, 0), our
class Π(a,−1,−1,−1) consists of all of the infinitely many non-isomorphic
AB-groups of type 3.

5.2. Realization. We shall observe that all the isomorphism classes of the
groups Π(a, ε, ε1, ε2) in Proposition 5.4 can be realized by iterated S1-bundles
of height 3.

By Theorem 4.5, the total space of an iterated S1-bundle of height 3 is
a 3-dimensional infra-nilmanifold. The 3-dimensional infra-nilmanifolds are
well understood. In fact, these are ten flat Riemannian manifolds mentioned
before or infra-nilmanifolds covered by the simply connected 3-dimensional
nilpotent Lie group Nil, called the Heisenberg group,

(5.4) Nil =


1 x z

0 1 y
0 0 1

 ∣∣∣ x, y, z ∈ R

 .

As mentioned before, G1, G2, B1, B3 appear as real Bott manifolds ([13],
[14]), and in addition to them, B2 and B4 appear as iterated S1-bundles as
is shown in the following example.
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Example 5.6 (Flat Riemannian manifolds of types B2 and B4).

s1(x, y, z) = (x +
1
2
, εy,−z +

1
4
),

s2(x, y, z) = (x, y +
1
2
,−z),

s3(x, y, z) = (x, y, z +
1
2
).

The group generated by s1, s2, s3 acts freely on R3 and has relations

s1s2s
−1
1 = s3s

ε
2, s1s3s

−1
1 = s−1

3 , s2s3s
−1
2 = s−1

3 .

The subgroup generated by s2
1, s

2
2, s

2
3 is the group Z3 of translations. The

natural projections R3 → R2 → R induce an iterated S1-bundle of height 3.

The group Π(a, 0, 0, 0) in Proposition 5.4 (2) can be realized by an iterated
S1-bundle as follows.

Example 5.7 (Nilmanifolds). It is well known that a lattice (i.e., a torsion
free discrete cocompact subgroup) of Nil is isomorphic to

(5.5) Πa := Π(a, 0, 0, 0) = 〈s1, s2, s3 | [s1, s2] = sa
3, [s1, s3] = [s2, s3] = 1〉

for some a 6= 0. This group is realized as a lattice of Nil if one takes

s1 =

1 1 0
0 1 0
0 0 1

 , s2 =

1 0 0
0 1 1
0 0 1

 , s3 =

1 0 1
a

0 1 0
0 0 1

 .

Then the orbit space Nil/Πa is a nilmanifold with Πa as the fundamental
group.

The product of the matrix in (5.4) with si (i = 1, 2, 3) from the left is
respectively given by1 x + 1 z + y

0 1 y
0 0 1

 ,

1 x z
0 1 y + 1
0 0 1

 ,

1 x z + 1
a

0 1 y
0 0 1

 .

Therefore, if we identify the matrix in (5.4) with the point (x, y, z) in R3,
then the left multiplication by si on Nil for i = 1, 2, 3 can respectively be
identified with the following diffeomorphism of R3:

s1(x, y, z) = (x + 1, y, z + y),

s2(x, y, z) = (x, y + 1, z),

s3(x, y, z) = (x, y, z +
1
a
).

So, the natural projections R3 → R2 → R induce an iterated S1-bundle of
height 3:

Nil/Πa → R2/Z2 = (S1)2 → R/Z = S1.
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Note that Nil/Πa → (S1)2 above is the unit sphere bundle of an ori-
ented plane bundle over (S1)2 whose Euler class is a times a generator of
H2((S1)2; Z).

It is well known that all 3-dimensional infra-nilmanifolds M covered by
Nil are Seifert manifolds (see [18]); namely, M is a circle bundle over a 2-
dimensional orbifold with singularities. It is known [4, Proposition 6.1] that
there are fifteen classes of distinct closed 3-dimensional manifolds M with a
Nil-geometry up to Seifert local invariant.

It is known (cf. [3, 4]) that the group Aut(Nil) of automorphisms of Nil
is isomorphic to R2 o GL(2, R). In fact, an element([

u
v

]
,

[
a b
c d

])
∈ R2 o GL(2, R)

acts on Nil as follows:1 x z
0 1 y
0 0 1

 7−→

1 ax + by z′

0 1 cx + dy
0 0 1

 ,

where

z′ = (ad − bc)z +
1
2
(acx2 + 2bcxy + bdy2) − (au + cv)x − (bu + dv)y.

An infra-nilmanifold of dimension 3 is an orbit space of Nil by a cocompact
discrete subgroup of the affine group Aff(Nil) = Nil oAut(Nil) of Nil acting
on Nil freely.

Example 5.8 (Infra-nilmanifolds). Let a 6= 0 as before. We consider affine
diffeomorphisms s1, s2, s3 in Aff(Nil) given as follows:

s1 =

1 1
2 0

0 1 0
0 0 1

 ,

([
0
0

]
,

[
1 0
0 −1

]) ,

s2 =

1 0 0
0 1 1

2
0 0 1

 ,

([
0
0

]
,

[
1 0
0 1

]) ,

s3 =

1 0 − 1
2a

0 1 0
0 0 1

 ,

([
0
0

]
,

[
1 0
0 1

]) .

In other words, if we identify Nil with R3 as before, then the diffeomorphisms
s1, s2, s3 are described as follows:

s1(x, y, z) = (x +
1
2
,−y,−z − y

2
),

s2(x, y, z) = (x, y + 1, z),

s3(x, y, z) = (x, y, z − 1
2a

).
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One can check that the group ∆a generated by s1, s2, s3 has relations

(5.6) s1s2s
−1
1 = sa

3s
−1
2 , s1s3s

−1
1 = s−1

3 , s2s3s
−1
2 = s3

and the action of ∆a on Nil is free. The subgroup of ∆a generated by
s2
1, s2, s3 agrees with Π−2a in Example 5.7 and Nil/Π−2a → Nil/∆a is a

double covering. Note that the natural projections R3 → R2 → R induce an
iterated S1-bundle of height 3 with Nil/∆a as the total space.

We summarize what we have observed as follows.

Theorem 5.9. The total spaces of iterated S1-bundles of height 3 are clas-
sified into the following three types up to homeomorphism:

(1) Closed flat Riemannian manifolds of types G1, G2, B1, B2, B3, B4.
(2) Nilmanifolds Nil/Πa in Example 5.7 parametrized by positive integers

a.
(3) Infra-nilmanifolds Nil/∆a in Example 5.8 parametrized by positive

integers a.

6. Flat Riemannian iterated RP 1-bundles

A real Bott manifold (see Example 3.3) is flat Riemannian although the
total space of an iterated RP 1-bundle is not necessarily flat Riemannian.
The purpose of this section is to show that real Bott manifolds are precisely
flat Riemannian manifolds among the total spaces of iterated RP 1-bundles.
In fact, we prove the following, which is essentially same as Theorem 1.2 in
the Introduction.

Theorem 6.1. Let Xn be the total space of an iterated RP 1-bundle of height
n. If the fundamental group of Xn is a Bieberbach group, then it is isomor-
phic to the fundamental group of a real Bott manifold. (This means that if
Xn is homeomorphic to a flat Riemannian manifold, then it is homeomor-
phic to a real Bott manifold.)

We consider the following setting:

sisjs
−1
i = s

aij
n s

εij

j with aij ∈ Z, εij = ±1 for 1 ≤ i < j < n,

sisns−1
i = sεi

n with εi = ±1 for 1 ≤ i < n.
(6.1)

Lemma 6.2. s2
i s

2
j = s2

js
2
i for i < j if and only if (εi + εij)(εj + 1)aij = 0.

Proof. The proof is essentially same as that in Lemma 5.1, so we omit it. ¤

Lemma 6.3. Fix 1 ≤ k < n and suppose

(6.2) aij = 0 for all i > k.

Then, for k < i < j < n, we have

(εj − 1)aki = (εi − 1)akj if εij = 1,

(εj − 1)aki = (εi + εj)akj if εij = −1.
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Proof. We conjugate the both sides of the former identity in (6.1) by sk.
Then the left hand side turns into

sk(sisjs
−1
i )s−1

k = (sksis
−1
k )(sksjs

−1
k )(sks

−1
i s−1

k )

= (saki
n sεki

i )(sakj
n s

εkj

j )(saki
n sεki

i )−1

= s
aki+εiakj−εjaki
n sεki

i s
εkj

j s−εki
i

(6.3)

while since aij = 0 for i > k by assumption, the right hand side of (6.1)
conjugated by sk turns into

(6.4) sks
εij

j s−1
k =

{
s
akj
n s

εkj

j when εij = 1,

s
−εjakj
n s

−εkj

j when εij = −1.

When εij = 1, sisjs
−1
i = sj and hence sεki

i s
εkj

j s−εki
i = s

εkj

j . Therefore,
comparing exponents of sn at (6.3) and (6.4), we obtain the former identity
in the lemma. When εij = −1, a similar argument yields the latter identity
in the lemma. ¤

Lemma 6.4. Let (6.2) be satisfied and k < i < j < n as in Lemma 6.3.
Then the following hold.

(1) If εi = εj = −1, then aki = akj.
(2) If εi = 1 and aki 6= 0, then εj = 1 and ε`i = ε` for k < ` < i.

Proof. (1) This is obvious from Lemma 6.3.
(2) The first assertion εj = 1 is obvious from Lemma 6.3. To prove the

latter assertion, we apply Lemma 6.3 with i = ` and j = i. When ε`i = 1,
we have ak`(εi − 1) = aki(ε` − 1). This implies ε` = 1 because εi = 1 and
aki 6= 0 by assumption. When ε`i = −1, we have ak`(εi − 1) = aki(ε` + εi).
This implies ε` = −1 because εi = 1 and aki 6= 0. In any case, ε`i = ε`. ¤

Proof of Theorem 6.1. It suffices to prove that π1(Xn) is generated by s1, . . . , sn

with relations of the form (6.1) with aij = 0 because the fundamental group
of a real Bott manifold has such a presentation, see Example 3.3. We prove
this assertion by induction on n. The assertion is clearly true when n = 2.
When n = 3, π1(X3) is of the form (5.1), that is

s1s2s
−1
1 = sa

3s
ε
2, s1s3s

−1
1 = sε1

3 , s2s3s
−1
2 = sε2

3 .

Here a = 0 when (ε, ε1, ε2) = (1, 1, 1) or (−1,−1, 1) by Lemma 5.1 and a is
even otherwise by Proposition 3.2 (2). Therefore one can assume a = 0 by
Lemma 5.2, so the assertion is true when n = 3.

Now we assume that the assertion is true for π1(Xn−1) with some n ≥ 4.
Then π1(Xn) is generated by s1, . . . , sn with relations of the form (6.1). We
shall show that we can achieve aij = 0 by replacing si (1 ≤ i < n) by sbi

n si

with suitable bi ∈ Z.
First we look at the following (last) three relations among sn−2, sn−1, sn:

sn−2sn−1s
−1
n−2 = sa

nsε
n−1, sn−2sns−1

n−2 = sεn−2
n , sn−1sns−1

n−1 = sεn−1
n
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where a = an−2 n−1 and ε = εn−2 n−1. Since Xn is an iterated RP 1-bundle,
one can assume a = 0 by the same reason as the case n = 3.

Now suppose that for some k < n − 2, we have achieved aij = 0 for all
i > k; so we are under the situation of Lemmas 6.3 and 6.4. What we shall
prove is that we can achieve aij = 0 for all i ≥ k. Let p > k. If akp = 0,
we have nothing to do; so we assume akp 6= 0. We distinguish two cases
according to the value of εp.

The case where εp = −1. We replace sk by sb
nsk. This replacement does

not affect relations for si and sj with k < i < j, so it keeps aij = 0 for
k < i < j. But the relation sksps

−1
k = s

akp
n s

εkp
p turns into

sksps
−1
k = s

akp+2b
n s

εkp
p

because εp = −1. Since akp is even by Proposition 3.2 (2), one can take
b = −akp/2 so that the exponent of sn above becomes zero. For other q > k
with εq = −1, akq = akp by Lemma 6.4 (1). Therefore, b is independent of
p with εp = −1.

The case where εp = 1. We note εj = 1 for any j > k by Lemma 6.4 (2).
We replace sp by sc

nsp. In this case, it is not obvious that this replacement
keeps aij = 0 for k < i < j but it does. In fact, its suffices to check
that the relations spsjs

−1
p = s

εpj

j for p < j and s`sps
−1
` = s

ε`p
p for ` < p

remain unchanged and one can easily check that the former identity remains
unchanged because εj = 1 and the latter one remains unchanged because
εp = 1 by assumption and ε`p = ε` by Lemma 6.4 (2). However, the relation
sksps

−1
k = s

akp
n s

εkp
p turns into

(6.5) sksps
−1
k = s

akp+(εk−εkp)c
n s

εkp
p .

On the other hand, since s2
ks

2
p = s2

ps
2
k, we have (εk + εkp)(εp + 1)akp = 0

by Lemma 6.2. Since akp 6= 0 and εp = 1, this implies εk = −εkp and
hence εk − εkp = ±2. Since akp is even by Proposition 3.2 (2), one can take
c = −akp/(εk − εkp) so that the exponent of sn becomes zero in (6.5).

In any case, we can achieve akp = 0 for any p > k keeping aij = 0 for
k < i < j. This completes the induction step and proves the theorem. ¤
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