
SH(3)-MOVE AND OTHER LOCAL MOVES ON KNOTS

TAIZO KANENOBU

Abstract. An SH(3)-move is an unknotting operation on oriented knots introduced by
Hoste, Nakanishi and Taniyama. We consider some relationships to other local moves
such as a band surgery, Γ0-move, and ∆-move, and give some criteria for estimating the
SH(3)-unknotting number using the Jones, HOMFLYPT, Q polynomials. We also show
a table of SH(3)-unknotting numbers for knots with up to 9 crossings.

1. Introduction

An SH(3)-move is a local change for an oriented link diagram which preserves the
number of components as shown in Fig. 1. This move is a special case of an SH(n)-move
introduced by Hoste, Nakanishi and Taniyama [6], where n is odd. Then they showed that
each of these moves are unknotting operation, that is, any knot can be deformed into a
trivial knot by a sequence of SH(n)-moves.@So, we may define an SH(n)-Gordian distance
between two knots and an SH(n)-unknotting number for a knot. In this paper, we mainly
consider an SH(3)-Gordian distance and an SH(3)-unknotting number.

For an SH(3)-Gordian distance, Taniyama and Yasuhara [30] have given some interpre-
tations (Proposition 2.1), which suggest the importance of the SH(3)-move particularly
from 4-dimensional point of view and also give several estimations of an SH(3)-Gordian
distance (Propositions 2.2, 2.3, 2.5, 2.6). Since an SH(3)-move is realized by a sequence
of two coherent band surgeries (Fig. 2), we may apply some criteria by the Jones, Q,
and HOFMLYPT polynomials for a band surgery ([9, 10]) to obtain some criteria on an
SH(3)-Gordian distance (Theorem 3.1).

Figure 1. An SH(3)-move.

We then consider some relations of an SH(3)-move with other local moves such as a
crossing change, a Γ0-move, and a ∆-move. They are also unknotting operation, and we
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may obtain several relations among a usual Gordian distance, Γ0-Gordian distance, ∆-
Gordian distance, and SH(3)-Gordian distance (Propositions 4.1, 4.3). These relations
are useful to decide an SH(3)-unknotting number, and are also efficient to give a lower
bound of an ∆-unknotting number (Example 4.8). Lastly, we give a table of an SH(3)-
and Γ0-unknotting numbers for knots with up to 9 crossings (Tables 1, 2); we can decide
the SH(3)-unknotting numbers completely, but cannot decide the Γ0-unknottings number
for 12 knots.

This paper is organized as follows: In Sec. 2, we present some interpretations for an
SH(3)-Gordian distance due to Taniyama and Yasuhara. In Sec. 3, we give some criteria
for an SH(3)-Gordian distance by the special values of the Jones, Q, and HOMFLYPT
polynomials. In Sec. 4, we give some relations among several Gordian distances by a
crossing change, a Γ0-move, a ∆-move, and an SH(3)-move. In Sec. 5, we give a table
of an SH(3)- and Γ0-unknotting numbers for knots with up to 9 crossings. In Sec. 6, we
remak that our method is also acceptable for the pass move and sharp move.

For knots and links we use Rolfsen notations in Appendix C in [27].

2. Some interpretations of an SH(3)-Gordian distance

For an SH(3)-Gordian distance Taniyama and Yasuhara [30] have given some interpre-
tations, which is useful to give several estimations of an SH(3)-Gordian distance and an
SH(3)-unknotting number.

Let K and K ′ be two oriented knots in S3. The C-distance of K and K ′, dC(K, K ′),
is the minimal genus of an embedded oriented surface in S3 whose boundary is the two
knots K and K ′. In other words, the C-distance of K and K ′ is the minimal genus over
all 2-components links whose components are K and −K ′, where −K ′ is the knot K ′ with
reversed orientation. The concordance distance of K and K ′, c(K, K ′), is half of the least
number of elementary critical points on an oriented surface in S3 × [0, 1] connecting K in
S3×{0} to K ′ in S3×{1}, that is, a concordance between the two knots, whose projection
to [0, 1] is a Morse function. The following is the main theorem of [30].

Proposition 2.1. The SH(3)-Gordian distance, the C-distance, and the concordance dis-
tance between two knots are equal; sd3(K, K ′) = dC(K, K ′) = c(K, K ′).

The C-distance is an interpretation for the SH(3)-Gordian distance from a 3-dimensional
point of view, which implies the following ([6, Theorems 3∗(2)], [30, Theorems 3.1]):

Proposition 2.2. For a knot K, we have:

su3(K) ≤ g(K),(1)

where g(K) is the genus of K.

The concordance distance is an interpretation for the SH(3)-Gordian distance from a 4-
dimensional point of view, which implies Propositions 2.3 and 2.5 below. For two oriented
knots K and K ′, we define the coherent band-Gordian distance, dband(K, K ′), to be the
minimum number of band surgeries needed to deform K into K ′. We define the coherent
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band unknotting number of K to be the coherent band-Gordian distance of K and the
trivial knot U , uband(K) = dband(K, U). Then we have:

Proposition 2.3. For two oriented knots K and K ′, we have:

(2) dband(K, K ′) = 2sd3(K, K ′).

In particular, we have:

(3) uband(K) = 2su3(K).

Proof. An SH(3)-move is realized by a sequence of two coherent band surgeries as shown
in Fig. 2; see [6, Fig. 4], and so dband(K, K ′) ≤ 2sd3(K, K ′). Conversely, suppose that
there exist a sequence of oriented links L0 = K, L1, . . . , Ln−1, Ln = K ′ such that Li is
obtained from Li−1 by a coherent band surgery for each i, 1 ≤ i ≤ n. Then there exists an
oriented surface in S3 × [0, 1] connecting K in S3 × {0} to K ′ in S3 × {1}, the number of
whose elementary critical points is n. Then 2c(K, K ′) ≤ n, and so by Proposition 2.1 we
have 2sd3(K, K ′) ≤ dband(K, K ′), completing the proof. �

Figure 2. An SH(3)-move is realized by a sequence of two coherent band surgeries.

Example 2.4. Let K = 31!#51. Then K is deformed into H−, the negative Hopf link, by
a band surgery along the band as shown in Fig. 3. Since H− is band-trivializable, that
is, it can be deformed into the trivial knot by a band surgery, by Proposition 2.3 we have
su3(K) = uband(K)/2 = 1. Similarly, we have su3(98) = su3(931) = 1. In fact, the knots
98 and 931 are deformed into 42

1! with linking number −2 and 52#H+, respectively by a
band surgery along the bands as shown in Fig. 3, where 42

1! with linking number −2 is
the torus link of type (2, 4) with anti-parallel orientation and H+ is the positive Hopf link;
these links are easily seen to be band-trivializable; cf. [10, Lemma 4.3].

9_31-> H+＃5_29_8 -> 4_1^2! 3_1! #5_1 

3_1#3_1! -> 6_1

31!#51 98 931

Figure 3. Knots with SH(3)-unknotting number one.
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We define the 4-distance of two oriented knots K and K ′, d4(K, K ′), to be the minimum
genus of a concordance in S3 × [0, 1] between K and K ′. In particular, the 4-distance of
K and the trivial knot U is the 4-ball genus of K, g∗(K) = d4(K, U). Then d4(K, K ′) =
g∗(K#(−K ′)). ???references??? We obtain the following ([30, Theorems 1.2 and 3.1]):

Proposition 2.5. For two oriented knots K and K ′, we have:

d4(K, K ′) ≤ sd3(K, K ′).(4)

In particular, we have:

g∗(K) ≤ su3(K).(5)

A knot with 4-ball genus zero is usually called a slice knot. Namely, a slice knot K in
S3 bounds a properly embedded locally flat disk in S3 × [0,∞). A ribbon knot is a slice
knot bounding a disk in S3 × [0,∞) whose critical points consist of maximum and saddle
points. We define the ribbon-fusion number of a ribbon knot to be the least number of
such saddle points. More precisely, a ribbon knot of m-fusions is a knot obtained from a
trivial (m + 1)-component link by doing band surgery along m bands. So, it has the form

(6) S1
0 ∪ S1

1 ∪ · · · ∪ S1
m ∪

m⋃
i=1

fi(∂I × I)− int
m⋃

i=1

fi(I × ∂I),

where S1
0 ∪S1

1 ∪ · · ·∪S1
m is a trivial m-component link and fi : I× I → S3 (i = 1, 2, . . . ,m)

are disjoint embeddings such that

(7) fi(I × ∂I) ∩ Sj =


fi(I × {0}), if j = 0;
fi(I × {1}), if j = i;
∅, otherwise.

By a ribbon knot we mean a ribbon knot of m-fusions for some m; see [31]. The least
number of such m is the ribbon-fusion number of K, which we denote by rf(K); see [9].
Then the following is immediate from the equation sd3(K, K ′) = c(K, K ′), which is a
generalization of Example 3.2(1) in [30].

Proposition 2.6. If K is a ribbon knot, then

(8) su3(K) ≤ rf(K).

In particular, if K is a ribbon knot with ribbon-fusion number one, then su3(K) = 1.

Example 2.7. Let K = 941, which is a ribbon knot with 1-fusion [13, Appendix F.5], and so
by Proposition (2.6), we obtain su3(K) = 1. Note that the inequalities in Proposition 4.5
below do not work to decide this.

We denote by Σm(L) the m-fold cyclic covering space of S3 branched over an oriented
link L in S3, and by Σ̃(K) the infinite cyclic covering space of the complement of an oriented
knot K in S3. Let em(L) be the minimum number of generators of H1(Σm(L);Z), and
e(K) the minimum number of generators of H1(Σ̃(K);Z) as a Z[t, t−1]-module. Then
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e(K) is equal to the Nakanishi index of K; see [13, p. 72]. For an SH(3)-Gordian distance
we have the following:

Proposition 2.8. For two oriented knots K and K ′ in S3, we have the following:

|em(K)− em(K ′)|/2(m− 1) ≤ sd3(K, K ′).(9)

|e(K)− e(K ′)|/2 ≤ sd3(K, K ′).(10)

Proof. Eq. (9) can be proved in a similar way to [6, Theorem 4∗], and Eq. (10) is ginve in
[30, Theorem 1.2], which is essentially due to Nakanishi [22]. �

For an SH(3)-unknotting number we have the following:

Proposition 2.9. For an oriented knot K in S3, we have the following:

em(K)/2(m− 1) ≤ e(K)/2 ≤ su3(K).(11)

Proof. The first inequality, em(K)/(m−1) ≤ e(K), is due to Kinoshita [14], and the second
one follows from Eq. (10), which is also given in [30, Theorem 3.1]. �

Remark 2.10. The inequality em(K)/2(m− 1) ≤ su3(K) is given in [6, Theorem 4∗].

3. Special values of some polynomial invariants of knots

We consider the special values of the Jones, Q, and HOMFLYPT polynomials of knots,
which allow us to estimate an SH(3)-Gordian distance and an SH(3)-unknotting number
in some cases. First we remember the definitions of several polynomials.

The Conway polynomial ∇(L; z) ∈ Z[z] [3], the Jones polynomial V (L; t) ∈ Z[t±1/2]
[7], and the HOMFLYPT polynomial P (L; v, z) ∈ Z[v±1, z±1] [4, 26] are invariants of the
isotopy type of an oriented link L, which are defined by the following formulas:

∇(U ; z) = 1;(12)

∇(L+; z)−∇(L−; z) = z∇(L0; z);(13)

V (U ; t) = 1;(14)

t−1V (L+; t)− tV (L−; t) =
(
t1/2 − t−1/2

)
V (L0; t);(15)

P (U ; v, z) = 1;(16)

v−1P (L+; v, z)− vP (L−; v, z) = zP (L0; v, z),(17)

where U is the unknot and (L+, L−, L0) is a skein triple, that is, three links that are
identical except near one point where they are as in Fig. 4.

For an oriented link L, the Conway and Jones polynomials are related to the HOM-
FLYPT polynomial by:

∇(L; z) = P (L; 1, z) ;(18)

V (L; t) = P
(
L; t, t1/2 − t−1/2

)
.(19)
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DDD D

CCC

LLL L

L                              L                             L                              L

L+ L− L0

Figure 4. A skein triple.

The Conway polynomial of a knot K is of the form

∇(K; z) = 1 +
n∑

k=1

a2k(K)z2k,

where a2k(K) ∈ Z.
The Q polynomial Q(L; z) ∈ Z[z±1] [1, 5] is an invariant of the isotopy type of an

unoriented link L, which is defined by the following formulas:

Q(U ; z) = 1;(20)

Q(L+; z) + Q(L−; z) = z (Q(L0; z) + Q(L∞; z)) ,(21)

where U is the unknot and L+, L−, L0, L∞ are four unoriented links that are identical
except near one point where they are as in Fig. 5.

DDD D

CCC

LLL L

L                              L                             L                              L

L+ L− L0 L∞

Figure 5. An unoriented skein quadruple.

Some special values of these polynomials are closely related with some finite cyclic cover-
ing spaces of S3 branched over a link. Let Σm(L) be the m-fold cyclic cover of S3 branched
over an oriented link L, c(L) the number of the components of L, d = dim H1(Σ2(L);Z3),
f = dim H1(Σ2(L);Z5), and h = dim H1(Σ3(L);Z2). Further, put ω = eiπ/3 and ρ(L) =
Q

(
L; (

√
5− 1)/2)

)
; we consider L an oriented link in ρ(L). Then we have:

V (L;ω) = ±ic(L)−1(i
√

3)d;(22)

ρ(L) = ±
√

5
f
;(23)

P (P ; i, i) = (i
√

2)h,(24)

where V (L;ω) means the value of V (L; t) at t1/2 = eiπ/6, whence t1/2 − t−1/2 = i; see
[8, 15]; cf. [16, Table 16.3].
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Theorem 3.1. If two knots K and K ′ are related by an SH(3)-move, then:

V (K;ω)/V (K ′;ω) ∈
{
±1, ±i

√
3
±1

, 3±1
}

;(25)

ρ(K)/ρ(K ′) ∈
{
±1,±

√
5
±1

, 5±1
}

;(26)

P (K; i, i)/P (K ′; i, i) ∈
{
1, −2±1, 4±1

}
.(27)

In particular, if su3(K) = 1, then:

V (K;ω) ∈
{
±1, ±i

√
3, 3

}
;(28)

ρ(K) ∈
{
±1,±

√
5, 5

}
;(29)

P (K; i, i) ∈ {1, −2, 4} .(30)

Proof. If two knots K and K ′ are related by an SH(3)-move, then there is a 2-component
link L such that L is obtained from each of K and K ′ by a coherent band surgery. Then
by Theorems 2.2 and 3.1 in [9] and Proposition 2.4 in [10] we have:

V (K;ω)/V (L;ω), V (L;ω)/V (K ′;ω) ∈
{
±i, −

√
3
±1

}
;(31)

ρ(K)/ρ(L), ρ(L)/ρ(K ′) ∈
{
±1,

√
5
±1

}
;(32)

P (K; i, i)/P (L; i, i), P (L; i, i)/P (K ′; i, i) ∈
{
1, −2±1

}
,(33)

which imply Eqs. (25), (26), (27), respectively. This completes the proof. �

Example 3.2. Let K = 937, 948 or 31!#61. Then V (K;ω) = −3, and so by Theorem 3.1,
we have su3(K) > 1. On the other hand, since u(K) = 2 (see [2, 29]), by Eq. (37) we
obtain su3(K) = uΓ0(K) = 2. Notice that since |σ(K)| = g∗(K) = 1, Eq. (5) does not
work. (These knots and 31#31 are the only knots with V (K;ω) = −3 up to 9 crossings.)

4. Relations with other local moves of knots

A Γ0-move is a local change in an oriented link diagram as shown in Fig. 6, which was
introduced by Shibuya [28]. This move is an unknotting operation. In fact, a crossing
change is realized by a Γ0-move as shown in Fig. 7. Then for oriented knots K and K ′, we
may define the Γ0-Gordian distance from K to K ′, dΓ0(K, K ′), and Γ0-unknotting number
of K, uΓ0(K), in a usual way. Then since a Γ0-move is realized by two crossing changes,
we obtain:

Proposition 4.1. Let K and K ′ be knots. Then we have:

(34) dΓ0(K, K ′) ≤ d(K, K ′) ≤ 2dΓ0(K, K ′).

In particular, we have:

(35) uΓ0(K) ≤ u(K) ≤ 2uΓ0(K).
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Figure 6. A Γ0-move.

≈ Γ0 ≈

Figure 7. A crossing change is realized by a Γ0-move.

Shibuya [28] also introduced a similar local change as shown in Fig. 8, which is called
a Γ′0-move. Then Γ′0-move is equivalent to Γ0-move, that is, a Γ′0-move is realized by a
Γ0-move, and vice-versa as shown in Fig. 9

Figure 8. A Γ′0-move.

≈ Γ0 ≈

≈ Γ′0 ≈

Figure 9. A Γ′0-move is realized by a Γ0-move, and vice-versa.

Murakami and Nakanishi [20] and Matveev [17] introduced a local change in an oriented
link diagram called a ∆-move as shown in Fig. 10, where the orientations of strings are
irrelevant.

A ∆-move is known to be an unknotting operation; see [20, Lemma 1.1]. Then for
oriented knots K and K ′, we may define the ∆-Gordian distance from K to K ′, d∆(K, K ′),
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Figure 10. A ∆-move.

and ∆-unknotting number of K, u∆(K), in a usual way. A ∆-move has the following
properties, where (i) is deduced from Theorem 2.3 in [20] and (ii) is Theorem 1.1 in [23]:

Proposition 4.2. (i) For two knots K and K ′, we have: d∆(K, K ′) ≡ a2(K) − a2(K ′)
(mod 2).
(ii) If two knots K and K ′ are related by a single ∆-move, then |a2(K)− a2(K ′)| = 1.

In particular, we have u∆(K) ≡ a2(K) (mod 2) and u∆(K) ≥ |a2(K)|.

Proposition 4.3. Let K and K ′ be knots in S3. Then we have:

sd3(K, K ′) ≤ dΓ0(K, K ′) ≤ d∆(K, K ′).(36)

In particular, we have:

su3(K) ≤ uΓ0(K) ≤ u∆(K).(37)

Proof. The first inequality of Eq. (36) is deduced from [30, Proposition 2.1]. In fact, a
Γ0-move is realized by an SH(3)-move as shown in Fig. 11; cf. [30, Fig. 2.7]. The second
inequality of Eq. (36) is due to Shibuya [28, Theorem 1.3]. In fact, a ∆-move is realized
by a Γ0-move as shown in Fig. 12 [28, Fig. 6]. �

≈ SH(3) ≈

Figure 11. A Γ0-move is realized by an SH(3)-move.

≈ Γ0 ≈

Figure 12. A ∆-move is realized by a Γ0-move.
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Remark 4.4. Combining Eqs. (34) and (36), we obatin Theorem 2.1 in [20]: for any knots
K and K ′, the following hold:

d(K, K ′) ≤ 2d∆(K, K ′);(38)

u(K) ≤ 2u∆(K).(39)

We summarize several estimations on the SH(3)-unknotting number.

Proposition 4.5. For a knot K, we have:

|σ(K)|/2 ≤ g∗(K) ≤ su3(K) ≤ g(K);(40)

em(K)/2(m− 1) ≤ e(K)/2 ≤ su3(K) ≤ uΓ0(K) ≤ u(K), u∆(K).(41)

Example 4.6. Let K = 935. Then u(K) = 3 (see [2, 25]), and so by Eq. (35), we have
uΓ0(K) = 2 or 3. On the other hand, since g(K) = 1, by Eq. (37) we obtain su3(K) = 1.

Example 4.7. For the knot K = 10103, we have:

|σ(K)|/2 = g∗(K) = 1; su3(K) = uΓ0(K) = 2; g(K) = u(K) = u∆(K) = 3.

Proof. From Table F.3 in [13, p. 103] we have |σ(K)|/2 = g∗(K) = 1 and g(K) = 3. In
fact, performing the band surgery along the band as shown in Fig. 13(a), we obtain the
2-component link H−#88!, the composition of the negative Hopf link and the mirror image
of the knot 88. Since the 88 knot is a ribbon knot, we have g∗(K) ≤ 1.

Performing the Γ′0-move at the 2 crossings near the marks ∗ indicated in Fig. 13(b), K
becomes the knot 52, which has unknotting number one, and so uΓ0(K) ≤ 2. On the other
hand, since ρ(K) = −5, we have su3(K) > 1. Therefore, su3(K) = uΓ0(K) = 2.

The ∆-unknotting number, u∆(K) = 3, is taken from the table in [21]. In fact, perform-
ing the ∆-move around the region containing the mark ∆ in Fig. 13(c), K becomes the
knot 52, which has ∆-unknotting number two [23], and so u∆(K) ≤ 3. On the other hand,
since a2(K) = 3, u∆(K) ≥ 3. �

*

*

(a)                              (b)                                (c)
(a) (b) (c)

Figure 13. The knot 10103 yields: (a) the 2-component link H−#88! by a
band surgery; (b) the 52 knot by a Γ′0-move; (c) the 52 knot by a ∆-move.

The following example shows that the estimation for an ∆-unknotting number by using
an SH(3)-unknotting number is effective, which is also similar for the composite knot
31!#61; see Example 3.2.
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Example 4.8. Let K be the alternating 12 crossing knot 12a177 as shown in Fig. 14; see
[2]. Then we have u∆(K) = 3, which cannot be obtained from only the previous methods
as in Proposition 4.2 and the inequalities: |σ(K)|/2 ≤ g∗(K) ≤ u∆(K), e(K)/2 ≤ u∆(K).

First, we have:

∇(K; z) =1− z2 − 3z4 + 2z6;(42)

V (K; t) =t−9(1− 3t + 7t2 − 14t3 + 20t4 − 25t5(43)

+ 28t6 − 25t7 + 21t8 − 15t9 + 8t10 − 3t11 + t12);

σ(K) = 2.(44)

By applying the ∆-move around the region containing the mark ∆, K is deformed into the
knot 1067, whose ∆-unknotting number is 2 [21], and so u∆(K) ≤ 3. Since |a2(K)| = 1, by
Proposition 4.2 we have u∆(K) ≡ 1 (mod 2) and u∆(K) ≥ 1. However, since V (K;ω) =
−3, by Theorem 3.1 su3(K) > 1, and thus by Proposition 4.3 we obtain u∆(K) = 3.

Furthermore, we have u(K) = uΓ0(K) = 2 and g∗(K) = 1. In fact, by changing the 2
crossings near the marks ∗, K is unknotted, and so u(K) ≤ 2. Then using the inequalities
in Proposition 4.5, we obtain su3(K) = uΓ0(K) = u(K) = 2. Lastly, by performing a band
surgery along the band as shown in Fig. 14, we obtain the composite link 61#41#H−.
Then since 61 is a ribbon knot and 41#H− is band-trivializable by [10, Lemma 4.3], the
4-ball genus of this link is zero, and so g∗(K) ≤ 1. Since σ(K) = 2, we obtain g∗(K) = 1.

＊

＊

Δ

Figure 14. The knot 12a177.

5. Tables of SH(3)- and Γ0-unknotting numbers of knots
with up to 9 crossings

Table 1 lists the 4-ball genus, g∗, SH(3)-unknotting number, su3, Γ0-unknotting number,
uΓ0 , unknotting number, u, ∆-unknotting number, u∆, and genus, g, of prime knots with
up to 9 crossings. We have a complete list of the 4-ball genus, unknotting number and
genus for prime knots with up to 9 crossings in [2]. For the ∆-unknotting number we have
a table of prime knots with up to 8 crossings in [23], and one for up to 10 crossings in [21].

For some knots the SH(3)- and Γ0-unknotting numbers are already given in Examples,
which are indicated in the last column in Table 1, and for the remaining knots the marks
(I), (II) indicate the methods for deciding these numbers. Then we can completely decide
the SH(3)-unknotting number, but for 11 knots the Γ0-unknotting number is undecided;
in Table 1 1-2 means uΓ0(K) = 1 or 2, and 2-3 means uΓ0(K) = 2 or 3.
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(I) The inequalities g∗ ≤ su3 ≤ uΓ0 ≤ u, u∆ and su3 ≤ g in Proposition 4.5 give the
SH(3)- and Γ0-unknotting numbers. Notice that for a nontrivial knot, su3 > 0.
Also, in some case we cannot obtain definite numbers; for example, for the knot 74

we have su3 = 1 since g = 1, but uΓ0 = 1 or 2, undecided, since u = 2 and u∆ = 4.
(II) Fig. 15 shows uΓ0(K) = 1, where each knot is transformed into the trivial knot by

performing a Γ′0-move at the 2 crossings near the marks ∗.
9_29

8_4 8_6 8_10

9_46

8_8

8_12 9_15 9_17 9_25

84 86 88 810

9_29

8_4 8_6 8_10

9_46

8_8

8_12 9_15 9_17 9_25812 915 917 925

9_29

8_4 8_6 8_10

9_46

8_8

8_12 9_15 9_17 9_25

929 946

Figure 15. Knots with Γ0-unknotting number one.

Remark 5.1. Recently, Yoshiaki Uchida has pointed out an error in the figure for giving
u∆(929) in [24, p. 59], from which the number u∆(929) in [21] is taken. So, in Table 1 we
list u∆(929) = 1 or 3.

Table 2 lists the 4-ball genus, the SH(3)-unknotting number, the Γ0-unknotting number,
the unknotting number, the ∆-unknotting number, and the genus, together with the half
of the absolute value of the signature, |σ|/2, and the absolute value of the coefficient of z2

of the Conway polynomial, |a2|, of composite knots with up to 9 crossings and 31#31#41,
31!#31#41 (Example 5.5). The genus, signature, and a2 are definitely obtained. The
unknotting numbers are taken from the table in [29]. An upper bound of the ∆-unknotting
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Table 1. SH(3)- and Γ0-unknotting numbers of prime knots with up to 9 crossings.

K g∗ su3 uΓ0 u u∆ g Method

31 1 1 1 1 1 1 (I)
41 1 1 1 1 1 1 (I)
51 2 2 2 2 3 2 (I)
52 1 1 1 1 2 1 (I)
61 0 1 1 1 2 1 (I)
62 1 1 1 1 1 2 (I)
63 1 1 1 1 1 2 (I)
71 3 3 3 3 6 3 (I)
72 1 1 1 1 3 1 (I)
73 2 2 2 2 5 2 (I)
74 1 1 1-2 2 4 1 (I)
75 2 2 2 2 4 2 (I)
76 1 1 1 1 1 2 (I)
77 1 1 1 1 1 2 (I)
81 1 1 1 1 3 1 (I)
82 2 2 2 2 2 3 (I)
83 1 1 1-2 2 4 1 (I)
84 1 1 1 2 3 2 (II)
85 2 2 2 2 3 3 (I)
86 1 1 1 2 2 2 (II)
87 1 1 1 1 2 3 (I)
88 0 1 1 2 2 2 (II)
89 0 1 1 1 2 3 (I)
810 1 1 1 2 3 3 (II)
811 1 1 1 1 1 2 (I)
812 1 1 1 2 3 2 (II)
813 1 1 1 1 1 2 (I)
814 1 1 1 1 2 2 (I)
815 2 2 2 2 4 2 (I)
816 1 1 1 2 1 3 (I)
817 1 1 1 1 1 3 (I)
818 1 1 1 2 1 3 (I)
819 3 3 3 3 5 3 (I)
820 0 1 1 1 2 2 (I)
821 1 1 1 1 2 2 (I)
91 4 4 4 4 10 4 (I)
92 1 1 1 1 4 1 (I)
93 3 3 3 3 9 3 (I)
94 2 2 2 2 7 2 (I)
95 1 1 1-2 2 6 1 (I)
96 3 3 3 3 7 3 (I)
97 2 2 2 2 5 2 (I)

K g∗ su3 uΓ0 u u∆ g Method

98 1 1 1-2 2 2 2 Example 2.4
99 3 3 3 3 8 3 (I)
910 2 2 2-3 3 8 2 (I)
911 2 2 2 2 4 3 (I)
912 1 1 1 1 1 2 (I)
913 2 2 2-3 3 7 2 (I)
914 1 1 1 1 1 2 (I)
915 1 1 1 2 2 2 (II)
916 3 3 3 3 6 3 (I)
917 1 1 1 2 2 3 (II)
918 2 2 2 2 6 2 (I)
919 1 1 1 1 2 2 (I)
920 2 2 2 2 2 3 (I)
921 1 1 1 1 3 2 (I)
922 1 1 1 1 1 3 (I)
923 2 2 2 2 5 2 (I)
924 1 1 1 1 1 3 (I)
925 1 1 1 2 2 2 (II)
926 1 1 1 1 2 3 (I)
927 0 1 1 1 2 3 (I)
928 1 1 1 1 1 3 (I)
929 1 1 1 2 1/3 3 (II)
930 1 1 1 1 1 3 (I)
931 1 1 1-2 2 2 3 Example 2.4
932 1 1 1 2 1 3 (I)
933 1 1 1 1 1 3 (I)
934 1 1 1 1 1 3 (I)
935 1 1 2-3 3 7 1 Example 4.6
936 2 2 2 2 3 3 (I)
937 1 2 2 2 3 2 Example 3.2
938 2 2 2-3 3 6 2 (I)
939 1 1 1 1 2 2 (I)
940 1 1 1 2 1 3 (I)
941 0 1 1-2 2 2 2 Example 2.7
942 1 1 1 1 2 2 (I)
943 2 2 2 2 3 3 (I)
944 1 1 1 1 2 2 (I)
945 1 1 1 1 2 2 (I)
946 0 1 1 2 2 1 (II)
947 1 1 1 2 1 3 (I)
948 1 2 2 2 3 2 Example 3.2
949 2 2 2-3 3 6 2 (I)

number of a composite knot is given by

(45) u∆(J#K) ≤ u∆(J) + u∆(K),
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and we also use Proposition 4.2. In order to find an upper bound of the Γ0-unknotting
number of a composite knot we use the formula:

(46) uΓ0(J#K) ≤ uΓ0(J) + uΓ0(K),

and also the following proposition, which is trivial, but useful.

Proposition 5.2. Suppose that a knot J ′ is obtained from a knot J by changing a positive
crossing to a negative one and a knot K ′ is obtained from a knot K by changing a neg-
ative crossing to a positive one. Then the composition J ′#K ′ is obtained from J#K by
performing a single Γ0-move.

In particular, suppose that J and K are unknotting number one knots such that J is
unknotted by changing a positive crossing to a negative one and K is unknotted by changing
a negative crossing to a positive one. Then uΓ0(J#K) = 1.

Example 5.3. Let K = 41#51. Then the knot 51 is transformed into 31 by changing a
negative crossing to a positive one, and 41 is unknotted by changing a positive crossing to
a negative one, and so by the proposition above K is deformed into 31 by a Γ0-move. Then
we have uΓ0(K) ≤ 2. Since σ(K)/2 = 2, we obtain g∗(K) = su3(K) = uΓ0(K) = 2.

Example 5.4. Let Tp,q be the composition of p copies of 31, the left-hand trefoil, and q

copies of 31!, the right-hand trefoil; Tp,q = (
p

#31)#(
q

#31!). We assume 0 ≤ p ≤ q. Then

Tp,q =
p

#(31#31!)#(
q−p

# 31!) and 31#31! is a square knot, which is a ribbon knot. Then we
have:

• Since σ(31) = 2, we have σ(Tp,q) = −2(q − p).
• Since g∗(31) = 1, we have g∗(Tp,q) = q − p.
• Since the double branched covering space Σ2(31) is the lens space of type (3, 1),

H1(Σ2(Tp,q);Z) ∼= Z3 ⊕ · · · ⊕Z3 (p + q summands); thus, e2(Tp,q) = p + q.
• By Proposition 5.2 we have uΓ0(31#31!) = 1, and so uΓ0(Tp,q) ≤ q.

Therefore, by Proposition 4.5 we have

(47) max{(p + q)/2, q − p} ≤ su3(Tp,q) ≤ q.

In particular, if q = p, p + 1, p + 2 or p = 0, then su3(Tp,q) = q. In fact, since
V (31;ω) = −i

√
3, V (Tp,p+2;ω) = −3p+1, and so by Theorem 3.1, su3(Tp,p+2) = p + 2;

see [30, Examples 3.2(3) and 4.3].

Example 5.5. Let K = 31#31#41 and K ′ = 31!#31#41. Then since P (31; i, i) = P (41; i, i) =
−2, we have P (K; i, i) = P (K ′; i, i) = −8, which implies su3(K), su3(K ′) > 1 by Theo-
rem 3.1, and u(K), u(K ′) ≥ 3 by [18, Theorem 1.1], which implies u(K) = u(K ′) = 3;
see [29, Appendix 1]. Since uΓ0(31#41) = 1, we have uΓ0(K), uΓ0(K

′) ≤ 2, and so
su3(K) = uΓ0(K) = su3(K ′) = uΓ0(K

′) = 2. Therefore, we obtain u∆(K) = u∆(K ′) = 3
by Eq. (37). Further, since |σ(K)|/2 = 2, we have g∗(K) = 2, and since 31!#31 is a ribbon
knot and g∗(41) = 1, we have g∗(K ′) = 1.

In Table 2 the marks (I’), (II’) indicate the methods for deciding the numbers g∗, su3,
uΓ0 , u∆ as for Table 1.
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(I’) The inequalities |σ|/2 ≤ g∗ ≤ su3 ≤ uΓ0 ≤ u, u∆ and su3 ≤ g in Proposition 4.5
and Eq. (45) give g∗, su3, uΓ0 , and u∆.

(II’) Propsition 5.2 gives uΓ0(K) = 1. Note that the knots 31!#31 and 41#41 are ribbon
knots with 1-fusion and the others are not slice because the signature is not zero
or the determinant is not a square integer.

Table 2. SH(3)- and Γ0-unknotting numbers of composite knots with up
to 9 crossings and 31#31#41, 31!#31#41.

K g∗ su3 uΓ0 u u∆ g
|σ|
2

|a2| Method

31#31 2 2 2 2 2 2 2 2 (I’)
31!#31 0 1 1 2 2 2 0 2 (II’)
31#41 1 1 1 2 2 2 1 0 (II’)
31#51 3 3 3 3 4 4 3 4 (I’)
31!#51 1 1 1-2 2-3 4 3 1 4 Example 2.4
31#52 2 2 2 2 3 2 2 3 (I’)
31!#52 1 1 1 2 3 2 0 3 (II’)
41#41 0 1 1 2 2 2 0 2 (II’)
31#31#31 3 3 3 3 3 3 3 3 (I’)
31!#31#31 1 2 2 3 3 3 1 3 Example 5.4
31#61 1 1 1 2 1/3 2 1 1 (II’)
31!#61 1 2 2 2 3 2 1 1 Example 3.2
31#62 2 2 2 2 2 3 2 0 (I’)
31!#62 1 1 1 2 2 3 0 0 (II’)
31#63 1 1 1 2 2 3 1 2 (II’)
41#51 2 2 2 3 2/4 3 2 2 Example 5.3
41#52 1 1 1 2 1/3 2 1 1 (II’)
31#31#41 2 2 2 3 3 3 2 1 Example 5.5
31!#31#41 1 2 2 3 3 3 0 1 Example 5.5

6. Final remark

The pass move [12] and the sharp move [19] are other local moves on oriented knots and
links as shown in Fig. 16. Since the sharp move is an unknotting operation, we can define
a sharp move. However, the pass move is not an unknotting operation; two knots K and
K ′ are related by a sequence of pass moves if and only if a2(K) ≡ a2(K ′) (mod 2). Then,
we may define a pass-unknotting number for all knots with even second coefficient of the
Conway polynomial (or knots with Arf invariant zero).

Since the pass move is realized by a sequence of two H(2)-moves [6] and the sharp
move is realized by a sequence of two coherent band moves, we may give a lower bound
for a pass-unknotting number and a sharp-unknotting number using an H(2)-unknotting
number and an SH(2)-unknotting number, respectively, which provide a new estimation.
Namely, denoting by u#(K), upass(K), u2(K) the sharp-, pass-, H(2)-unknotting numbers
of a knot K, we have u2(K) ≤ 2u#(K) and su3(K) ≤ upass(K).
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t+           t–    e+     e–     f+   f0   f–

L+                                        L–                       L0

LL −ï 0L

(a) (b)

Figure 16. (a) Pass move. (b) Sharp move.

Example 6.1. Let us consider the two knots K1 = 10103 and K2 = 1074. Since u2(K1) = 3
[11, p. 453] and u#(K1) ≡ a2(K1) = 3 (mod 2) [19, Theorem 3.5], we obtain u#(K1) ≥ 3.
Conversely, since we may show u#(K1) ≤ 3, we obtain u#(K1) = 3, which cannot be
obtained by using the signature [19, Theorem 3.2]. Next, since ∇(K2) = 1 − z4, we may
consider the pass-unknotting number for K2. Since V (K2, ω) = −3 and g(K2) = 2, we
have su3(K2) = 2. By the 4-move, we may transform K2 into the knot 61, which is
further transformed into the trivial knot by a 4-move, and so upass(K2) ≤ 2. Thus we have
upass(K2) = 2, which cannot be obtained by using the signature; in general |σ(K)|/2 ≤
upass(K) for a knot K and |σ(K2)| = 2.

In a forthcoming paper we will make a detailed report on these moves.

Acknowledgements

The author was partially supported by KAKENHI, Grant-in-Aid for Scientific Research
(C) (No. 21540092), Japan Society for the Promotion of Science.

References

[1] R. D. Brandt, W. B. R. Lickorish, and K. C. Millett, A polynomial invariant for unoriented knots and
links, Invent. Math. 84 (1986), 563–573.

[2] J. C. Cha and C. Livingston, Knotinfo: an online table of knot invariants, http://www.indiana.edu/
∼knotinfo/.

[3] J. H. Conway, An enumeration of knots and links, and some of their algebraic properties, Computational
Problems in Abstract Algebra (Proc. Conf., Oxford, 1967), Pergamon, Oxford, 1970, pp. 329–358.

[4] P. Freyd, D. Yetter, J. Hoste, W. B. R. Lickorish, K. Millett, and A. Ocneanu, A new polynomial
invariant of knots and links, Bull. Amer. Math. Soc. (N.S.) 12 (1985), 239–246.

[5] C. F. Ho, A polynomial invariant for knots and links—preliminary report, Abstracts Amer. Math. Soc.
6 (1985), 300.

[6] J. Hoste, Y. Nakanishi, and K. Taniyama, Unknotting operations involving trivial tangles, Osaka J.
Math. 27 (1990), 555–566.

[7] V. F. R. Jones, Hecke algebra representations of braid groups and link polynomials, Ann. of Math. (2)
126 (1987), 335–388.

[8] , On a certain value of the Kauffman polynomial, Comm. Math. Phys. 125 (1989), 459–467.
[9] T. Kanenobu, Band surgery on knots and links, J. Knot Theory Ramifications 19 (2010), 1535–1547.

[10] , Band surgery on knots and links, II, J. Knot Theory Ramifications (to appear).
[11] T. Kanenobu and Y. Miyazawa, H(2)-unknotting number of a knot, Commun. Math. Res. 25 (2009),

433–460.



SH(3)-MOVE AND OTHER LOCAL MOVES ON KNOTS 17

[12] L. H. Kauffman, The Arf invariant of classical knots, Combinatorial methods in topology and algebraic
geometry (Rochester, N.Y., 1982), Contemp. Math., vol. 44, Amer. Math. Soc., Providence, RI, 1985,
pp. 101–116.
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