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ABSTRACT. We prove that the growth rates of three-dimensional gen-
eralized simplex reflection groups, i.e. three-dimensional non-compact
hyperbolic Coxeter groups with four generators are always Perron num-
bers.

1. INTRODUCTION

A convex polyhedron P of finite volume in the n-dimensional hyperbolic
space H" is called a Coxeter polyhedron if its dihedral angles are submultiples
of m. Any Coxeter polyhedron is a fundamental domain of the discrete
group I' generated by the set S consisting of the reflections with respects
to its facets. We call (I', S) an n-dimensional hyperbolic Cozeter group. In
particular when P is a (generalized) simplex of H", (T",S) is also called a
(generalized) simplex reflection group ([8]). In this situation we can define
the word length g(x) of x € T' with respect to S by the smallest integer
n > 0 for which there exist s1,89,---,8, € S such that x = s1s9---s,.
The growth function fs(t) of (I',S) is the formal power series > po ajt®
where ay, is the number of elements g € I' satisfying £5(g) = k. It is known
that the growth rate of (I', S), w := limsupy,_, ., ¥/a is bigger than 1 ([3])
and less than or equal to the cardinality |S| of S. By means of Cauchy-
Hadamard formula, the radius of convergence R of fg(t) is the reciprocal
of w, i.e. 1/|S| < R < 1. In practice the growth function fs(¢) which is
analytic on |t| < R extends to a rational function P(t)/Q(t) on C by analytic
continuation where P(t), Q(t) € Z[t] are relatively prime. There are formulas
due to Solomon and Steinberg to calculate the rational function P(t)/Q(t)
from the Coxeter diagram of (I, S) ([10, 11]. See also [4]).

Theorem 1. (Solomon’s formula)

The growth function fs(t) of an irreducible spherical Coxeter group (T',.S)
can be written as fs(t) = Hf;l[mi + 1] where [n] :=1+t+---+t""! and
{m1,ma,--- ,my} is the set of exponents of (I, 5).

Theorem 2. (Steinberg’s formula)
Let (T', S) be a hyperbolic Coxeter group. Let us denote the Cozeter subgroup
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of (T, S) generated by the subset T C S by (I'r,T), and denote its growth
function by fr(t). Set F ={T C S : I'r is finite }. Then

I (—1)I7!
fs(t=1) Z fr(t)

TeF

In this case, t = R is a pole of fg(t). Hence R is a real zero of the denomi-
nator Q(t) closest to the origin 0 € C of all zeros of Q(t). Solomon’s formula
implies that P(0) = 1. Hence ag = 1 means that Q(0) = 1. Therefore w > 1,
the reciprocal of R, becomes a real algebraic integer whose conjugates have
moduli less than or equal to the modulus of w. If ¢ = R is the unique zero of
Q(t) with the smallest modulus, then w > 1 is a real algebraic integer whose
conjugates have moduli less than the modulus of w: such a real algebraic
integer is called a Perron number.

For two and three-dimensional cocompact hyperbolic Coxeter groups,
Cannon-Wagreich and Parry showed that the growth rates are Salem num-
bers ([1, 7]), where a real algebraic integer 7 > 1 is called a Salem number
if 771 is an algebraic conjugate of 7 and all algebraic conjugates of 7 other
than 7 and 7~ ! lie on the unit circle. From the definition, a Salem number
is a Perron number.

Kellerhals and Perren calculated the growth functions of all four-dimensional
cocompact hyperbolic Coxeter groups with at most 6 generators and showed
that w are not Salem numbers while they checked that w are Perron numbers
numerically. ([6]).

In the non-compact case, Floyd proved that the growth rates of two-
dimensional non-compact hyperbolic Coxeter groups are Pisot- Vijayaraghavan
numbers, where a real algebraic integer 7 > 1 is called a Pisot-Vijayaraghavan
number if algebraic conjugates of 7 other than 7 lie in the unit disk ([2]). A
Pisot-Vijayaraghavan number is also a Perron number by definition.

From these results for low-dimensional cases, Kellerhals and Perren con-
jectured that the growth rates of hyperbolic Coxeter groups are always
Perron numbers. In the present paper, we go to the next stage: three-
dimensional non-compact hyperbolic Coxeter groups of finite covolume. We
will show that the growth rate of a three-dimensional generalized simplex
reflection group is a Perron number.

2. DENOMINATORS OF GROWTH FUNCTIONS

There are exactly 23 three-dimensional generalized simplex reflection groups
([5, 8]). By means of Steinberg’s formula we can calculate growth functions
of them.

Proposition 1. The denominator polynomials Q(t) of the growth functions
fs(t) = P(t)/Q(t) of the 23 three-dimensional generalized simplex reflection
groups (I', S) are as follows:

o (t—1)(3t2+t—1)

o (t—1)(B3+t2+t—1)
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We remark that the factor (¢t — 1) appears in every denominator of fg(t)
because of the fact that 1/fs(1) = x(I') = 0 in the odd-dimensional case
due to a result of Serre ([9]).

3. MAIN RESULT

Theorem 3. The growth rate of a three-dimensional generalized simplex
reflection group is a Perron number.

In Table 1 below, we show the distributions of poles of fg(t) for a partic-
ular case of three-dimensional generalized simplex reflection groups.
By Proposition 1, the following lemma is sufficient to prove the theorem.

Lemma 1. Consider the polynomial of degree n > 2

n
w:§:%ﬁ—1,
k=1

where ay, is a non-negative integer. We also assume that the greatest common
divisor of {k € N | ar # 0} is 1. Then there is a real number rg, 0 < 1o < 1
which is the unique zero of g(t) having the smallest absolute value of all zeros

of g(t).

Proof. Let us put h(t) = S_p_, axt*. Note that g(t) = 0 if and only if
h(t) = 1.
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(Stepl) Observe h(0) = 0, h(1) > 1, and h(t) is strictly monotone in-
creasing where t is in the open interval (0,1). From the intermediate value
theorem, there exists the unique real number rg in (0, 1) such that h(rg) = 1.

(Step2) Suppose there exists a complex number z whose absolute value is
less than ro and satisfying the condition h(z) = 1. Denote z = re? where
0<r<rgand 0 <60 < 2x. Then

L=[h()| = 1) ar(rd®) [ <Y [(apr™)e™] =Y apr® = h(r) < h(ro) =1,
k=1 k=1 k=1

which is a contradiction. Hence rg has the smallest absolute value of all
zeros of g(t).

(Step3) Consider a complex number z whose absolute value is equal to
ro. Set z = rpe?’ and 0 < 0 < 2xr. Then 1 = Py akrlgeike implies

n n
1= Zakrlgcoske < Zakrlg =1
k=1 k=1

Hence coskf = 1 for any k£ € N with a # 0. The assumption that the
greatest common divisor of {k € N | a; # 0} is 1 means that 6 = 0.
Therefore z = 1, and we conclude that r¢ is the unique zero of ¢(t) having
the smallest absolute value of all zeros of g(t). O

Coxeter diagram >oio

(t+1)3 (2 +1) (2 —t41) (241 +1)
fs(t) (t—1) (3267 + 25+ 35+t +13 1)

.

osf

poles of fg(t) -

05 d

Table 1.

4. REMARK

By Proposition 1, the next lemma shows that some growth rates of three-
dimensional generalized simplex reflection groups are not only Perron num-
bers but also Pisot-Vijayaraghavan numbers (see Table 2 below).
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Coxeter diagram 44
y (t4+1)3(£24+1) (2 —t+1)
fs(?) =) O+t P2 +—1)

poles of fg(t)

Table 2.

Lemma 2. For n > 2, the polynomial g(t) = > p_, t* — 1 has the unique
zero in the unit disk {t € C | |t| < 1} and does not have zeros on the unit
circle |t| = 1.

Proof. Define hy(t) = t"*1 hy(t) = —2t + 1, and
h(t) = hi(t) + ha(t) = " — 2t + 1= (t — 1)g(t).

Then for any 1/2 < r < 1 sufficiently close to 1, h(r) < 0. Any complex
number ¢ on the circle {t € C | |t| = r} satisfies

(1) = [T =" < 2r — 1 < 2t — 1| = |ha(t)].

Because ha(t) has the unique zero t = 1/2 in the disk |¢| < r, it follows from
Rouché’s theorem that h(t) also has the unique zero in the disk |¢| < 7. Since
this holds for any r < 1 sufficiently close to 1, it means that h(t), hence g(t)
has the unique zero in the unit disk |t/ < 1. Finally we show that g(t) does
not have zeros on the unit circle |[t| = 1. Suppose there exists § € R such
that g(e®?) = 0. Then h(e®) = 0 implies that 1 = |e(*T1D0] = |2¢0 — 1]
Hence € = 1, which contradicts to g(1) # 0. Therefore g(t) has the unique
zero in the unit disk {t € C | |t| < 1} and does not have zeros on the unit
circle |t| = 1. O
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