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Abstract. In this note, we prove that least energy solutions of the two-
dimensional Hénon equation

—Au= |z x€Q, u>0 r€Q, u=0 zc€odf,

where 0 is a smooth bounded domain in R? with 0 € , @ > 0 is a constant
and p > 1, have only one global maximum point when o > e — 1 and the
nonlinear exponent p is sufficiently large. This answers positively to a recent
conjecture by C. Zhao (preprint, 2011).
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1. Introduction.

In this note we consider the problem

—Au = |z[**uP z €,
u>0 x € €, (1.1)
u=>0 x € 01,

where Q is a smooth bounded domain in R? with 0 € Q, o > 0 is a constant
and p > 1. Since the Sobolev embedding H}(Q) — LPT(Q) is compact
for any p > 1, we can obtain at least one solution of (1.1) by a standard
variational method. In fact, let us consider the constrained minimization
problem

s, = inf{/ Vol2d | v € Hg(Q),/ P de = 1}_ (1.2)
Q Q
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Standard variational method implies that S, is achieved by a positive function

v, € HY(Q) and then u, = Sp’? Vv, solves (1.1). We call u, a least energy
solution to the problem (1.1).

When a = 0, several studies on the asymptotic behavior of least energy
solutions u, as p — oo have been done in [4], [5], [3] and [1]. Recently,
Chunyi Zhao [9] extended the study to the case when o > 0, and obtained
some results. First he showed that for any a > 0, there exists § > 0 such
that the least energy solution w, satisfies 1 —0 < [lup||ec < v/e+ 9 for p large
enough. To state his results further, we introduce some notations: Let x, be
a global maximum point of u, and define ¢, > 0 by the relation

eplzalpllupllist = 1.

Q—xp
P

Also define the function @, : Q, = — R such that

Up(y) = H%-ﬁ {up (epy + @) — up(wp) }

By using these symbols, the main result of C. Zhao reads as follows:
Theorem 1 (Chunyi Zhao [9]) Assume a > e — 1. Then e, — 0 and 2, —

R? as p — oo. Also for any sequence p, — oo as n — oo, there exists a
subsequence (again denoted by the same symbol) such that

2
- Yy .

i) = V() = 210 (14 2)in 2w, (1)
|xpn|2+2apn||upn“€g_l — 00, diSt(xpmaQ)Qpn”upnHgg_l — (]‘4)
as n — oo. Moreover, the least energy solution u, has at most two global
mazimum points in §2 for large p.

After obtaining these results, Zhao conjectured that u, has only one global
maximum point when p large in Theorem 1.
Main purpose of this note is to answer the conjecture affirmatively.

Theorem 2 Under the assumption of Theorem 1, the number of global mazx-
imum points of least energy solution u, is exactly 1 for p large enough.



For the proof, we will use the Morse index characterization of least energy
solutions and an argument of [6]. Relations between the number of blowing-
up points and the Morse indices of blowing-up solutions to a two-dimensional
Liouville equation have been studied in [7], [8].

2. Proof of Theorem 2.

As in §1, let v, denote a solution of (1.2), which may be chosen positive.
Then v, solves the equation

—Av, = Spla* v z€Q, v, >0 z€Q, v,=0 ze€d

Let u, = S;/(p_l)vp be a least energy solution to (1.1). First, we recall the
well-known fact, which says that the Morse index of u, is less than or equal
to 1 for any p > 1.

Lemma 3 Let L, = —A, — plz[**ub~"(z) : Hj(Q) — H Q) denote the
linearized operator around w,. Then the second eigenvalue of L,, denoted by
Aa(Ly, ), is nonnegative.

Proof. When a = 0, a proof of this lemma is shown, for example, in [2].
Proof in the case of a > 0 is similar. Here we recall it for the sake of
completeness.

Let L, = —A,—pSy|z[**v8 7 (z) : Hj(Q) — H () denote the linearized
operator around v,,. Since Spub~" = ub~!, it is enough to show that the second
eigenvalue of fp, denoted by )\g(fp, ), is nonnegative. For this purpose, let
us define

fQ |V(Up + t90)|2d17
(Jo 20y + tplr1dr) 71

for any p € H (). By the minimality of v,, we have f/'(0) = 0 and f”(0) > 0
Calculation using [, |z|**v?*'de = 1 and [, |Vv,|*dz = S, shows that

1"(0) —2{/|V<p| dr — pS, /|x|2a Plo?dr + (p — 1), (/ |z|**v g0d$) }
=2(Lyp, )20 + (/ |z]**v godx) .




Combining this to a variational characterization of \y(L,, 2), we have

_ Lo,
Ao (Ly, Q) = sup inf —( hd f)LQ(Q)
LCH(Q), codimL=1 9L ||90”L2(Q)
Ly, ()
> g Lo lew inf L) 5,
weHy (), wLlalo}  [[ol|72(q) pEHY (), wLlal?ov} 2 [|]|72q

By using this fact, we prove Theorem 2 by a contradiction argument.

Proof of Theorem 2. Assume the contrary that there exist two global

maximum points x, x5 of u,,, z, € Q, |lup, |lec = up, (x}, ), (i = 1,2) for

Pn? " Pn :
some sequence p, — 00. Define £, > 0 by the relation

(€;n>2|x;n|2apn||upnHgg_l - 17 (21)

and the scaled functions

~ Dn i ) %
upn (y) = HU H {U'pn (Epny + xp) - upn (‘TpTL)} ) (22)
Pn |00
. Q— ot
1 ._ Pn
yes, =——
Pn

for + = 1,2. Now we assume a > ¢ — 1, so all results of Theorem 1 hold true
for @ ,(i =1,2). In particular, there exists a subsequence (denoted by the
same symbol again) such that (1.3) holds for both &;n.

Next, we define elliptic operators

-1

B (1 + i, (y))pn . (i=1,2)  (23)

Pn

o gl xt
L;n:_Ay—‘—f”er o
25, |7 |z |

acting on H&(Q;n). These operators are related to the operator L, by the

formula 4
(5;,1 )2 Ly,

for i = 1,2. Also, eigenvalues are related with each other by the formula

=L yeqQ,,

pn?

i i
T=€p, Y+Tp,

, - . . D — xt
(51 )QAj(Lan D) = )‘j(L;n’ D;)n)> D;n = —pna (24)

Pn 7
epn



where \;(L,, , D) will denote a j-th eigenvalue of the operator L, acting on
H}(D) for a domain D, etc.
Let B(a, R) = Bg(a) denote an open ball of center a € R? with radius R.

We prove the following:

Lemma 4 There exist disjoint balls B* (i = 1,2), each ball is of the form
B(x}, e, R) for some R >0, such that X\\(L,,,B") <0 fori=1,2 when n

sufficiently large.

Proof. For R > 0, we define

Since wg = 0 on Bg(0), we see wg € Hy(Bgr(0)).
We will prove that (L;an7wR)L2(BR(O)) < 0 for R > 0 sufficiently large
and Bp(0) C €}, . Indeed,

(L}, wr, WR) 12(BR(0) = / \Vwg|*dy
Br(0)

i i 2o ~i pn—1
€ T U
- / RN (1 + <y>) wh(y)dy
Br(0) ’33 n‘ |$pn| Pn
= Il — [2.

We see

16y|? /R 1672
1 —/ ————dy =27 ———=rdr = 32r [log R+ or(1)],
"= o) Bt 9P ) B+ Pog &+ on(1)]

where og(1) — 0 as R — oo. As for Iy, (1.4) implies Ez"l — 0asn — oo

|5

even if 27, — 0. Also ‘z’z’”‘ — Jyo, |yo| = 1 for a subsequence. Therefore by
Pn

choosing a subsequence, we have

i i |2 ~; Pn—1

€ x U

] (1ew) -
Pn Pn n




in C?

loc

-1

) 7
Pn xpn

(R?) by (1.3). Thus,
2a az Pn
I (L ) I

IQ :/
BR(O) Pn pn
1 8+ R2\?
:/ —2{10g+—2} dy + 0,(1)
Bg(0) <1+%> 8 + |y

=27 /OR (14—;%)2 {log(8 + R*) — log(8 + r2)}2 dr + 0,(1)

— 27 - 8 {log(8 + R*)}* {% - 03(1)1 + 0,(1)
= 327 (log R)* [1 4 o (1)] 4 0a(1),

where we have used fo —L—dr = 1—16. Hence we obtain

8+ 2)2
(L}, wr, WR) 2(Broy = It — Iz = =327 (log R)’[1+0r(1)] <0

by taking n sufficiently large first, and then R > 0 large such that Bgr(0) C
Q;n. This implies that the first eigenvalue of the operator L;n on Bp is

negative: A1(I~/;n, Bpr) < 0. By this and the scaling formula (2.4) proves the
first half part of the Lemma.
Recall that, under the assumption considered here, the following estimate
is proved in [9] Lemma 5.1:
|z, — 7|
max{e}, 2}

as p — oo. This implies that these two balls B (x;n, E;nR> are disjoint for n

sufficiently large. O
By Lemma 4, we have
M(L,,,B) <0 i=1,2 (2.5)

for n sufficiently large. On the other hand, a well known estimate of Ay(L,,, 2)
claims

2
pn? Z Lpn? BZ (26>
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See,

for example, [7] Appendix. From (2.5) and (2.6), we have A\y(L,, , Q) <0

Pn>

for n large, which contradicts to Lemma 3. U
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