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1 Preliminaries

Let T > 0 be fixed throughout the paper, and(Ω,F ,P) our underlying probability space. In

particular, we assume that throughout the paper thatP is a risk-neutral probability measure that

is one of infinitely many of its kind. We denote byEP[ · ] the expectation taken under the

measureP. Let D
(
[0,T] ; R

)
be the set of right-continuous functions on[0,T] with left hand

limits.

Let X =
{

Xt ; t ∈ [0,T]
}

be a gamma process, that is, the one-sided pure-jump Lévy process

with the Lévy measure given by

νX(dz) =
a
z

exp(−bz)I(0,+∞)(z)dz, (1)

wherea andb are positive constants. For each time 0< t ≤ T, the characteristic function of its

marginalXt is

EP
[
exp
(
i xXt

)]
=

(
1− i x

b

)−at

, x∈ R, (2)
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and the marginal density at timet is given in closed form:

pX
t (x) =

bat

Γ(at)
xat−1 exp(−bx), x∈ [0,+∞). (3)

Let G and M be positive constants, and 0< αp, αn < 2 with αp ̸= 1 andαn ̸= 1. Let

Y =
{
Yt ; t ∈ [0,T]

}
be a tempered stable process, that is, a Lévy process without Gaussian

component independent of the processX, which can be divided into two independent Lévy

processesY(p) =
{
Y(p)

t ; t ∈ [0,T]
}

andY(n) =
{
Y(n)

t ; t ∈ [0,T]
}

:{
Yt =Y(p)

t +Y(n)
t ; t ∈ [0,T]

}
(4)

with the characteristic functions

EP
[
exp
(
i yY(p)

t

)]
= exp

[
tCpΓ(−αp)

{
(M− i y)αp −Mαp + i yαpM−1+αp I(1,2)(αp)

}]
, (5)

EP
[
exp
(
i yY(n)

t

)]
= exp

[
tCnΓ(−αn)

{
(G+ i y)αn −Gαn − i yαnG−1+αn I(1,2)(αn)

}]
, (6)

whereCp,Cn are non-negative constants, and with the Lévy measures given by

ν(p)
Y (dz) =Cpz−1−αp exp(−Mz) I(0,+∞)(z)dz, (7)

ν(n)
Y (dz) =Cn |z|−1−αn exp(−G|z|) I(−∞,0)(z)dz, (8)

respectively. The Ĺevy processesY(p) andY(n) consist of jumps only in a single direction.

This accounts for the downward and upward moves of the market, respectively. Moreover, they

are subordinators in the positive and negative directions when 0< αp, αn < 1, while they are

centered with jumps when 1< αp, αn < 2.

Let B=
{

Bt ; t ∈ [0,T]
}

andW =
{
Wt ; t ∈ [0,T]

}
be independent one-dimensional standard

Brownian motion, which are also independent of the processesX andY. Let S0 > 0. Consider

asset price dynamics modelsS=
{

St ; t ∈ [0,T]
}

given by

St = S0 exp[θ Xt +κ Yt + τ Bt +σ WXt +(c+µ) t] , (9)

whereθ ∈ R, τ ≥ 0, σ ≥ 0, 0≤ κ ≤ M, c = c(θ ,τ,σ) with the each partial derivatives∂θ c,

∂τc, ∂σ c being well defined, and

µ =−CpΓ(−αp)
{
(M−κ)αp −Mαp +κ αpM−1+αp I(1,2)(αp)

}
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−CnΓ(−αn)
{
(G+κ)αn −Gαn −κ αnG−1+αn I(1,2)(αn)

}
.

We shall remark that

EP [exp(κ Yt)] = exp(−µ t) .

Our model considered here includes a lot of well-known models of practical interest, such as

the Black-Scholes model, the variance gamma model, the finite moment log stable model, and

the CGMY model. In this paper, we shall pay attention to the Greeks formula, in particular,

the Delta formula, via the Malliavin calculus for jump processes by making full unse of the

Girsanov transform. Our asset price models can be of a pure-jump type, and also of infinite

activity type. This is based upon joint works ([6, 7]) with Rei-ichiro Kawai (University of

Leicester, UK).

2 Key lemmas

Here, we shall introduce some lemmas which play crucial roles in our argument. Recall 0<

αp, αn < 2 with αp, αn ̸= 1, andCp,Cn ≥ 0. Let P0 be a probability measure, under which

the processL(p) =
{

L(p)
t ; t ∈ [0,T]

}
is anαp-stable process without Gaussian component with

characteristic functions

EP0

[
exp
(

i yL(p)
t

)]
= exp

[
tCpΓ(−αp)

(
cos

π αp

2

)
|y|αp

(
1− i tan

π αp

2
sgn(y)

)]
, (10)

and the processL(n) =
{

L(n)
t ; t ∈ [0,T]

}
anαn-stable process without Gaussian component with

characteristic functions

EP0

[
exp
(

i yL(n)
t

)]
= exp

[
tCnΓ(−αn)

(
cos

π αn

2

)
|y|αn

(
1+ i tan

π αn

2
sgn(y)

)]
, (11)

which are independent each other. Their Lévy measures are given by

νL(p)(dz) =Cpz−1−αp I(0,+∞)(z)dz, (12)

νL(n)(dz) =Cn |z|−1−αn I(−∞,0)(z)dz, (13)
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respectively. When 0< αp, αn < 1, the processesL(p) andL(n) are subordinators in the positive

and negative directions, respectively. On the other hand, when 1<αp, αn < 2, they are centered

with jumps only in a single direction. Define the processL =
{

Lt ; t ∈ [0,T]
}

by

Lt = L(p)
t +L(n)

t , t ∈ [0,T]. (14)

Remark that the processL is a stable process only ifαp = αn. Then, it holds that

Lemma 1 (cf. [10] Theorem 33.2)The two probability measuresP andP0 are mutually abso-

lute continuous through the Radon-Nikodým derivative

dP
dP0

∣∣∣∣
FT

=
exp
(
GL(n)T −M L(p)

T

)
EP0

[
exp
(
GL(n)T −M L(p)

T

)] = exp
(
GL(n)T −M L(p)

T − γ1T
)
, P0-a.s., (15)

where
(
Ft ; t ∈ [0,T]

)
is the natural filtration generated by the processes L(p), L(n), and

γ1 =CnΓ(−αn)Gαn +CpΓ(−αp)Mαp.

Moreover, it holds that

P0
({

Lt + γ2 t ; t ∈ [0,T]
}
∈ A
)
= P

({
Yt ; t ∈ [0,T]

}
∈ A
)
, (16)

for A∈ B
(
D([0,T] ; R)

)
, where

γ2 =CnΓ(1−αn)G−1+αn I(1,2)(αn)−CpΓ(1−αp)M−1+αp I(1,2)(αp).

Let Ep andEn be independent standard exponential random variables, and define

Up =−CpΓ(−αp) cos
(π αp

2

) sin
(
αp(Vp+ηp)

){
cos(αpηp) cosVp

}1/αp

{
cos
(
αpβpVp−αpηp

)}βp , (17)

Un =−CnΓ(−αn) cos
(π αn

2

) sin
(
αn(Vn+ηn)

){
cos(αnηn) cosVn

}1/αn

{
cos
(
αnβnVn−αnηn

)}βn , (18)

whereηp = arctan
(
− tanπ αp

2

)/
αp, ηn = arctan

(
− tanπ αn

2

)/
αn, βp = (1−αp)/αp, βn = (1−

αn)/αn, andVp andVn are independent uniform random variables on(−π/2, π/2), which are

also independent ofEp andEn. Denote by

L̃(p) =
{

L̃(p)
t := t1/αp UpE

−βp
p ; t ∈ [0,T]

}
, (19)
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L̃(n) =
{

L̃(n)
t := t1/αn UnE−βn

n ; t ∈ [0,T]
}
, (20)

L̃ =
{

L̃t := L̃(p)
t + L̃(n)

t ; t ∈ [0,T]
}
. (21)

Then, we see that, for eacht > 0, the random variables̃L(p)
t andL(p)

t , or, L̃(n)
t andL(n)

t have the

same law, respectively (cf. [4]). LetΘ = (Θ1,Θ2) be a standard normal random vector inR2,

which is independent of the processesX andY. Define the new process̃S=
{

S̃t ; t ∈ [0,T]
}

by

S̃t := S0 exp
[
θ Xt +κ

(
L̃t + γ2 t

)
+ τ

√
t Θ1+σ

√
Xt Θ2+(c+µ) t

]
. (22)

Remark 1 The probability law ofSt is not equivalent to the one ofS̃t , because of Lemma 1.�

Let δ = (δ1,δ2) ∈ [0,+∞)× [0,+∞), ξ ∈ [0,+∞) with λ ξ < b, and(ζ1,ζ2) ∈ [0,+∞)×

[0,+∞) with λ ζi < 1 (i = 1,2). For eacht ∈ [0,T], denote byGt the minimalσ -field generated

by σ
[
{Xs; s∈ [0, t]}

]
, σ [Θ], andσ [(Ep,En)]. Then, define the new probability measureQλ

equivalent toP0 overGT , via the Radon-Nikod́ym derivative

dQλ
dP0

∣∣∣∣
GT

:=
exp(λ ξ XT)

EP0 [exp(λ ξ XT)]

exp(λ ⟨δ ,Θ⟩)
EP0 [exp(λ ⟨δ ,Θ⟩)]

exp(λ (ζ1Ep+ζ2En))

EP0 [exp(λ (ζ1Ep+ζ2En))]

=

(
1− λ ξ

b

)aT

(1−λ ζ1)(1−λ ζ2)

×exp

(
λ ξ XT +λ ⟨δ ,Θ⟩− λ 2 |δ |2

2
+λ (ζpEp+ζnEn)

)
, P0-a.s..

(23)

Lemma 2 (the Esscher transform, cf. [6, 7])For x ∈ [0,+∞), (zp,zn) ∈ [0,+∞)× [0,+∞),

(θ1,θ2) ∈ R2, and t≥ 0, we have

Qλ (Xt ≤ x, Θ1 ≤ θ1, Θ2 ≤ θ2, Ep ≤ zp, En ≤ zn)

= P0

(
bXt

b−λ ξ
≤ x

)
P0(Θ1+λ δ1 ≤ θ1) P0(Θ2+λ δ2 ≤ θ2)

×P0

(
Ep

1−λ ζ1
≤ zp

)
P0

(
En

1−λ ζ2
≤ zn

)
.

(24)
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3 Results and sketch of proofs

Let 0< ε < 1, andΨε ∈C∞
b (R ; R) such that

Ψε(V) =

0 (|V| ≤ ε)

1 (|V| ≥ 2ε).

In order to avoid lengthy expression, let us prepare some auxiliary notations. Define

FT := ξ
(

θ XT +
σ
2

√
XT Θ2

)
+δ1bτ

√
T +δ2bσ

√
XT ,

HT := ξ
σ
4

√
XT Θ2+δ1bτ

√
T,

JT := ζ1
(
1−Ep+βpM L̃(p)

T

)
+ζ2

(
1−En−βnGL̃(n)

T

)
,

KT := ζ1βp L̃(p)
T +ζ2βn L̃(n)

T , NT := ζ 2
1 β 2

p L̃(p)
T +ζ 2

2 β 2
n L̃(n)

T ,

ΞT :=
∂

∂λ

(
ln

S̃(λ )T

S0

)∣∣∣∣
λ=0

(
=

FT

b
−κ KT

)
,

ΓT := Ψε(ΞT)

{ ξ
b

(
bXT −aT

)
+ ⟨δ ,Θ⟩−JT

ΞT
+

ξ
b2(FT −HT)+κ NT

Ξ2
T

}

−Ψ′
ε(ΞT)

ξ
b2(FT −HT)+κ NT

ΞT
.

Theorem 1 (cf. [6, 7]) For Φ ∈C1
b(R ; R), it holds that

EP0

 exp
(
GL̃(n)

T −M L̃(p)
T

)
EP0

[
exp
(
GL(n)T −M L(p)

T

)]Φ′(S̃T
)

S̃T Ψε
(
ΞT
)

= EP0

 exp
(
GL̃(n)

T −M L̃(p)
T

)
EP0

[
exp
(
GL(n)T −M L(p)

T

)]Φ
(
S̃T
)

ΓT

 .
(25)

Proof. From Lemma 2, we have

EP0

 exp
(
GL̃(n,λ )

T −M L̃(p,λ )
T

)
EP0

[
exp
(
GL(n)T −M L(p)

T

)] Φ
(
S̃(λ )T

)
Ξ(λ )

T

Ψε
(
Ξ(λ )

T

)
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= EP0

 exp
(
GL̃(n)

T −M L̃(p)
T

)
EP0

[
exp
(
GL(n)T −M L(p)

T

)] Φ
(
S̃T
)

ΞT
Ψε
(
ΞT
) dQλ

dP0

∣∣∣∣
GT

 ,
where

L̃(p,λ )
t = t1/αp Up

(
Ep

1−λ ζ1

)−βp

, L̃(n,λ )
t = t1/αn Un

(
En

1−λ ζ2

)−βn

,

L̃(λ )
t = L̃(p,λ )

t + L̃(n,λ )
t , Θ(λ )

1 = Θ1+λ δ1, Θ(λ )
2 = Θ2+λ δ2, X(λ )

t =
bXt

b−λ ξ
,

S̃(λ )t = S0 exp

[
θ X(λ )

t +κ
(

L̃(λ )
t + γ2 t

)
+ τ

√
t Θ(λ )

1 +σ
√

X(λ )
t Θ(λ )

2 +(c+µ) t

]
,

F(λ )
t = ξ

(
θ X(λ )

t +
σ
2

√
X(λ )

t Θ(λ )
2

)
+δ1bτ

√
t +δ2bσ

√
X(λ )

t ,

K(λ )
t = ζ1βp L̃(p,λ )

t +ζ2βn L̃(n,λ )
t , Ξ(λ )

t =
F(λ )

t

b
−κ K(λ )

t .

Take the derivative with respect toλ = 0. The integrability of the processes and the condition

on the functionΦ enable us to check the interchange of the derivative and the expectation.�

Finally, we shall define the class of functions, in order to present the practical sensitivity

formula. Denote byCLG(R ; R) the set of continuous functions with the linear growth order,

and define

F(R ; R) =

{
n

∑
k=1

αk fk IAk ; αk ∈ R, fk ∈CLG(R ; R), Ak ⊂ R : interval

}
.

The standard density argument stated in [6] enables us to extend the class of functionsΦ from

C1
b(R ; R) to F(R ; R), in which the existence of a smooth density for the processes plays a

crucial role.

Corollary 1 (Sensitivity formula, cf. [6, 7]) For Φ ∈ F(R ; R), it holds that

∂
∂S0

EP0

 exp
(
GL̃(n)

T −M L̃(p)
T

)
EP0

[
exp
(
GL(n)T −M L(p)

T

)]Φ
(
S̃T
)

Ψε
(
ΞT
)

=
1
S0

EP0

 exp
(
GL̃(n)

T −M L̃(p)
T

)
EP0

[
exp
(
GL(n)T −M L(p)

T

)]Φ
(
S̃T
)

ΓT

 .
(26)
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Remark 2 The classF(R ; R) is not as general as that of measurable functionsΦ such that

EP
[
|Φ(ST)|2

]
< +∞. But, the classF(R ; R) is rich enough in the sense that the European

payoffs of interest, either continuous or discontinuous. �

Remark 3 If 1/ΞT ∈ Lp(Ω) for any p > 1, we can get rid of the effectΨε(ΞT) from the

formulas (22) and (23). Then, we can get the Delta formula of the form:

∂
∂S0

EP [Φ(ST)] =
∂

∂S0
EP0

 exp
(
GL̃(n)

T −M L̃(p)
T

)
EP0

[
exp
(
GL(n)T −M L(p)

T

)]Φ
(
S̃T
)

=
1
S0

EP0

 exp
(
GL̃(n)

T −M L̃(p)
T

)
EP0

[
exp
(
GL(n)T −M L(p)

T

)]Φ
(
S̃T
)

Γ̃T

 ,
(27)

where

Γ̃T :=
ξ
b

(
bXT −aT

)
+ ⟨δ ,Θ⟩−JT

ΞT
+

ξ
b2(FT −HT)+κ NT

Ξ2
T

.

As for sufficient conditions on the higher order integrability of 1/ΞT , see [6, 7]. �

Remark 4 Our process
{

St ; t ∈ [0,T]
}

includes the well-known asset price dynamics models:

• the Black-Scholes model: θ = κ = σ = 0 andc=−τ2/2.

• the variance gamma model(cf. [8]) : θ = κ = τ = 0 andσ > 0. On the other hand,

choose the parametersa = b =: κ−1 for the gamma processX =
{

Xt ; t ∈ [0,T]
}

in the

model
{

θ Xt +σ WXt ; t ∈ [0,T]
}

. Then, the process
{

θ Xt +σ WXt ; t ∈ [0,T]
}

is also the

variance gamma process.

• the CGMY model(cf. [2]): θ = τ = σ = 0, Cp =Cn, αp = αn, andκ > 0. In particular,

the model in case ofαp = αn = 1/2 is known asthe inverse Gaussian model.

• the finite moment log stable model(cf. [3, 7]): θ = τ = σ = 0, κ > 0, 1< αn < 2, and

Cp = 0, by taking the limit asG→ 0 andM → 0. �
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[10] K. Sato: Lévy Processes and Infinitely Divisible Distributions, Cambridge University

Press, Cambridge (1999).
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