Greeks formulas for asset price model

with some Llevy processes

ATSUSHI TAKEUCHI T

1 Preliminaries

Let T > O be fixed throughout the paper, af@d,.%,P) our underlying probability space. In
particular, we assume that throughout the paperihata risk-neutral probability measure that
is one of infinitely many of its kind. We denote B[ - | the expectation taken under the
measureP. LetD([0,T];R) be the set of right-continuous functions {fnT] with left hand
limits.

LetX = {Xt te [O,T]} be a gamma process, that is, the one-sided pure-jugup process

with the Levy measure given by
a
vx(dz) = - exp(—b2z) [ g 4 (2) dz, (1)

wherea andb are positive constants. For each time ® < T, the characteristic function of its
marginalX; is

.\ —at
Ep[exp(ixxt)]:(l—%) , XER, (2)
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and the marginal density at tinhés given in closed form:

bat

P (X) = Wx"’“‘l exp(—bx), x&[0,4). (3)

Let G andM be positive constants, and<Oap, an < 2 with ap # 1 anda, # 1. Let
Y = {Y;;t € [0,T]} be a tempered stable process, that is,ésyLprocess without Gaussian
component independent of the procegswhich can be divided into two independengy
processe¥ (P = (%P ;t € [0,T]} andY™ = {¥"”;t € [0, T]}:

M=Y" " teoT]} (4)
with the characteristic functions
Ep[exp(ith(p))] =exp[tCpl (—ap) {(M—iy)% —M% + iyapM‘““PH(l’Z)(cxp)}} . (5)
Ez[exp(iy¥%"™)] = exp[tCal (—an) { (G+iy)™ — G™ —iy an Gy 5 (an)}],  (6)
whereCy, C, are non-negative constants, and with tiévy measures given by
v (dz) = Cpz~ 1% exp(—Mz) Lio,+o0)(2) 0Z, (7
W (d2) = Cn|Z ™17 exp(—G|2]) I( e 0)(2) dz, (8)

respectively. The &vy processe¥ (P andY(™ consist of jumps only in a single direction.
This accounts for the downward and upward moves of the market, respectively. Moreover, they
are subordinators in the positive and negative directions whem@, a, < 1, while they are
centered with jumps when4 ap, an < 2.

LetB= {B;t[0,T]} andW = {W;t € [0,T]} be independent one-dimensional standard
Brownian motion, which are also independent of the processasdY. Let S > 0. Consider

asset price dynamics modeés= {S te [O,T]} given by

S =SexpX% +KY+ 1B +0W + (c+ u)t], (9)

where6 e R, 1>0,0 >0, 0< k <M, c=c(6,1,0) with the each partial derivativazyc,

0:C, dgC being well defined, and
p=—Cpl(—ap) {(M=K)®—M%®+KkapM %I 5 (ap)}
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—Cal(—an) {(G+K) —G™ — k an G~ ; 5 (atn) }.

We shall remark that
Ep [exp(k V)] = exp(—put).

Our model considered here includes a lot of well-known models of practical interest, such as
the Black-Scholes model, the variance gamma model, the finite moment log stable model, and
the CGMY model. In this paper, we shall pay attention to the Greeks formula, in particular,
the Delta formula, via the Malliavin calculus for jump processes by making full unse of the
Girsanov transform. Our asset price models can be of a pure-jump type, and also of infinite
activity type. This is based upon joint works ([6, 7]) with Rei-ichiro Kawai (University of

Leicester, UK).

2 Keylemmas

Here, we shall introduce some lemmas which play crucial roles in our argument. Recall O
Qp, 0 < 2 with ap, an # 1, andCy, C, > 0. LetPg be a probability measure, under which
the process.(P) = {Lt(p) te [O,T]} is anap-stable process without Gaussian component with

characteristic functions

yLPY)] = . Mo\ iy (1 tan 0P
Ep, [exp<|th )} _exp[thF( ap) (cos > ) ly|“P (1 i tan > sgn( ))], (10)
and the proceds™ = {Lt(”) te [O,T]} anap-stable process without Gaussian component with

characteristic functions

Tan
2

)y (1+itan P sony))], (@)

Ep, [exp(ith(m)] — exp [tCn M (—an) (cos
which are independent each other. Thedwvl measures are given by

Vi (d2) = CpZ (g o) (2) dz, (12)
Vi (d2) = Ca |2+ T o 0)(2) iz, (13)



respectively. When & ayp, a, < 1, the processdsP) andL(™ are subordinators in the positive
and negative directions, respectively. On the other hand, wkeag, a, < 2, they are centered

with jumps only in a single direction. Define the procéss {Lt te [O,T]} by
L=LP+L", telo,T) (14)
Remark that the processis a stable process onlydfp = an,. Then, it holds that

Lemma 1 (cf. [10] Theorem 33.2)The two probability measurdédandPy are mutually abso-

lute continuous through the Radon-NiKma derivative

() L
dp| - exp(Gly —MLy) exp(GLY ~MLPP —yiT), Poas, (15
ol s By, [exp(G LI —MLP) ]

where (% ; t € [0,T]) is the natural filtration generated by the processé¥ L, and
V1 =Cnl (—apn) G +Cpl (—ap) M.
Moreover, it holds that
Po({Li+yot;t€[0,T]} €eA)=P({\;;t€[0,T]} €A), (16)
for Ac Z(D([0,T]; R)), where

Vo =Cnl (1—an) G~ 5 (an) —Cpl (1 — ap) M~ Iy ) ().

Let Ep andE, be independent standard exponential random variables, and define

map sin(ap(Vp+Np)) V. B (17
2 >{cos(apflp) cosvp} {cos(apPpVp—apnp) ;™ (17)

T[C!n> sin(an(Vn+n))
2/ {coq0nMn) cos\/n}l/o'n
ﬂ

wherenp = arctan(—tan=2) /ap, Nn = arctan(—tan™3?) /an, Bp = (1—ap)/dp, o= (1—

an)/an, andV, andV, are independent uniform random variables(errt/2, 11/2), which are

Up=—-Cpl(—ap) cos(

{cos(anfaVa—annn) }7,  (18)

Un=—-Cil'(—ap) cos(

also independent &, andE,. Denote by
[P = ([P :=tY%y,E, Pt € [0,T]), (19)

4



[ — {Et(”) =tYmU,E Pt e [0,T)), (20)

Mt

— L =P +";teoT)). (21)

Then, we see that, for eath 0, the random variablds® andL{", or, [{"’ andL{" have the
same law, respectively (cf. [4]). L& = (©1,0,) be a standard normal random vectoifif,

which is independent of the processeandY. Define the new proce$§= {S;t € [0,T]} by
S =S exp[0X% +k (Lt + yot) + VIO + 0 VX Oz + (C+ )] . (22)
Remark 1 The probability law of§ is not equivalent to the one &, because of Lemma 1]

Let & = (01,02) € [0,+) x [0,4), & € [0,4+0) with A & < b, and({1,{2) € [0,+) x
[0,+) with A {i <1 (i = 1,2). For eacht € [0, T], denote by4 the minimalo-field generated
by o [{Xs; s € [0,t]}], 0[©], andO[(Ep,En)]. Then, define the new probability measig

equivalent tdPy over%, via the Radon-Nikogim derivative

dQy| . exp(A&XT) exp(A (6,0)) exp(A ((1Ep+ {2En))

00 |y, "~ Brg[oxp(A € X0)] Ex, [exp(A (8.0))] Erq [exp(A (2 Ep+ C2En))
(1A 1 azyaoa (23)
-(+-%) aawe-ra

)\2’5|2

X exp(}\ EXT+A(5,0) — +A ({pEp+n En)) , Po-a.s.

Lemma 2 (the Esscher transform, cf. [6, 7])For x € [0, +), (zp,zy) € [0,+%) x [0, 400),

(61,6,) € R?, and t> 0, we have

b
ZPo(b_;(:ESX) Po(©1+A 0 < 61) Po(©2+A 0 < 6) (24)

Ep En
< — < .
Fo( g <2) P55 <)




3 Results and sketch of proofs
LetO< e < 1, and¥, € CJ(R; R) such that

0 (Vi<e)
We(V) =
1 (\V|>2e).

In order to avoid lengthy expression, let us prepare some auxiliary notations. Define
Fri=¢ <9XT+2\/X_T@2)+51bT\/'I_'+52bG\/X_7
Hr = &= \/x_Tez+51br\/_
Jr =0 (1-Ep+ BpMIP) + & (1-En— BGLY),

Kri= 0Bl + GBLY, Nri=BLY + B RILY,

= =— | In—— _T_xK ’
T oA ( %) A0 b T
£ (e — I PN
Mt Z:LPE(ET){b(bXT aTl:—(é,G» JT+b2(|:F :;)+K T}
B =T

b2 (Fr —Hr) + kNr
=T

—We(=1)

Theorem 1 (cf. [6, 7]) For ® € C(R; R), it holds that

i _mpp o
E |: eXp( T T) CD/(ST)STLPg(ET)

Ee, | exp(GLYY - ML) |

(25)

Y IR
Y E Gl —mLP !
Po exp( T T )

Proof. From Lemma 2, we have

) o8, )

Es, | exp(GLY" MLT))} =




i () i (p) &
exp(GLy’ —ML d(Sr dQ
=Ep |: ( T T ) ( )LIJ ( T) d]P)g

Ego | exp(GLY ~MLP)| =T %
where
—ﬁp E —ﬁn
F(pA) _ 1/, Ep F(NA) _ 1/an n
Ly t up(l_Ml) L t U”(l—/\zz) :

A bX{
—Aé

LY =PV ™M, eV =e1+28, 0 =0+18, XM=
§A):SOexp{GXI(A)jLK(I:t(A)ergt)+r\/f6(1)‘)+0\/xt()‘)9(2’\) c+u}

Ft(A): ( Fe )+61br\/+62ba\/>

(A)
. . 3 =
251Bp|—t(p’)\)+523n|—t(n’)\)a :t(A):_tb —KKt(A)~

Take the derivative with respect fo= 0. The integrability of the processes and the condition

on the function® enable us to check the interchange of the derivative and the expectation.

Finally, we shall define the class of functions, in order to present the practical sensitivity
formula. Denote byC g(R; R) the set of continuous functions with the linear growth order,

and define
F(R;R) = { Z ai fkla; ak € R, fx € Clg(R; R), Ax C R: interval}.

The standard density argument stated in [6] enables us to extend the class of fuirdtions
Cl(R;R) to §(R;R), in which the existence of a smooth density for the processes plays a

crucial role.

Corollary 1 (Sensitivity formula, cf. [6, 7]) For @ € F(R; R), it holds that

[ i (P)
d exp(GLy’ —MLy"”) ~ _
% " |5 LW —mLP O ) We(Z1)
Po eXp( T T ) (26)
26
i (P
1 exp(GLy’ —MLy) ~
Po p( T T )
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Remark 2 The class§(R; R) is not as general as that of measurable functi@nsuch that
Ep [|P(Sr)[?] < 4. But, the classF(R; R) is rich enough in the sense that the European

payoffs of interest, either continuous or discontinuous. O

Remark 3 If 1/=1 € LP(Q) for any p > 1, we can get rid of the effed¥s(=1) from the

formulas (22) and (23). Then, we can get the Delta formula of the form:

i (n) (P
0 d exp(GLy" —ML7”) ~
< Ep [®(Sr)] = 5 Ep, > (Sr)
0% 9% | i, | exp(GL{" ~MLP) |
(27)
1 exp(GLMY —MLP .
g PIS B e (?o) ®(Sr)fri
Ep, | exp(GLY - ML) |
where
F ¢ (oXr —aT) +(5,0) — Jr . 5 (Fr —Hr)+KNr
=T E%
As for sufficient conditions on the higher order integrability gE%, see [6, 7]. O

Remark 4 Our process{S it e [O,T]} includes the well-known asset price dynamics models:
e the Black-Scholes modé = k = 0 = 0 andc = —12/2.

e the variance gamma mod@f. [8]) : 6 =k =17 =0 ando > 0. On the other hand,
choose the parametess= b =: k1 for the gamma proces$ = {Xt te [O,T]} in the
model{8X + oW ;t € [0,T]}. Then, the proces§8 X + oW ;t € [0,T]} is also the

variance gamma process.

e the CGMY mode(cf. [2]): 6 = 1= 0=0,Cp =G, ap = an, andk > 0. In particular,

the model in case afp = a, = 1/2 is known aghe inverse Gaussian model

¢ the finite moment log stable modef. [3,7]): 6=1=0=0,k>0,1<ap< 2, and

Cp = 0, by taking the limit ass — 0 andM — O. O
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