THE GRAPH COHOMOLOGY RING OF THE GKM GRAPH OF
A FLAG MANIFOLD OF TYPE G,

YUKIKO FUKUKAWA

ABsTRACT. Suppose a compact torlisacts on a closed smooth manifold
M. Under certain conditions, Guillemin and Zara associaté\iol() a
labeled graptgyw where the labels lie itd?(BT). They also define the
subringHz(Gwm) of EBVE\,(QM) H*(BT), whereV(Gw) is the set of ver-
tices ofgy and we calH;(Gw) the “graph cohomology” ring agm. It

is known that the equivariant conomology ringMfcan be described by
using combinatorial data of the labeled graph. The main result of this pa-
per is to determine the ring structure of equivariant conomology ring of a
flag manifold of typeG, directly, using combinatorial techniques on the
graphgy. This gives a new computation of the equivariant conomology
ring of a flag manifold of typ&s,. (See [1].)

1. INTRODUCTION

Suppose that a closed smooth manifddhas an action of a compact
torusT. If the T-action is “nice”, then it is known that we can describe its
equivariant cohomology ring by using combinatorial way, namely by using
GKM theory. By “nice” we mean that th€-action onM is GKM, namely
the fixed point set of th&-actionMT is a finite set and the equivariant one-
skeleton oM is a union of points or 2-spheres. Then we construct a graph
Gwm by replacing fixed points with vertices and 2-spheres with edges. This
graph equipped with more information is defined by Guillemin and Zara
[6] to be the GKM graph associated witM(T). The object we study in
this manuscript, the flag manifold of ty@ with a standard maximal torus
action, is GKM.

Interestingly, we can describe the equivariant cohomology ring dfy
using the data of the GKM graph. The equivariant cohomology ringl of
is defined to be the ordinary cohomology ring of Borel constructioWof
namely

H7(M ;Z) := H*(ET X1t M ;2)
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whereET is the total space of the universal princifabundleET — BT.
SinceT acts onET, we can consider the diagon&taction onET x M,
and its orbit spac&T x1 M is called the Borel construction ®fl. In this
paper, we treat the equivariant conomology ring vidthodficients, so we
abbreviateH; (M ; Z) asH;(M). Since a GKM space satisfies the condition
thatH: (M) is torsion free as a module ovEr(BT), the restriction map

c D HE (M) = Hi(MT)
is injective. MoreoverMT is a finite set, hencM is isolated, so we have

H?(MT) e~ @ Hi(p) = @ H:(BT) = @Z[tla oLl

peMT peMT peMT

wheren = dimT. Therefore, we shall regart;(M) as a subring of
@pew Z[ty,--- ,t;] through the map*. Guillemin and Zara defined the

subring, denoted b} (Gwm), of @pew Z[ty, - - - ,ty], by using the combi-
natorial data of the grapgy. Then, according to the result of Goresky-
Kottwitz-MacPherson in [3], we have

Hr(M)® Q = Hr(Gm) © Q.

If M is a flag manifold therH; (M) is isomorphic toH; (Gm) without ten-
soring withQ (see [7], for example). Namely, by using data of the GKM
graph, we can compute;(M).

Our purpose is to determine the ring structuréip{Gwu) for a flag man-
ifold M of different Lie types. In the paper [2], we computed the ring struc-
ture of H;(Gw) for a flag manifoldM of classical type directly, namely
without using the fact thaH;(Gv) = H;(M), and our computation of
Hi(Gwm) confirms thatH;(M) is isomorphic toH;(Gm). The goal of this
paper is to similarly determine the ring structure§f(Gv) for a flag man-
ifold of type G,. The ring structure oHi(Gwm) is given by the following
theorem.

Theorem 1.1.LetG, be the labeled graph associated with the flag manifold
of type G. Then

H'T'(gz) = Z[Tl’ 72,73, tla t25 t3’ f]/l )

where | = (ey(7), &x(1) — €x(9), 2f — e5(7) — e3(s), f* - fez(9)), and g(r)
(resp. 9)) is the I" elementary symmetric polynomial i, 75, 75 (resp.
SS=h-h,Si=h-13,:=t3-1).

To prove Theorem 1.1 we will use the computation of the graph cohomol-
ogy of typeA,, because the labeled graph of typg contains two labeled
subgraphs isomorphic to the labeled graph of tgpeIn fact, the labeled
graph of typeG, can be viewed as the total space of a “GKM fiber bundle”
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in the sense of Guillemin, Sabatini and Zara [5] where the 8gsubgraph

is the fiber, although we do not use this perspective in our computation.
This paper is organized as follows. In Section 2, we recall the labeled

graph of a flag manifold. The labeled graph is a graph with weight attached

to each edge. In Section 3, we give #&elient description of the Weyl group

of typeG; (the vertex set of the labeled graph) which allows us to describe

the labeled graph more concretely. In Section 4, we compute the graph

cohomology ring of the labeled graph.

2. THE LABELED GRAPH G\

In this section, we recall the definition of the labeled grghahfor a flag
manifold M. For ann-dimensional torud, let {t;}! , be a basis oH2(BT),
so thatH*(BT) can be identified with the polynomial ririgfty, t5, - - - , t].
We take an inner product ad?(BT) such that the basig)!", is orthonor-
mal. The following is a simplified version of the definition of GKM graph
given in [6]. To distinguish our graph from theirs, we call ours a labeled
graph.

Definition 2.1. (See 2.2, [4]) LeM be a flag manifold of classical type or
exceptional type, namely a flag manifdidl is a homogeneous spaGgT
whereG is a compact Lie group and is a maximal torus o6G. Suppose
that®(G) be the root system of that type awdG) be the Weyl group. (We
regard®(G) as a subset afi2(BT) = {3, at | & € Z}. ) The labeled
graphgy hasW(G) as a vertex set. Two verticeg andw' in W(G) are
connected by an edgeif and only if there is an element in ®(G) such
thatw = wo,, whereo, is the reflection determined ly. The label of the
edgee, denoted by/(e), is given bywa.

Remark 2.2. Guillemin and Zara [6] introduced the notion of a GKM graph
which is a graph equipped with an axial function which satisfies a certain
compatibility condition. They defined the graph cohomology for a GKM
graph, but this definition does not use the compatibility condition of the
axial function. One can also see that the graph cohomology is independent
of the signs of the labels. Therefore, we omit the axial function in the data in
definition 2.1, and will often disregard the signs of the labels on our labeled
graph.

Example 2.3(A; type) Let M be the flag manifold of typé\,, namely
M = U(3)/T whereT is the maximal torus o) (3). Then, the root system
O(Ay) is{£(t —t;) | 1 <i< j < 3}andthe Weyl group is the permutation
groupS;z on three letters. We use the one-line notatieav(1)v(2)v(3) for
permutations. We denote b#; the labeled graph associated withA,). It

is shown in Figure 1.
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123 t-t3 132
t1—13

213 312
t1—to

231 321
FiGure 1. Aj

3. LABELED GRAPH OF TYPE G,

In this section we concretely describe the labeled graph of the flag man-
ifold associated to the compact Lie group of exceptional tgpeThen the
root system of typ&, is known to be

O(Gy) = {=(t, —t,), =(2t —t; —t) | 1<ii<ix<3{i, ]}k =[3]},
where [3] = {1,2,3}. Lets; =t; —tp, S, =t — t3 ands; = t3 — t;, then
D(Gy) = {+S. (s - §)) | ke [3],1<i<j<3,

S0 it is easy to see thdi(G,) has®(A,) as a subset (big’s play a role of
ti's). We denote by, the labeled graph associated wibiG,). The graph
G» has the Weyl groupV(G,) of typeG; as the vertex set. Let; = s; and
ar = S3— S; be the simple roots, theW(G,) has a presentation

(3.1) <0'1,0'2|0'12=0'22=(0'10'2)6=1>,

wherec; is the reflection defined by, fori = 1, 2. It is a dihedral group of
order 12.

We shall give another descriptionbf(G,) as a set not as a group, which
turns out to be convenient for our purpose, and rewrite the condition about
edges and labels. Let

O={£(s-5)11<i<]<3 CcDGy).
Let W(®) be the reflection group determined by namely
W((D) =< 010201,02 >

because the reflections,_s; determined by the roots — s; in @ are given
by

Tss = 02, Oss, = 010201 aNd 0g,_g, = (01072)%01
O It follows from (3.1) that the relations

02? = (010201)% = (010201 - 02)° = 1
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hold, so we can identifyV(®) with W(Az) = S;. We choose a group iso-
morphismy betweenW(®) andS; as follows;

Os =Sj — (I ’ J)

(3.2)

where {, ) is the transposition afandj. We note that
W(G,) = W(®) LI pW(P) as a set,

wherep := (010)%. (Note thaip is the rotation by angle. ) We record the
preceding discussion in a lemma.

Lemma 3.1. Let¥ be the map from \(i,) to S; x {+} defined as follows;
for any w in W®),

Yw) = W), +) and ¥(w) = (W), -).
ThenVY is bijective, so that one can identify (@&,) with S; x {+} as a set
through the mapv.

By using the bijection?, we can concretely describe the edge and the
label of the graptG,. The following lemma tells us the way to find the
labelwa in the Definition 2.1 more concretely.

Lemma 3.2. For any w and w; in W(G,) connected by an edgg,&, la-
beled by wa for somex in ®(G,), namely w = wyo,, one of the following
occurs.

Case 1: both wand w are in W(®). In this case there are distinct inte-
gersiand jin[3] such thaty(w.)(i) = ¥ (w2)(j), ¥ (W)(j) = ¥(w2)(i) and
(@) = Sy(un)i) — Sutwn)(iy-

Case 2: both wand w are in pW(®) so that there are unique elements w
in W(®) such that w = pw, for k = 1,2. In this case there are distinct
integers i and j in[3] such thaty(w;)(i) = ¢(W,)(j), ¥(W)(j) = ¥(wy)(i)
and{(@w,w,) = Suw)i) — Suw,)(j)-

Case 3. one of wand w is in W(®) and the other is ipW(®). With-
out loss of generality, we may assumge a&vW(®). Then there is an ele-
ment v in W(®) such that w = pw,. In this case there are distinct inte-
gersiand jin[3] such thaty(wi)(i) = ¢ (W,)(j), ¥ (W1)(j) = ¥(w)(i) and
f(ew,w,) = Sy, Where ke [3]\ i, j}.

Proof. From the definition ofy, we havey(os-s) = (i, j) for {i, j} < [3].
Since the graph cohomology is independent of the signs of the label, we
do not need to be careful of signs of labels of the labeled graph when we
consider the graph cohomology ring of the labeled graph. Therefore, in this
proof, we sometime disregard signs in front of roots.

First, we prove the lemma for cases 1 and 2. In these cagem @, SO
@ = § — sj for some distinct, jin [3].
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Case 1. By assumption; andw, are inW(®). Remember thaty; =
Woo, anda = s — ;. Sincey is a group isomorphism, we have

Y(wi) = YWy (o) = y(Woy(os-5) = w(W2)(i, ).
Thereforey(w1)(i) = v (Wo)()), w(W1)(j) = ¥(wo)(i). In addition, sincer =
S — Sj, we havef(ey, w,) = Wia = Wi (S — S;), so in order to show(ey, w,) =
Syw)(i) — Sywa)(j) It 1S €nough to show that

(3.3) Wi(S = Sj) = Sywai) — Suwa)(i)-

To prove this, it is enough to treat the case when= o, or 010,071,
becauser, ando,0,0; are the generators §%(®). Sinceo, = 0,5, and
010201 = 0s,-s,, We can check (3.3) this easily. In fact, for any two roots
B andy, oy is given byy — 2”%8 where- is the inner product oki?(BT)
which we defined in section 2. Therefore we have

-5 fordi,j}={31)
ss—-s forfi,j} ={2 3}
while
ss—s forfi,j}=1{3 1}
Siog-s)0) ~ Sosys)() = SEDO ~ Sen@ =1 22— S fordi, ji={1,2}
si—s forfi,j} ={2,3}

up to sign. Thus, (3.3) holds whem = o, = 0g_5. A similar argument
proves (3.3) fow, = o-105071.

Case 2. By assumptiom, = pw, for k = 1,2, wherew; andw, are in
W(®). Remember thaw, = w0, anda = § - s;. Sincepw; = pW,0,,

Y(Wp) = Y(Woy(oa) = w(W,)(i, j).
Thereforey(w,)(i) = w(W,)(j), w(Wy)(j) = w(w)(i), and we have
U(Bww,) = Wi = pWi(S — ) = p(Sywr)i) — Suwy)(i))-

Herep preserves — s; up to sign because s the rotation by angle, so
this completes the proof for case (2).

Case 3. By assumptiam is in W(®) andw, = pw, with w;, € W(®). In
this caser is not in®, namelya = s for somek” € [3]. We have

(3.4) Wi = Wo0r, = pWo0 4 = PO wiy(a) Wy

This equation meansy,,) € pW(®) becausev; andw, are inW(®). If
Wy(a@) € @, thenoy,) is iIn W(®) and this is contradiction, so there is some
k' € [3] such that

(3.5) Wi(a) = ¢
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up to sign. The label of the edge which connegtandws; is

(36)  Wi(0) = Warry(a) = pWore(@) = pWH(a) = pSc = Sk

up to sign.

On the other hand, it follows from (3.4) and (3.5) that
(3.7) Y(Wi) = (0w, (@)Wo) = Y(pos, Jp(Wy).
Since
(3.8) pos, = 0sms,  Torli’, ') = [31\ (K},

it follows from (3.7) and (3.8) that

W) = oo )uWy) = Y(ors,—s, JW(W))
G AR A AR DR ICAR D))
Leti 1= y(w,) ("), ] := w(wy)"X("). Then we have(ws)(i) = p(w5)(i. ))() =
o(w;)(J) andg(wi)(i) = 6(wy)(i. 1)(J) = S(wy)(). Letk € [3]\ i, j}, namely

k = y(wy)~*(K), then we havey(wi)(K) = ¢(wy)(i, j)(K) = p(wy)(K) = K'.
This together with (3.5) completes the proof of case (3). O

Using the above lemma, we can redescribe the labeled graph associated
with the root systen®(G,), denoted byg,, as follows;

e The vertex seV(G,) is{(v,&) | ve Sz, e = +, —}.

o W; = (V1, &1) andw, = (V,, &2) are connected by an edgg ., if and
only if there are some integeirand j such that/ (i) = va(j), vi()) =
Vo(i).

e The label of the edgey, w, IS S,,¢) — Su(j) If €1 = &2, and s, if
&1 # e; Wherek € [3] \ {i, j}.

See Figure 2. Note that in Figure 2, the parallel edges have the same label.

Remark 3.3. Let V™ (resp.V*) be a subset 0¥ (G,) defined to bd(v, ) |

Vv € S3,& = —(resp.+)}, andG_ (resp.G,) be the labeled full subgraph of

G» with V™ (resp.V™) as a vertex set. Clearly_ andG, are isomorphic as

a labeled graph to the labeled gragly associated with the root system of
typeA,. Guillemin, Sabatini and Zara introduced the notion of a GKM fiber
bundle in [5] (in a GKM fiber bundle, the total space, fiber and base space
are all labeled graphs). In fact, it can be seen ghais the total space of a
GKM fiber bundle, with fibers isomorphic t@l,. In this sense it is natural

to expect that the result of typ® plays a role when we determine the ring
structure ofH;(G>) below.
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Ficure 2. The labeled grap§,

4. GRAPH COHOMOLOGY RING OF G»

In this section, we state our main result which describes the ring struc-
ture of the graph cohomology ring of the labeled grgph We review the
definition of the graph cohomology ring of a labeled graph first.

Definition 4.1. Let G be a labeled graph with a labéltaking values in
H2(BT) and letW be the vertex set o&. We identify P, H*(BT) with
Map(W, H*(BT)) whereMap(W, H*(BT)) is the set of all maps froridV to
H*(BT). Then the graph cohomolody*(G) of G is defined to be the set
of all h e Map(W, H*(BT)) which satisfies the so-called “GKM condition”,
namely for any two verticew andw’ connected by an edgeh(w) — h(w)

is divisible by¢(e). The ring structure oid*(BT) induces a ring structure

on H:(G).

To become familiar with a graph cohomology ring, we shall remember
the graph cohomology ring ofls.

Example 4.2. We define elements dfi;(Asz) denoted byr’s andt;’s as
follows;

Ti(V) = t\,(i) ti(V) =1 for anyv e 83, i = 1,2 3.

We regard an element in Map(Az3), Z[t1, t2, t3]) as a set of six polynomials

in t3, t,, t3 such that each polynomial corresponds to some vertex, because
W(A3) = Sz has six verticies. So the elements are described as the
following figures.



GRAPH COHOMOLOGY RING OF A FLAG MANIFOLD OF TYPES, 9

One can easily check thats are inH;(Asz). One can also check that the
elements;’s andr;’'s generateH; (As) as a ring, and
H'T'(ﬂ3) = Z[T]., 72,73, tl’ t2a t3]/'J
whereJ =< g(r) —e(t) | i = 1,2,3 > andeg(r) (resp. g(t)) is thei"-
elementary symmetric polynomial i, 7, 73 (resp.ty, to, t3). (See [2].)
Now we consider elements in;(G2). We sets,; = &Sy for

w = (v,e) € V(G,). For eachi = 1,2, 3, we define elements, t; of
Map(\/(g2), Z[tla tZ’ t3]) by

(4.1) Ti(W) 1= Sug) = &Sy, ti(W) ==t for w=(v,&) € V(Go).
One can check that's, t;'s are elements dfi}(G,). We sets :=t; — ;1 in

Map(V(G2), Z[t1, t2, t3]), namelysi(w) = (t — ti,1)(W) = ti — ti,1 = s, where
t4 = t3. In addition, we define an elemehof Map(V(G.), Z[t1, t2, t3]) by

(4.2) f(w) 1={ cs)lszse f‘g: xz g 3

Clearly, f is also an element dfi;(G.). Elementsr; and f are described in
Figures 3 and 4.

S1S2S3

FiGure 3. 11 Ficure 4. f

Remark 4.3. The restriction ofr; to the subgraply, (resp.G_) is 7 (resp.
—7;) in H3(Asz). In other wordsr; in H;(G>) is a lift of the 7; in Hi(As).
The elementf comes from some element in the graph cohomology ring of
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the labeled graph of the base space. In fact, the labeled graph of the base
space, denoted h$, is described as Figure 5, and Figure 6 describes an
element inH;(8) ¢ Map(V(8), Z[t1, 1o, t3]). The elementf in H1(G>) is

the pullback of the element in Figure 6 by the projeciign— 8.

$;

S2 0 $1S2S3

S3

FiGure 6
Ficure 5

Guillemin, Sabatini and Zara [5] construct module generators of the graph
cohomology of the total space over the graph cohomology of the base space,
by using module generators of the graph cohomology of fiber. (They con-
sider the graph cohomology with codficient.)

Theorem 4.4.Let G, be the labeled graph associated with the root system
®(G,) of type G. Then

H'T'(gz) = Z[Tl’ 72,73, tla t25 t3’ f]/l )

where =< e(7), &(7) - x(9), 2f — &s(7) — &3(9), f* — fes(s) >, and &(7)
(resp. §9) ) is the I" elementary symmetric polynomial i, 75, 75 (resp.

S1, S2, 3)-
The rest of the paper is devoted to the proof of Theorem 4.4.
Lemma 4.5. H}(G>) is generated by, 75, 73, t1, 1o, t and f as a ring.

Proof. The idea of the proof of the lemma is same as that of Lemma 3.2 in
[2].

Claim 4.6. For any homogeneous eleménof H;(G-), there is a polyno-
mial G in 7j’s andt;’s such that the restrictions éfandG to the subgraph
G_ coincide.

Proof of Claim. We set
Vi i={(v,e) € Sgx{z} | W(i) =3, e=-} for iel3].
Let Z be the degree df € H;(G») and
1<g<minfk+1,3}
and assume that
h(wi) = 0 for anyw; € V| wheneveri < q.
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For anyw = (v,-) € V, there is a unique vertew; = (vi,—) € V; for
each 1< i < g such thatw andw; are connected by an edge labeled by
Sw() — Swg = Swi) + S3. (Namelyv = vi(i,g).) Thenh(w) — h(w) = h(w)

is divisible by s, + s3 fori < @, so there is a homogeneous polynomial
Ow € Z[ty, 15, t3] of degree 2k — q + 1) such that

g-1

(4.3) hw) = gu | [(sup) + %)
i=1
On the other hand, sincey(+ s3)(U) = Sy + Sz for anyu € V(G»),
g-1 g-1
(4.4) [ @i+ sy =] Jso + )
i=1 i=1

In particular, wheruis in Vi for i < g, (4.4) is equal to O sincgj = —Ss.
So, it follows from (4.3) and (4.4) that

qg-1
(4.5) [h ~gu| |+ s) | =0,
i=1
whenevewu e V. fori < qoru=w. We set
g-1
(4.6) W :=h- gy ]_[(Ti + S9).
i=1
Note that
4.7) W) =0 ifueV fori<qoru=w.

Let w be the other vertex iv,. (Namely,V, = {w,w’}.) Thenw and
w’ are connected by an edge labeledshy s, and there is a unique vertex
W = (v/,—) € V; for each 1< i < g such thatw andw/ are connected
by an edge labeled b, i) — Sv(q) = Sw) + Ss, SO’ (W) — Y (w) = h'(w)
is divisible by s, — s, and sy ) + s3. Therefore, there is a homogeneous
polynomialg,, € Z[ty, t,, t3] of degree 2 — q) such that

g-1
(4.8) W) = (51— %)gw | |(sw + ).

i=1
On the other hand, foy € [3] \ {q},
(4.9) (ri = Su) W) = 8wy = Sy = 3(51 ~ %)
(4.10) (Ti - SW(J')) W) = sy = Swj) =0,
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wheres = +1 andé depends onv. Thus, it follows from (4.4), (4.8), (4.9)
and (4.10) that

g-1
0 = (7 = Sup)(©Gw) | [+ )| (W) = 0.
k=1

for u € V7 whenevei < g. Therefore, puttindd = gy + (j — Su(j)) (0w ),
and subtracting the polynomiblnﬂj(rj + s3) from h, we may assume that

h(uy=0 forany ueV, wheneveri<qg+ 1

The above argument implies tHafinally takes zero on all vertices M~
by subtracting a polynomial in’s andt;’s, and this completes the proof of
the claim.

The claim allows us to assume that our homogeneous eldneht; (G»)
satisfiesh(u) = O forallu € V-. Anyw = (v,+) € V* has a unique
edge which connects and somew; = (v;,—) € V; for eachi € [3], and
the edge has a labg wherek is determined by/(k) = vi(k). Namely,
h(w) — h(w:) = h(w) is divisible bys,), thus, there is a homogeneous poly-
nomial p,, of Z[ty, t5, t3] such that

h(w) = 5193w
In addition the collection of polynomialg,} satisfies the GKM condition
in G,. In fact, for any verticesv andw’ in V* connected by an edge with
label s — s; for somei, j € [3], it follows from the definition ofH}(G>)
thath(w) — h(w) = s;5S3(pw — Pw) is divisible bys —s;. Sop, — pw is
divisible by the labek — s;. Then the same argument as in the proof of the
claim above shows that there is a polynontitlin 7;’s andt;’s such that
H’(w) = py for w € V*. Therefore,

(h—Hf)(w) =0 forany we V(G,).
This completes the proof of the lemma. O

Remember that the Hilbert series of a graded Ang: &2 A, whereAl
is the degreg part of A" and of finite rank ovelZ, is a formal power series
defined by

F(A", X) := Z(rankz A)x.
=0

Lemma4.7.

F(H:(G2), X) = (L+ X)L+ X2+ XN+ X

1
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Proof. We setd(k) := rankHZ(G,) andr(k) := rankZ[t;, t,, ts]*, where
Z[t1, t2, 3] is the set of homogeneous polynomials of degriee\e note
that the degree df is 2. Forh € H2(G,), assume that there is some [3]
such that

h(w) =0 for we V; wheneveri < q.

Then, the proof of the claim in Lemma 4.5 shows that there is a polynomial
H in 7;’s andtj’s such that

(h—-H)w) =0 for weV, wheneveri<q,
and that the polynomidH is of the form

g-1
H= (gW + 5(Tj - sw(j))gw) l—[(Tk + S3)
k=1

whereg, andg, are some polynomials iy, t,, t3, and the degree dj,
(resp.gw) is 2(k—qg+1) (resp. 2k— q)). Therefore the rank of the additive
group consisting of all such polynomidtsis given by
rk—qg+1)+r(k-q).
Similarly, assume that there is some [3] such that

h(w) =0 for we V™ or we V;" wheneveri < q,

whereV:* = {(v,+) | V(i) = 3}. Then, the proof of Lemma 4.5 shows that
there is a polynomiaH’ in 7;’s, t;’'s and f such that
(h—H)wW)=0 for weV~ or weV, whenever i<q,

and that the polynomidH’ is of the form
g-1

H = &Sst(gw +0(rj - S\’V(j))g\//v’) H(Tk + %)
k=1

wherew andw’ are the two vertices 0¥y andg;, andg;, are some poly-
nomials inty, tp, t3, and the degree daf;, (resp. g,) is 2k — 2 — q) (resp.
2(k—3-0)). Thus, the rank of the the additive group consisting of all such
polynomialsH’ is given by

rk—2-q)+r(k-3-0q).

Let G (resp.G,) be the the additive group consisting of all polinomials
h of degree R such that

h(w) =0 for we V™ or we V;" wheneveri < g

(resp.h(w) = 0 for w e V[ wheneveri < q).
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Then, the rank oG isr(k - 5) + r(k — 6) by the above argument. The rank
of G is equal to ranks; plus the rank of additive group consisting of alll
polynomialH’ such that

(h—H)wW)=0 for weV~ or weV" whenever i<?2

so the rank o5 is rankGj + r(k — 4) + r(k - 5). Similarly, the rank oG]
is equal to ranks; plusr(k — 3) + r(k — 4), namely

6
(4.11) rankG; = > (r(i) + (i - 1)).

In the same way, we have

(4.12) rankG; = rankG; + r(k—2) + r(k — 3),

and

(4.13) rankG, = rankGg,; +r(k-qgq+1)+r(k-qg) forq=12

Therefore, it follows from (4.11), (4.12) and (4.11) that

k-5 k-1
d(k) = rankG; = > (r(i) +r(i-1)) =r(Q+2 > r(i) +r(k—6)
i=k i=k-5

wherer(i) = 0 fori < 0. Namely,

r(0) for k=0
dk) ={ 2353 r(i) + r(k) for 1<k<5
r(k—6)+2Ytcr@i) +r(k) for k>5.
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Therefore,
F(H1(G2), 9 = ) d(x*
° 5 k-1
= 1)+ ) (22 r(i) + r(k)) X
k=1 i=0
o0 k-1
> [r(k ~6)+2 > r(i)+ r(k)] X
k=6 i=k-5
= > rx®+ ) r(k— 6)x*
k=0 k=6
5 k-1 o k-1
+2(Z OIS r(i)x2k]
k=1 i=0 k=6 i=k-5

= (1+xHrO)+rL)x+r2x*+--)
20 + X+ X3+ X+ xO)(r(0) + r()% +r2x +---)
= (14232 +2< +2X8 + 2x8 + 2x19 + xXP)F(Z[ty, 1o, t3], X)
= (1+x)A+ %%+ XN+ XO)F(Z[ty, t2, t3], X)
= ﬁ(l + X1+ %%+ X1+ x5,
proving the lemma. O

We abbreviate the polynomial ring[zy, 7o, 73, t1, 1o, t3, f] as Z[1,t, f].
The canonical mag[r,t, f] — H; (&) is a grade preserving homomor-
phism which is surjective by Lemma 4.5. It easily follows from (4.1) and
(4.2) that

(4.14) ei(r) = 0,
(4.15) e(r) —ex(s) = 0,
(4.16) 2f —e3(1)—e(s) = O, and
(4.17) f2— fey(s) = O.

Therefore the canonical map above induces a grade preserving epimor-
phism

(4.18) Z[,t, f]/1 - H1(G2),
where

| =< e)(7), &(7) — €x(9), 2f — &3(1) — &5(3), 12 - feg(s) > .
We note thaiZ[,t, f]/I is aZ[t]-module in a natural way.



16 Y. FUKUKAWA

Lemma 4.8. Z[1,t, f]/1 is generated by [2_, 7} f] for 0 < iy < 3 -k and
j = 0,1 as azZ[t]-module.

Proof. Clearly the elementg3_, 7}* f} with no restriction on exponents, gen-
erateZ[,t, f]/1 as aZ[t}]-module. The identity (4.14) means

(4.19) T3 = —T1 = T2.
By using (4.19), we have
&) =11+ 13(t1+ 1) =Tt — (71 + 7'2)2 = —‘ri - ‘r% - T1T>.
Thereforers = —12 — 717, — (1), and hence
(4.20) 5= —71 — 7172 — &(9)
by (4.15). It follows from (4.19) and (4.20) that

&s(7) T1T2T3

= —T17o(71 + T2)
= —TiTZ - Tng
= _TiTz + Tl(T% + 7172 + €(9))

= 75+ 116(9),

Thereforeri = —116(S) + e3(7) and hence
(4.21) Ti = —1165(S) + 2 — e3(9)

by (4.16). Thereforer>**! is written as (4.19), (4.20) and (4.21), satisfying
that the exponent ofy is less than or equal to-3k and that off is O or 1.

In addition, 2 is written as (4.17), so we can always assume the exponent
of f to be O or 1. This completes the proof of the lemma. O

Now we are in a position to complete the proof of Theorem 4.4.

Proof of Theorem 4.41f two formal power seriea(x) = >, ax andb(x) =
> 2o bix in x with real codficientsa; andby; satisfya, < b for everyi, then
we express this a&x) < b(x). '

The Hilbert series of the freg[t]-module generated bﬂﬁzlf'kkfj is

given by (1_}(2)3 X2 ik+3D) | 50 it follows from Lemma 4.8 that

1
(4.22) F(Z[7t, f]/I,x)sﬁ Z x2<i1+i2)_z;x6i
J:

=1154, USI2S
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and the equality holds above if and onlyZ4fz,t, f]/1 is free as &[t]-
module. Here the right hand side in (4.22) above is equal to

1 2 2 6

- x2)3(1+ )1+ %+ xH (1 + x°)
which agrees witlr (H1(G2), X) by Lemma 4.7. Therefore(Z[r,t, f]/1, x) <
F(H7(&2), X). On the other hand, the surjectivity of the map (4.18) implies
the opposite inequality. TherefofZ[7,t, f]/I,X) = F(H7(G2).X). This
means that the inequality in (4.22) must be an equality and Hé&nce f]/1
is free as @[t]-module, in particular, as Z-module. Since the map in
(4.18) is surjective ané (Z[7,t, f]/I, X) = F(H7(G2), X), we conclude that
the map in (4.18) is actually an isomorphism. This proves Theorem 414.
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