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Abstract.

Let us consider the Liouville equation
—Au=AV(z)e" inQ, u=0 ondQ,

where Q is a smooth bounded domain in R?, V(x) > 0 is a given
function in C*(Q), and A > 0 is a constant. Let {u,} be an m-point
blowing up solution sequence for A = \,, | 0, in the sense that

An / V(z)e""dr — 8mm asn — oo
Q

for m € N. We prove that the number of blow up points m is less than
or equal to the Morse index of u,, for n sufficiently large. This extends
the main result of the recent paper [13] to an inhomogeneous (V # 1)
case.

61. Introduction

In this paper we study the Liouville equation

1
(1) u=20 on 0N

{—Au = AV (x)e" in Q,
where © is a smooth bounded domain in R?, V(z) > 0 is a given function
in C*(Q), and A > 0 is a constant.

The purpose of this note is to extend the main result of the recent
paper [13], where only V' = 1 was considered, to the present case.

The Liouville equation appears in several fields of mathematics and
physics, and the study of it has a rather long history; see for example,
[3], [4], [12], and the references therein.
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Let {\,} be a sequence of positive numbers with A,, — 0 as n — oo.
One of the interesting issues of this problem is the study of asymptotic
behavior of solutions as n — oo. Concerning this, Ma and Wei [10]
proved the following fact, which extends the former result by Nagasaki
and Suzuki [11] where V' =1 was considered.

Theorem 1. (Ma and Wei [10]) For any solution sequence {u}
of (1) for A = X, | 0, there exists a subsequence (denoted by u, again)
such that it holds

An | V(x)e" dz — 8mm,  for somem € {0} UNU {+o0},
Q

and according to the cases, the solution sequence {u,} behaves as
(i) wniform convergence to 0: |[uy| ) — 0, when m =0,

(ii)  entire blow-up: u,(x) — 400 as n — oo for any x € Q when
m = +00,

(iil)  m-points blow-up: there exists an m-points setS = {a1,- -+, am},
called blow up set, such that each a; is an interior point of €,
|unll ooy = O(1) for any compact set K C Q\'S, up|s —
400, and

(2) up — 81 G(a;) inCL.(Q\S)
i=1
as n — oo when m € N. Furthermore, any blow up point
a; € S must satisfy the condition

1 - 1
§VR(CL¢) + j:;# V.G(a;,a;) + S—WVlog V(a;)) =0

fori=1,2,--- m. Here, G = G(x,y) is the Green function
of —A under the Dirichlet boundary condition with a pole y €
Q, and R(z) = [G(x,y) + 5= log|z —y|] __ denotes the Robin
function.

y=

Later, the existence of multiple blowing up solutions with a pre-
scribed blow up set is established; see [6] [7].

Let ips(u) denote the Morse index of a solution u of (1), that is, the
number of negative eigenvalues of the linearized operator L, = —A —
AV (z)e¥- acting on H{(£2). In this note, we prove the following, which
is an extension of the main theorem in [13] to the inhomogeneous case.
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Theorem 2. Let {u,} be a solution sequence of (1) for X = A\,
satisfying

)\n/ V(z)e' dx — 8mm
Q

for some m € N. Then m < iy (uy,) for n sufficiently large.

In the homogeneous (V = 1) case [13], we used the fact that w(z) =
(x — a) - Vuy(z) + 2 satisfies the equation —Aw = A, e“rw (except for
the boundary condition) for a € R2. This is no longer true when V is
not a constant, and we need another method. The proof presented here
works also for the homogeneous case and the main idea originates from

[1].

§2. Proof of Theorem 2

In this section, we prove Theorem 2 along the line of [13].

Let {u, } be a solution sequence to (1) for A = A, with A, [, V(z)e"rdx —
8mm for some m € N. Theorem 1 implies that the existence of the blow
upset S = {a1, - ,am} C Q. Also we have a sufficiently small p > 0 and
m sequences of local maximum points {z% } such that for each a; € S,

) = max u,(z) — oo, i —a;(i=1,---,m),

wy, (x
( By (x7,)

as n — o0o.
Now we recall the following local pointwise estimate for the blowing-
up solutions to (1) thanks to YanYan Li [8]: For a fixed p € (0, 1), there

exists a constant C' > 0 independent of 4 = 1,--- ,m and A, > 0 such
that

eun(xip) .
(3) |un(x) —log < C for x € B,(z;,)

(14 22V (2, )eun @) |z — i [2)

holds true.
Here we show a proof for the reader’s convenience. Define v, (z) =
un(x) +log A,,. Then v, satisfies

—Av, =V(z)e" inQ, v, =1log\, ond.

Furthermore, by the assumption A, [, V(z)e"dz — 8rm and 0 < Ja <
V(z) < 3b < +o0, we see that [, e"dx = O(1) as n — ooc.

Now, we claim that vy, (zf) — +o0o asn — oo for any i € {1,--- ,m}.
Indeed, assume the contrary that there exists ¢ € {1,---,m} and a

subsequence (denoted by the same symbol) such that
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(i) vp(xl) — —o0, or

(i) vp(2i) — C for some C € R.

n

When (i) happens, we see

/ V(x)e' @ dy < evn(@n) / V(z)dz — 0
By (=) By ()

as n — o0o. However, this contradicts the fact that

lim V(x)e’ dx > 8,

"By (@)

see, for example, Li and Shafrir [9].

Also if (ii) happens, a result of Brezis and Merle ([2]:Theorem 3)
implies that {v,} is bounded in L;° (€). On the other hand, (2) in
Theorem 1 implies that v, = u, + log\, — —oco on any compact set
in 2\ S. Thus again we have a contradiction and we have proved the
claim.

Once we have the claim, we are in the same situation of Theorem

0.3 in [8] (setting that Q = B,(z%),0 = ¢, there). Note that

oB ) () = o i on(@) = e un() = gt un (@) = O(1)

as n — oo. Thus by Theorem 0.3 in [8], we have

v (27,)

e n .

vp(z) — log - ‘ - <C forz e By(z;,),
(1+ 22V (ad)evn @)z — 23 2)° e

which is equivalent to (3).
Now, let us define

(05) Ane (o) =1,

il (y) = un(6hy + ah) — un(ah), y € Bysi (0)

for i € {1,---,m}. By the above pointwise estimate, we easily see that
0!, = o(1) as n — oo. The scaled function !, satisfies

A}, = V(Sy +al)e™  in By (0),
@}, (0) =0, @\ (z) <0, Va € B, (0),
fBa/ai 0 V(0hy +al)efrdy = O(1),  (n — o).



Blow up points b)

Moreover, by an argument in [13], we obtain
(4) ay, — U'(y) = —2log (1—}—(;)|y|2) fori=1,---,m

in CL.(R?) as n — oo, where U" is a unique ([5]) solution of

—AU = V(a;)eV"  inR?,
U'(0) =0, U'(y) <0, VyeR?
Je €V dy < +o0.

Now, we define two elliptic operators
Ly = —A, =\ V(x)e" @ . HY(Q) — H(Q),
Li = Ay~ V(0iy +ai)e™ ). . Hy(Byys5:(0)) — H(B,5: (0)).
These two operators are related to each other by the formula

un (2)=0}, (y)+un(z},)
where x = 6,y +z}, for x € B,(z},) and y € B,5: (0). Also for a domain
D C B,(z}), we have
D — 1t

n

4 9
5%

where \;(Ln, D), \; (L%, D) (j € N) denote the j-th eigenvalue of ellip-
tic operators L, L, acting on H} (D), H}(D},) respectively.
We show the following.

Lemma 2.1. There erists R > 0 such that \i(Ly, Bsi r(z;,)) <0
for n large and for any i € {1,--- ,m}. Furthermore, these m balls are
disjoint for n large.

Proof. For R > 0, we define

8 + R?
8+ [y[?

wr(y) = 2log

Since wr = 0 on BR(0), we see wr € Hi(Br(0)).
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We will prove that (f/fle,wR)Lz(BR) < 0 for R > 0 sufficiently
large and Br(0) C B,/s: (0). Indeed,

(Liwr, WR)r2(Bp) = / [Vwr[*dy — / V(Shy + 2l )e" Wwh (y)dy
Br(0) Br(0)
= Il — IQ.

We observe that

16|y B 160
L= / ———dy = 27r/ ————rdr = 32x [log R+ or(1)],
Br(0) 8+ yl?)? o (8+4712)?

where og(1) — 0 as R — oo. On the other hand, we have

b::/“ V(Siy + 2 )e™ W (y)dy
Br(0)

2 2
V) [ ! 2@%8+RJ(M+%m
Br(0) (1 + V(gi) |y|2> 8+ yl

R
= 27rV(ai)/ ;2 {log(8 + R?) —1og(8+r2)}2dr+on(1)
0 (1+ V(;i)rz)

16V(&l)
=327 (log R)* [1 + or(1)] + 0, (1),

=27V (a;) - 8% {log(8 + R2)}2 [ + 03(1)] +on(1)

where we have used (4) and

/R r d—/oo " g ton(l) = —— + on(1)
o (8+cr?)? " 0 (8+cr2)2r T

for ¢ > 0. Thus we obtain
(Liwg, wr) 23y = 11 — I = =327 (log R)? [1 + 0 (1)] < 0

by taking n sufficiently large first, and then R > 0 large such that
Br(0) C B,/5: (0). This implies that the first eigenvalue of the operator
L}, on Bp is negative: \(L%, Bg) < 0. By this and the scaling formula
(5) proves the first half part of the Lemma.

The fact that these balls Bs: r(z%) are disjoint follows from the strict

&oncavity of the limit functions U'(y) = —2log(1 + %|y|2); see [13].
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By Lemma 2.1, we have m open balls B!, ..., B™, B' = B(;;-LR(xfl),
which are disjoint, and

M(Ly,B) <0 fori=1,---,m.

On the other hand, it is easy to see that
m(Ln, Q) < Z (Ln, BY)

holds; see for example, [13]. Combining these inequalities, we have
Am(Ln, Q) < 0. Therefore by the definition of the Morse index of w,,
we have m <'ipr(uy,). This proves Theorem 2. U

Acknowledgments. Part of this work was supported by JSPS Grant-
in-Aid for Scientific Research (B), No. 23340038.

References

[1] M. Ben Ayed, K. El Mehdi, and M. Grossi: Asymptotic behavior of least
energy solutions of a biharmonic equation in dimension four, Indiana
Univ. Math. J. 55 (2006) 1723-1750.

[2] H. Brezis, and F. Merle: Uniform estimates and blow-up behavior for solu-
tions of —Au = V(z)e* in two dimensions, Comm. Partial Differential
Equations 16 (1991) 1223-1253.

[3] E. Caglioti, P.L. Lions, C. Marchioro, and M. Pulvirenti: A special class
of stationary flows for two-dimensional Euler equations: a statistical me-
chanics description, I & II. Comm. Math. Phys. 143 (1992) 501-525 &
174 (1995) 229-260.

[4] S.Y.A. Chang, and P.C. Yang: Prescribing Gaussian curvature on S?, Acta
Math. 159 (1987) 215-259.

[5] E. Chen, and C. Li: Classification of solutions of some nonlinear elliptic
equations, Duke Math. J. 63(3) (1991) 615-622.

[6] M. del Pino, M. Kowalczyk and M. Musso: Singular limits in Liowville-type
equations, Calc. Var. and Partial Differential Equations 24 (2005) 47-81.

[7] P. Esposito, M. Grossi and A. Pistoia: On the existence of blowing-up solu-
tions for a mean field equation, Ann. I. H. Poincaré 22 (2005) 227-257.

[8] Y. Y. Li: Harnack type inequality: the method of moving planes, Commun.
Math. Phys. 200 (1999) 421-444.

[9] Y. Y. Li, and L. Shafrir: Blow-up analysis for solutions of —Au = Ve“ in
dimension two, Indiana Univ. Math. J. 43 (1994) 1255-1270.

[10] L. Ma, and J. Wei: Convergence for a Liouville equation, Comment. Math.
Helv. 76 (2001) 506-514.



8 F. Takahashi

[11] K. Nagasaki, and T. Suzuki: Asymptotic analysis for two-dimensional el-
liptic eigenvalue problems with exponentially dominated nonlinearities,
Asymptotic Anal. 3 (1990) 173-188.

[12] M. Struwe, and G. Tarantello: On multivortez solutions in Chern-Simons
gauge theories, Boll. Unione Mat. Ital. Sez. B. 8 (1998) 109-121.

[13] F. Takahashi: Blow up points and the Morse indices of solutions to the
Liouville equation in two-dimension, to appear in Advances in Nonlinear
Studies

Department of Mathematics, Osaka City University
& Osaka City University Advanced Mathematical Institute
Sumiyoshi-ku, Osaka, 558-8585, Japan

E-mail address: futoshi@sci.osaka-cu.ac.jp



