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equation with large exponent

Futoshi Takahashi
Department of Mathematics, Osaka City University & OCAMI

Sugimoto 3-3-138, Sumiyoshi-ku, Osaka, 558-8585, Japan
Tel: (+81)(0)6-6605-2508

E-mail: futoshi@sci.osaka-cu.ac.jp

Abstract. In this note, we prove that least energy solutions of the two-
dimensional Hénon equation

−∆u = |x|2αup x ∈ Ω, u > 0 x ∈ Ω, u = 0 x ∈ ∂Ω,

where Ω is a smooth bounded domain in R2 with 0 ∈ Ω, α ≥ 0 is a constant
and p > 1, have only one global maximum point when α > e − 1 and the
nonlinear exponent p is sufficiently large. This answers positively to a recent
conjecture by C. Zhao (preprint, 2011).
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1. Introduction.

In this note we consider the problem




−∆u = |x|2αup x ∈ Ω,

u > 0 x ∈ Ω,

u = 0 x ∈ ∂Ω,

(1.1)

where Ω is a smooth bounded domain in R2 with 0 ∈ Ω, α ≥ 0 is a constant
and p > 1. Since the Sobolev embedding H1

0 (Ω) ↪→ Lp+1(Ω) is compact
for any p > 1, we can obtain at least one solution of (1.1) by a standard
variational method. In fact, let us consider the constrained minimization
problem

Sp = inf

{∫

Ω

|∇v|2dx | v ∈ H1
0 (Ω),

∫

Ω

|x|2α|v|p+1dx = 1

}
. (1.2)
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Standard variational method implies that Sp is achieved by a positive function

vp ∈ H1
0 (Ω) and then up = S

1/(p−1)
p vp solves (1.1). We call up a least energy

solution to the problem (1.1).
When α = 0, several studies on the asymptotic behavior of least energy

solutions up as p → ∞ have been done in [4], [5], [3] and [1]. Recently,
Chunyi Zhao [9] extended the study to the case when α > 0, and obtained
some results. First he showed that for any α > 0, there exists δ > 0 such
that the least energy solution up satisfies 1− δ ≤ ‖up‖∞ ≤ √

e+ δ for p large
enough. To state his results further, we introduce some notations: Let xp be
a global maximum point of up and define εp > 0 by the relation

ε2
p|xp|2αp‖up‖p−1

∞ = 1.

Also define the function ũp : Ωp = Ω−xp

εp
→ R such that

ũp(y) =
p

‖up‖∞ {up (εpy + xp)− up(xp)} .

By using these symbols, the main result of C. Zhao reads as follows:

Theorem 1 (Chunyi Zhao [9]) Assume α > e− 1. Then εp → 0 and Ωp →
R2 as p → ∞. Also for any sequence pn → ∞ as n → ∞, there exists a
subsequence (again denoted by the same symbol) such that

ũpn(y) → U(y) := −2 log

(
1 +

|y|2
8

)
in C2

loc(R2), (1.3)

|xpn |2+2αpn‖upn‖pn−1
∞ →∞, dist(xpn , ∂Ω)2pn‖upn‖pn−1

∞ →∞ (1.4)

as n → ∞. Moreover, the least energy solution up has at most two global
maximum points in Ω for large p.

After obtaining these results, Zhao conjectured that up has only one global
maximum point when p large in Theorem 1.

Main purpose of this note is to answer the conjecture affirmatively.

Theorem 2 Under the assumption of Theorem 1, the number of global max-
imum points of least energy solution up is exactly 1 for p large enough.
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For the proof, we will use the Morse index characterization of least energy
solutions and an argument of [6]. Relations between the number of blowing-
up points and the Morse indices of blowing-up solutions to a two-dimensional
Liouville equation have been studied in [7], [8].

2. Proof of Theorem 2.

As in §1, let vp denote a solution of (1.2), which may be chosen positive.
Then vp solves the equation

−∆vp = Sp|x|2αvp
p x ∈ Ω, vp > 0 x ∈ Ω, vp = 0 x ∈ ∂Ω.

Let up = S
1/(p−1)
p vp be a least energy solution to (1.1). First, we recall the

well-known fact, which says that the Morse index of up is less than or equal
to 1 for any p > 1.

Lemma 3 Let Lp = −∆x − p|x|2αup−1
p (x) : H1

0 (Ω) → H−1(Ω) denote the
linearized operator around up. Then the second eigenvalue of Lp, denoted by
λ2(Lp, Ω), is nonnegative.

Proof. When α = 0, a proof of this lemma is shown, for example, in [2].
Proof in the case of α > 0 is similar. Here we recall it for the sake of
completeness.

Let Lp = −∆x−pSp|x|2αvp−1
p (x) : H1

0 (Ω) → H−1(Ω) denote the linearized
operator around vp. Since Spv

p−1
p = up−1

p , it is enough to show that the second

eigenvalue of Lp, denoted by λ2(Lp, Ω), is nonnegative. For this purpose, let
us define

f(t) =

∫
Ω
|∇(vp + tϕ)|2dx

(∫
Ω
|x|2α|vp + tϕ|p+1dx

) 2
p+1

for any ϕ ∈ H1
0 (Ω). By the minimality of vp, we have f ′(0) = 0 and f ′′(0) ≥ 0.

Calculation using
∫
Ω
|x|2αvp+1

p dx = 1 and
∫

Ω
|∇vp|2dx = Sp shows that

f ′′(0) = 2

{∫

Ω

|∇ϕ|2dx− pSp

∫

Ω

|x|2αvp−1
p ϕ2dx + (p− 1)Sp

(∫

Ω

|x|2αvp
pϕdx

)2
}

= 2(Lpϕ, ϕ)L2(Ω) + 2(p− 1)Sp

(∫

Ω

|x|2αvp
pϕdx

)2

.
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Combining this to a variational characterization of λ2(Lp, Ω), we have

λ2(Lp, Ω) = sup
L⊂H1

0 (Ω), codimL=1

inf
ϕ∈L

(Lpϕ, ϕ)L2(Ω)

‖ϕ‖2
L2(Ω)

≥ inf
ϕ∈H1

0 (Ω), ϕ⊥|x|2αvp
p

(Lpϕ, ϕ)L2(Ω)

‖ϕ‖2
L2(Ω)

= inf
ϕ∈H1

0 (Ω), ϕ⊥|x|2αvp
p

1

2

f ′′(0)

‖ϕ‖2
L2(Ω)

≥ 0.

By using this fact, we prove Theorem 2 by a contradiction argument.

Proof of Theorem 2. Assume the contrary that there exist two global
maximum points x1

pn
, x2

pn
of upn , xi

pn
∈ Ω, ‖upn‖∞ = upn(xi

pn
), (i = 1, 2) for

some sequence pn →∞. Define εi
pn

> 0 by the relation

(εi
pn

)2|xi
pn
|2αpn‖upn‖pn−1

∞ = 1, (2.1)

and the scaled functions

ũi
pn

(y) =
pn

‖upn‖∞
{
upn

(
εi

pn
y + xi

p

)− upn(xi
pn

)
}

, (2.2)

y ∈ Ωi
pn

:=
Ω− xi

pn

εi
pn

for i = 1, 2. Now we assume α > e− 1, so all results of Theorem 1 hold true
for ũi

pn
, (i = 1, 2). In particular, there exists a subsequence (denoted by the

same symbol again) such that (1.3) holds for both ũi
pn

.
Next, we define elliptic operators

L̃i
pn

= −∆y −
∣∣∣∣

εi
pn

|xi
pn
|y +

xi
pn

|xi
pn
|

∣∣∣∣
2α (

1 +
ũi

pn

pn

(y)

)pn−1

, (i = 1, 2) (2.3)

acting on H1
0 (Ωi

pn
). These operators are related to the operator Lpn by the

formula
(εi

pn
)2Lpn

∣∣∣
x=εi

pny+xi
pn

= L̃i
pn

, y ∈ Ωi
pn

,

for i = 1, 2. Also, eigenvalues are related with each other by the formula

(εi
pn

)2λj(Lpn , D) = λj(L̃
i
pn

, Di
pn

), Di
pn

=
D − xi

pn

εi
pn

, (2.4)
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where λj(Lpn , D) will denote a j-th eigenvalue of the operator Lpn acting on
H1

0 (D) for a domain D, etc.
Let B(a, R) = BR(a) denote an open ball of center a ∈ R2 with radius R.

We prove the following:

Lemma 4 There exist disjoint balls Bi (i = 1, 2), each ball is of the form
B(xi

pn
, εi

pn
R) for some R > 0, such that λ1(Lpn , Bi) < 0 for i = 1, 2 when n

sufficiently large.

Proof. For R > 0, we define

wR(y) = 2 log
8 + R2

8 + |y|2 .

Since wR = 0 on ∂BR(0), we see wR ∈ H1
0 (BR(0)).

We will prove that (L̃i
pn

wR, wR)L2(BR(0)) < 0 for R > 0 sufficiently large
and BR(0) ⊂ Ωi

pn
. Indeed,

(L̃i
pn

wR, wR)L2(BR(0)) =

∫

BR(0)

|∇wR|2dy

−
∫

BR(0)

∣∣∣∣
εi

pn

|xi
pn
|y +

xi
pn

|xi
pn
|

∣∣∣∣
2α (

1 +
ũi

pn

pn

(y)

)pn−1

w2
R(y)dy

=: I1 − I2.

We see

I1 =

∫

BR(0)

16|y|2
(8 + |y|2)2

dy = 2π

∫ R

0

16r2

(8 + r2)2
rdr = 32π [log R + oR(1)] ,

where oR(1) → 0 as R → ∞. As for I2, (1.4) implies
εi
pn

|xi
pn |

→ 0 as n → ∞
even if xi

pn
→ 0. Also

xi
pn

|xi
pn |
→ ∃y0, |y0| = 1 for a subsequence. Therefore by

choosing a subsequence, we have

∣∣∣∣
εi

pn

|xi
pn
|y +

xi
pn

|xi
pn
|

∣∣∣∣
2α (

1 +
ũi

pn

pn

(y)

)pn−1

→ eU(y)
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in C2
loc(R2) by (1.3). Thus,

I2 =

∫

BR(0)

∣∣∣∣
εi

pn

|xi
pn
|y +

xi
pn

|xi
pn
|

∣∣∣∣
2α (

1 +
ũi

pn

pn

(y)

)pn−1

w2
R(y)dy

=

∫

BR(0)

1(
1 + |y|2

8

)2

{
log

8 + R2

8 + |y|2
}2

dy + on(1)

= 2π

∫ R

0

r(
1 + r2

8

)2

{
log(8 + R2)− log(8 + r2)

}2
dr + on(1)

= 2π · 82
{
log(8 + R2)

}2
[

1

16
+ oR(1)

]
+ on(1)

= 32π (log R)2 [1 + oR(1)] + on(1),

where we have used
∫∞

0
r

(8+r2)2
dr = 1

16
. Hence we obtain

(L̃i
pn

wR, wR)L2(BR(0)) = I1 − I2 = −32π (log R)2 [1 + oR(1)] < 0

by taking n sufficiently large first, and then R > 0 large such that BR(0) ⊂
Ωi

pn
. This implies that the first eigenvalue of the operator L̃i

pn
on BR is

negative: λ1(L̃
i
pn

, BR) < 0. By this and the scaling formula (2.4) proves the
first half part of the Lemma.

Recall that, under the assumption considered here, the following estimate
is proved in [9] Lemma 5.1:

|x1
p − x2

p|
max{ε1

p, ε
2
p}
→ ∞

as p → ∞. This implies that these two balls B(xi
pn

, εi
pn

R) are disjoint for n
sufficiently large.

By Lemma 4, we have

λ1(Lpn , Bi) < 0 i = 1, 2 (2.5)

for n sufficiently large. On the other hand, a well known estimate of λ2(Lpn , Ω)
claims

λ2(Lpn , Ω) ≤
2∑

i=1

λ1(Lpn , Bi). (2.6)
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See, for example, [7] Appendix. From (2.5) and (2.6), we have λ2(Lpn , Ω) < 0
for n large, which contradicts to Lemma 3.
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