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Abstract. Suppose a compact torusT acts on a closed smooth manifold
M. Under certain conditions, Guillemin and Zara associate to (M,T) a
labeled graphGM where the labels lie inH2(BT). They also define the
subringH∗T(GM) of

⊕
v∈V(GM ) H∗(BT), whereV(GM) is the set of ver-

tices ofGM and we callH∗T(GM) the “graph cohomology” ring ofGM. It
is known that the equivariant cohomology ring ofM can be described by
using combinatorial data of the labeled graph. The main result of this pa-
per is to determine the ring structure of equivariant cohomology ring of a
flag manifold of typeG2 directly, using combinatorial techniques on the
graphGM. This gives a new computation of the equivariant cohomology
ring of a flag manifold of typeG2. (See [1].)

1. Introduction

Suppose that a closed smooth manifoldM has an action of a compact
torusT. If the T-action is “nice”, then it is known that we can describe its
equivariant cohomology ring by using combinatorial way, namely by using
GKM theory. By “nice” we mean that theT-action onM is GKM, namely
the fixed point set of theT-actionMT is a finite set and the equivariant one-
skeleton ofMT is a union of points or 2-spheres. Then we construct a graph
GM by replacing fixed points with vertices and 2-spheres with edges. This
graph equipped with more information is defined by Guillemin and Zara
[6] to be the GKM graph associated with (M,T). The object we study in
this manuscript, the flag manifold of typeG2 with a standard maximal torus
action, is GKM.

Interestingly, we can describe the equivariant cohomology ring ofM by
using the data of the GKM graph. The equivariant cohomology ring ofM
is defined to be the ordinary cohomology ring of Borel construction ofM,
namely

H∗T(M ;Z) := H∗(ET ×T M ;Z)
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whereET is the total space of the universal principalT-bundleET → BT.
SinceT acts onET, we can consider the diagonalT-action onET × M,
and its orbit spaceET ×T M is called the Borel construction ofM. In this
paper, we treat the equivariant cohomology ring withZ-coefficients, so we
abbreviateH∗T(M ;Z) asH∗T(M). Since a GKM space satisfies the condition
thatH∗T(M) is torsion free as a module overH∗(BT), the restriction map

ι∗ : H∗T(M)→ H∗T(MT)

is injective. Moreover,MT is a finite set, henceMT is isolated, so we have

H∗T(MT) �
⊕
p∈MT

H∗T(p) �
⊕
p∈MT

H∗T(BT) �
⊕
p∈MT

Z[t1, · · · , tn],

where n = dimT. Therefore, we shall regardH∗T(M) as a subring of⊕
p∈MT Z[t1, · · · , tn] through the mapι∗. Guillemin and Zara defined the

subring, denoted byH∗T(GM), of
⊕

p∈MT Z[t1, · · · , tn], by using the combi-
natorial data of the graphGM. Then, according to the result of Goresky-
Kottwitz-MacPherson in [3], we have

H∗T(M) ⊗ Q � H∗T(GM) ⊗ Q.
If M is a flag manifold thenH∗T(M) is isomorphic toH∗T(GM) without ten-
soring withQ (see [7], for example). Namely, by using data of the GKM
graph, we can computeH∗T(M).

Our purpose is to determine the ring structure ofH∗T(GM) for a flag man-
ifold M of different Lie types. In the paper [2], we computed the ring struc-
ture of H∗T(GM) for a flag manifoldM of classical type directly, namely
without using the fact thatH∗T(GM) � H∗T(M), and our computation of
H∗T(GM) confirms thatH∗T(M) is isomorphic toH∗T(GM). The goal of this
paper is to similarly determine the ring structure ofH∗T(GM) for a flag man-
ifold of type G2. The ring structure ofH∗T(GM) is given by the following
theorem.

Theorem 1.1.LetG2 be the labeled graph associated with the flag manifold
of type G2. Then

H∗T(G2) = Z[τ1, τ2, τ3, t1, t2, t3, f ]/I ,

where I = (e1(τ),e2(τ) − e2(s),2 f − e3(τ) − e3(s), f 2 − f e3(s)), and ei(τ)
(resp. ei(s) ) is the ith elementary symmetric polynomial inτ1, τ2, τ3 (resp.
s1 := t1 − t2, s2 := t2 − t3, s3 := t3 − t1 ).

To prove Theorem 1.1 we will use the computation of the graph cohomol-
ogy of typeA2, because the labeled graph of typeG2 contains two labeled
subgraphs isomorphic to the labeled graph of typeA2. In fact, the labeled
graph of typeG2 can be viewed as the total space of a “GKM fiber bundle”
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in the sense of Guillemin, Sabatini and Zara [5] where the typeA2 subgraph
is the fiber, although we do not use this perspective in our computation.

This paper is organized as follows. In Section 2, we recall the labeled
graph of a flag manifold. The labeled graph is a graph with weight attached
to each edge. In Section 3, we give a different description of the Weyl group
of typeG2 (the vertex set of the labeled graph) which allows us to describe
the labeled graph more concretely. In Section 4, we compute the graph
cohomology ring of the labeled graph.

2. The labeled graph GM

In this section, we recall the definition of the labeled graphGM for a flag
manifold M. For ann-dimensional torusT, let {ti}ni=1 be a basis ofH2(BT),
so thatH∗(BT) can be identified with the polynomial ringZ[t1, t2, · · · , tn].
We take an inner product onH2(BT) such that the basis{ti}ni=1 is orthonor-
mal. The following is a simplified version of the definition of GKM graph
given in [6]. To distinguish our graph from theirs, we call ours a labeled
graph.

Definition 2.1. (See 2.2, [4]) LetM be a flag manifold of classical type or
exceptional type, namely a flag manifoldM is a homogeneous spaceG/T
whereG is a compact Lie group andT is a maximal torus ofG. Suppose
thatΦ(G) be the root system of that type andW(G) be the Weyl group. (We
regardΦ(G) as a subset ofH2(BT) = {∑n

i=1 aiti | ai ∈ Z}. ) The labeled
graphGM hasW(G) as a vertex set. Two verticesw andw′ in W(G) are
connected by an edgee if and only if there is an elementα in Φ(G) such
thatw = w′σα, whereσα is the reflection determined byα. The label of the
edgee, denoted byℓ(e), is given bywα.

Remark 2.2. Guillemin and Zara [6] introduced the notion of a GKM graph
which is a graph equipped with an axial function which satisfies a certain
compatibility condition. They defined the graph cohomology for a GKM
graph, but this definition does not use the compatibility condition of the
axial function. One can also see that the graph cohomology is independent
of the signs of the labels. Therefore, we omit the axial function in the data in
definition 2.1, and will often disregard the signs of the labels on our labeled
graph.

Example 2.3 (A2 type). Let M be the flag manifold of typeA2, namely
M = U(3)/T whereT is the maximal torus ofU(3). Then, the root system
Φ(A2) is {±(ti − t j) | 1 ≤ i < j ≤ 3} and the Weyl group is the permutation
groupS3 on three letters. We use the one-line notationv = v(1)v(2)v(3) for
permutations. We denote byA3 the labeled graph associated withΦ(A2). It
is shown in Figure 1.
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3. Labeled graph of typeG2

In this section we concretely describe the labeled graph of the flag man-
ifold associated to the compact Lie group of exceptional typeG2. Then the
root system of typeG2 is known to be

Φ(G2) := {±(ti1 − ti2),±(2ti − t j − tk) | 1 ≤ i1 < i2 ≤ 3, {i, j, k} = [3]},

where [3] := {1,2, 3}. Let s1 = t1 − t2, s2 = t2 − t3 ands3 = t3 − t1, then

Φ(G2) = {±sk,±(si − sj) | k ∈ [3],1 ≤ i < j ≤ 3},

so it is easy to see thatΦ(G2) hasΦ(A2) as a subset (butsi ’s play a role of
ti ’s). We denote byG2 the labeled graph associated withΦ(G2). The graph
G2 has the Weyl groupW(G2) of typeG2 as the vertex set. Letα1 = s1 and
α2 = s3 − s1 be the simple roots, thenW(G2) has a presentation

(3.1) < σ1, σ2 | σ1
2 = σ2

2 = (σ1σ2)
6 = 1 >,

whereσi is the reflection defined byαi for i = 1,2. It is a dihedral group of
order 12.

We shall give another description ofW(G2) as a set not as a group, which
turns out to be convenient for our purpose, and rewrite the condition about
edges and labels. Let

Φ = {±(si − sj) | 1 ≤ i < j ≤ 3} ⊂ Φ(G2).

Let W(Φ) be the reflection group determined byΦ, namely

W(Φ) =< σ1σ2σ1, σ2 >

because the reflectionsσsi−sj determined by the rootssi − sj in Φ are given
by

σs3−s1 = σ2, σs1−s2 = σ1σ2σ1 and σs2−s3 = (σ1σ2)
3σ1

　 It follows from (3.1) that the relations

σ2
2 = (σ1σ2σ1)

2 = (σ1σ2σ1 · σ2)
3 = 1
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hold, so we can identifyW(Φ) with W(A3) = S3. We choose a group iso-
morphismψ betweenW(Φ) andS3 as follows;

(3.2)
ψ : W(Φ) � S3

σsi−sj 7−→ (i, j)

where (i, j) is the transposition ofi and j. We note that

W(G2) =W(Φ) ⨿ ρW(Φ) as a set,

whereρ := (σ1σ2)3. (Note thatρ is the rotation by angleπ. ) We record the
preceding discussion in a lemma.

Lemma 3.1. LetΨ be the map from W(G2) to S3 × {±} defined as follows;
for any w in W(Φ),

Ψ(w) := (ψ(w),+) and Ψ(ρw) := (ψ(w),−).

ThenΨ is bijective, so that one can identify W(G2) with S3 × {±} as a set
through the mapΨ.

By using the bijectionΨ, we can concretely describe the edge and the
label of the graphG2. The following lemma tells us the way to find the
labelwα in the Definition 2.1 more concretely.

Lemma 3.2. For any w1 and w2 in W(G2) connected by an edge ew1,w2 la-
beled by w1α for someα in Φ(G2), namely w1 = w2σα, one of the following
occurs.
Case 1: both w1 and w2 are in W(Φ). In this case there are distinct inte-
gers i and j in[3] such thatψ(w1)(i) = ψ(w2)( j), ψ(w1)( j) = ψ(w2)(i) and
ℓ(ew1,w2) = sψ(w1)(i) − sψ(w1)( j).
Case 2: both w1 and w2 are inρW(Φ) so that there are unique elements w′k
in W(Φ) such that wk = ρw′k for k = 1,2. In this case there are distinct
integers i and j in[3] such thatψ(w′1)(i) = ψ(w′2)( j), ψ(w′1)( j) = ψ(w′2)(i)
andℓ(ew1,w2) = sψ(w′1)(i) − sψ(w′1)( j).
Case 3: one of w1 and w2 is in W(Φ) and the other is inρW(Φ). With-
out loss of generality, we may assume w1 ∈ W(Φ). Then there is an ele-
ment w′2 in W(Φ) such that w2 = ρw′2. In this case there are distinct inte-
gers i and j in[3] such thatψ(w1)(i) = ψ(w′2)( j), ψ(w1)( j) = ψ(w′2)(i) and
ℓ(ew1,w2) = sψ(w1)(k), where k∈ [3] \ {i, j}.
Proof. From the definition ofψ, we haveψ(σsi−sj ) = (i, j) for {i, j} ⊂ [3].
Since the graph cohomology is independent of the signs of the label, we
do not need to be careful of signs of labels of the labeled graph when we
consider the graph cohomology ring of the labeled graph. Therefore, in this
proof, we sometime disregard signs in front of roots.

First, we prove the lemma for cases 1 and 2. In these casesα is inΦ, so
α = si − sj for some distincti, j in [3].
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Case 1. By assumptionw1 andw2 are inW(Φ). Remember thatw1 =

w2σα andα = si − sj. Sinceψ is a group isomorphism, we have

ψ(w1) = ψ(w2)ψ(σα) = ψ(w2)ψ(σsi−sj ) = ψ(w2)(i, j).

Thereforeψ(w1)(i) = ψ(w2)( j), ψ(w1)( j) = ψ(w2)(i). In addition, sinceα =
si − sj, we haveℓ(ew1,w2) = w1α = w1(si − sj), so in order to showℓ(ew1,w2) =
sψ(w1)(i) − sψ(w1)( j), it is enough to show that

(3.3) w1(si − sj) = sψ(w1)(i) − sψ(w1)( j).

To prove this, it is enough to treat the case whenw1 = σ2 or σ1σ2σ1,
becauseσ2 andσ1σ2σ1 are the generators ofW(Φ). Sinceσ2 = σs3−s1 and
σ1σ2σ1 = σs1−s2, we can check (3.3) this easily. In fact, for any two roots
β andγ, σβγ is given byγ − 2β·γ

β·ββ where· is the inner product onH2(BT)
which we defined in section 2. Therefore we have

σs3−s1(si − sj) =


s3 − s1 for {i, j} = {3,1}
s2 − s3 for {i, j} = {1,2}
s1 − s2 for {i, j} = {2,3}

while

sψ(σs3−s1)(i) − sψ(σs3−s1)( j) = s(3,1)(i) − s(3,1)( j) =


s3 − s1 for {i, j} = {3,1}
s2 − s3 for {i, j} = {1,2}
s1 − s2 for {i, j} = {2,3}

up to sign. Thus, (3.3) holds whenw1 = σ2 = σs3−s1. A similar argument
proves (3.3) forw1 = σ1σ2σ1.

Case 2. By assumptionwk = ρw′k for k = 1, 2, wherew′1 andw′2 are in
W(Φ). Remember thatw1 = w2σα andα = si − sj. Sinceρw′1 = ρw′2σα,

ψ(w′1) = ψ(w′2)ψ(σα) = ψ(w′2)(i, j).

Thereforeψ(w′1)(i) = ψ(w′2)( j), ψ(w′1)( j) = ψ(w′2)(i), and we have

ℓ(ew1,w2) = w1α = ρw′1(si − sj) = ρ(sψ(w′1)(i) − sψ(w′1)( j)).

Hereρ preservessi − sj up to sign becauseρ is the rotation by angleπ, so
this completes the proof for case (2).

Case 3. By assumptionw1 is in W(Φ) andw2 = ρw′2 with w′2 ∈ W(Φ). In
this caseα is not inΦ, namelyα = sk′′ for somek′′ ∈ [3]. We have

(3.4) w1 = w2σα = ρw′2σα = ρσw′2(α)w
′
2.

This equation meansσw′2(α) ∈ ρW(Φ) becausew1 andw′2 are inW(Φ). If
w′2(α) ∈ Φ, thenσw′2(α) is in W(Φ) and this is contradiction, so there is some
k′ ∈ [3] such that

(3.5) w′2(α) = sk′
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up to sign. The label of the edge which connectsw1 andw2 is

(3.6) w1(α) = w2σα(α) = ρw′2σα(α) = ρw′2(α) = ρsk′ = sk′ ,

up to sign.
On the other hand, it follows from (3.4) and (3.5) that

(3.7) ψ(w1) = ψ(ρσw′2(α)w
′
2) = ψ(ρσsk′ )ψ(w′2).

Since

(3.8) ρσsk′ = σsi′−sj′ for{i′, j′} = [3] \ {k′},

it follows from (3.7) and (3.8) that

ψ(w1) = ψ(ρσs′k
)ψ(w′2) = ψ(σsi′−sj′ )ψ(w′2)

= (i′, j′)ψ(w′2) = ψ(w′2)(ψ(w′2)
−1(i′), ψ(w′2)

−1( j′)).

Let i := ψ(w′2)
−1(i′), j := ψ(w′2)

−1( j′). Then we haveϕ(w1)(i) = ϕ(w′2)(i, j)(i) =
ϕ(w′2)( j) andϕ(w1)( j) = ϕ(w′2)(i, j)( j) = ϕ(w′2)(i). Letk ∈ [3] \{i, j}, namely
k = ψ(w′2)

−1(k′), then we haveψ(w1)(k) = ϕ(w′2)(i, j)(k) = ϕ(w′2)(k) = k′.
This together with (3.5) completes the proof of case (3). □

Using the above lemma, we can redescribe the labeled graph associated
with the root systemΦ(G2), denoted byG2, as follows;

• The vertex setV(G2) is {(v, ε) | v ∈ S3, ε = +,−}.
• w1 = (v1, ε1) andw2 = (v2, ε2) are connected by an edgeew1,w2 if and

only if there are some integersi and j such thatv1(i) = v2( j), v1( j) =
v2(i).
• The label of the edgeew1,w2 is sv1(i) − sv1( j) if ε1 = ε2, andsv1(k) if
ε1 , ε2 wherek ∈ [3] \ {i, j}.

See Figure 2. Note that in Figure 2, the parallel edges have the same label.

Remark 3.3. Let V− (resp.V+) be a subset ofV(G2) defined to be{(v, ε) |
v ∈ S3, ε = −(resp.+)}, andG− (resp.G+) be the labeled full subgraph of
G2 with V− (resp.V+) as a vertex set. ClearlyG− andG+ are isomorphic as
a labeled graph to the labeled graphA3 associated with the root system of
typeA2. Guillemin, Sabatini and Zara introduced the notion of a GKM fiber
bundle in [5] (in a GKM fiber bundle, the total space, fiber and base space
are all labeled graphs). In fact, it can be seen thatG2 is the total space of a
GKM fiber bundle, with fibers isomorphic toA2. In this sense it is natural
to expect that the result of typeA2 plays a role when we determine the ring
structure ofH∗T(G2) below.
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Figure 2. The labeled graphG2

4. Graph cohomology ring of G2

In this section, we state our main result which describes the ring struc-
ture of the graph cohomology ring of the labeled graphG2. We review the
definition of the graph cohomology ring of a labeled graph first.

Definition 4.1. Let G be a labeled graph with a labelℓ taking values in
H2(BT) and letW be the vertex set ofG. We identify

⊕
w∈W H∗(BT) with

Map(W,H∗(BT)) whereMap(W,H∗(BT)) is the set of all maps fromW to
H∗(BT). Then the graph cohomologyH∗(G) of G is defined to be the set
of all h ∈ Map(W,H∗(BT)) which satisfies the so-called “GKM condition”,
namely for any two verticesw andw′ connected by an edgee, h(w) − h(w′)
is divisible byℓ(e). The ring structure onH∗(BT) induces a ring structure
on H∗T(G).

To become familiar with a graph cohomology ring, we shall remember
the graph cohomology ring ofA3.

Example 4.2. We define elements ofH∗T(A3) denoted byτi ’s and ti ’s as
follows;

τi(v) := tv(i) ti(v) := ti for anyv ∈ S3, i = 1,2,3.

We regard an element in Map(W(A3),Z[t1, t2, t3]) as a set of six polynomials
in t1, t2, t3 such that each polynomial corresponds to some vertex, because
W(A3) = S3 has six verticies. So the elementsτi ’s are described as the
following figures.

t2

t1 t1

t3

t3t2
τ1

t1

t2 t3

t1

t2t3
τ2

t3

t3 t2

t2

t1t1
τ3
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One can easily check thatτi ’s are inH∗T(A3). One can also check that the
elementsti ’s andτi ’s generateH∗T(A3) as a ring, and

H∗T(A3) � Z[τ1, τ2, τ3, t1, t2, t3]/J

whereJ =< ei(τ) − ei(t) | i = 1,2,3 > andei(τ) (resp. ei(t)) is the ith-
elementary symmetric polynomial inτ1, τ2, τ3 (resp.t1, t2, t3). (See [2].)

Now we consider elements inH∗T(G2). We set sw(i) := εsv(i) for
w = (v, ε) ∈ V(G2). For eachi = 1,2,3, we define elementsτi, ti of
Map(V(G2),Z[t1, t2, t3]) by

(4.1) τi(w) := sw(i) = εsv(i), ti(w) := ti for w = (v, ε) ∈ V(G2).

One can check thatτi ’s, ti ’s are elements ofH∗T(G2). We setsi := ti − ti+1 in
Map(V(G2),Z[t1, t2, t3]), namelysi(w) = (ti − ti+1)(w) = ti − ti+1 = si, where
t4 = t1. In addition, we define an elementf of Map(V(G2),Z[t1, t2, t3]) by

(4.2) f (w) :=

{
s1s2s3 for w = (v,+)
0 for w = (v,−).

Clearly, f is also an element ofH∗T(G2). Elementsτ1 and f are described in
Figures 3 and 4.

s1

s1

s2

s3s2

s3

-s1

-s2

-s3

-s1

-s2-s3

Figure 3. τ1

s1s2s3

s1s2s3

s1s2s3

s1s2s3

s1s2s3

s1s2s3

0

0

0

0

0

0

Figure 4. f

Remark 4.3. The restriction ofτi to the subgraphG+ (resp.G−) is τi (resp.
−τi) in H∗T(A3). In other wordsτi in H∗T(G2) is a lift of theτi in H∗T(A3).
The elementf comes from some element in the graph cohomology ring of
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the labeled graph of the base space. In fact, the labeled graph of the base
space, denoted byB, is described as Figure 5, and Figure 6 describes an
element inH∗T(B) ⊂ Map(V(B),Z[t1, t2, t3]). The elementf in H∗T(G2) is
the pullback of the element in Figure 6 by the projectionG2→ B.

s

s

s

1

2

3

Figure 5

s s s1 2 30

Figure 6

Guillemin, Sabatini and Zara [5] construct module generators of the graph
cohomology of the total space over the graph cohomology of the base space,
by using module generators of the graph cohomology of fiber. (They con-
sider the graph cohomology withR coefficient.)

Theorem 4.4. LetG2 be the labeled graph associated with the root system
Φ(G2) of type G2. Then

H∗T(G2) = Z[τ1, τ2, τ3, t1, t2, t3, f ]/I ,

where I=< e1(τ), e2(τ) − e2(s),2 f − e3(τ) − e3(s), f 2 − f e3(s) >, and ei(τ)
(resp. ei(s) ) is the ith elementary symmetric polynomial inτ1, τ2, τ3 (resp.
s1, s2, s3 ).

The rest of the paper is devoted to the proof of Theorem 4.4.

Lemma 4.5. H∗T(G2) is generated byτ1, τ2, τ3, t1, t2, t3 and f as a ring.

Proof. The idea of the proof of the lemma is same as that of Lemma 3.2 in
[2].

Claim 4.6. For any homogeneous elementh of H∗T(G2), there is a polyno-
mial G in τi ’s andti ’s such that the restrictions ofh andG to the subgraph
G− coincide.

Proof of Claim. We set

V−i := {(v, ε) ∈ S3 × {±} | v(i) = 3, ε = −} for i ∈ [3].

Let 2k be the degree ofh ∈ H∗T(G2) and

1 ≤ q ≤ min{k+ 1,3}
and assume that

h(wi) = 0 for anywi ∈ V−i wheneveri < q.
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For anyw = (v,−) ∈ V−q , there is a unique vertexwi = (vi ,−) ∈ V−i for
each 1≤ i < q such thatw andwi are connected by an edge labeled by
sw(i) − sw(q) = sw(i) + s3. (Namelyv = vi(i,q).) Thenh(w) − h(wi) = h(w)
is divisible by sw(i) + s3 for i < q, so there is a homogeneous polynomial
gw ∈ Z[t1, t2, t3] of degree 2(k− q+ 1) such that

(4.3) h(w) = gw

q−1∏
i=1

(sw(i) + s3).

On the other hand, since (τk + s3)(u) = su(k) + s3 for anyu ∈ V(G2),

(4.4)
q−1∏
i=1

(τi + s3)(u) =
q−1∏
i=1

(su(i) + s3).

In particular, whenu is in V−i for i < q, (4.4) is equal to 0 sincesu(i) = −s3.
So, it follows from (4.3) and (4.4) that

(4.5)

h− gw

q−1∏
i=1

(τi + s3)

 (u) = 0,

wheneveru ∈ V−i for i < q or u = w. We set

(4.6) h′ := h− gw

q−1∏
i=1

(τi + s3).

Note that

(4.7) h′(u) = 0 if u ∈ V−i for i < q or u = w.

Let w′ be the other vertex inV−q . (Namely,V−q = {w,w′}.) Thenw and
w′ are connected by an edge labeled bys1 − s2 and there is a unique vertex
w′i = (v′i ,−) ∈ V−i for each 1≤ i < q such thatw′ andw′i are connected
by an edge labeled bysw′(i) − sw′(q) = sw′(i) + s3, soh′(w′) − h′(w) = h′(w′)
is divisible by s1 − s2 and sw′(i) + s3. Therefore, there is a homogeneous
polynomialgw′ ∈ Z[t1, t2, t3] of degree 2(k− q) such that

(4.8) h′(w′) = (s1 − s2)gw′

q−1∏
i=1

(sw′(i) + s3).

On the other hand, forj ∈ [3] \ {q},(
τ j − sw( j)

)
(w′) = sw′( j) − sw( j) = δ(s1 − s2)(4.9) (

τ j − sw( j)

)
(w) = sw( j) − sw( j) = 0,(4.10)
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whereδ = ±1 andδ depends onw. Thus, it follows from (4.4), (4.8), (4.9)
and (4.10) thath′ − (τ j − sw( j))(δgw′)

q−1∏
k=1

(τk + s3)

 (u) = 0.

for u ∈ V−i wheneveri ≤ q. Therefore, puttingH = gw + (τ j − sw( j))(δgw′),
and subtracting the polynomialHΠq−1

k=1(τ j + s3) from h, we may assume that

h(u) = 0 for any u ∈ V−i whenever i < q+ 1.

The above argument implies thath finally takes zero on all vertices inV−

by subtracting a polynomial inτi ’s andti ’s, and this completes the proof of
the claim.

The claim allows us to assume that our homogeneous elementh in H∗T(G2)
satisfiesh(u) = 0 for all u ∈ V−. Any w = (v,+) ∈ V+ has a unique
edge which connectsw and somewi = (vi ,−) ∈ V−i for eachi ∈ [3], and
the edge has a labelsw(k) wherek is determined byv(k) = vi(k). Namely,
h(w)− h(wi) = h(w) is divisible bysw(k), thus, there is a homogeneous poly-
nomial pw of Z[t1, t2, t3] such that

h(w) = s1s2s3pw.

In addition the collection of polynomials{pw} satisfies the GKM condition
in G+. In fact, for any verticesw andw′ in V+ connected by an edge with
label si − sj for somei, j ∈ [3], it follows from the definition ofH∗T(G2)
thath(w) − h(w′) = s1s2s3(pw − pw′) is divisible bysi − sj. So pw − pw′ is
divisible by the labelsi − sj. Then the same argument as in the proof of the
claim above shows that there is a polynomialH′ in τi ’s and ti ’s such that
H′(w) = pw for w ∈ V+. Therefore,

(h− H′ f )(w) = 0 for any w ∈ V(G2).

This completes the proof of the lemma. □

Remember that the Hilbert series of a graded ringA∗ = ⊕∞j=0Aj, whereAj

is the degreej part ofA∗ and of finite rank overZ, is a formal power series
defined by

F(A∗, x) :=
∞∑
j=0

(rankZ Aj)x j .

Lemma 4.7.

F(H∗T(G2), x) =
1

(1− x2)3
(1+ x2)(1+ x2 + x4)(1+ x6)
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Proof. We setd(k) := rankH2k
T (G2) and r(k) := rankZ[t1, t2, t3]2k, where

Z[t1, t2, t3]2k is the set of homogeneous polynomials of degree 2k. We note
that the degree ofti is 2. Forh ∈ H2k

T (G2), assume that there is someq ∈ [3]
such that

h(w) = 0 for w ∈ V−i wheneveri < q.

Then, the proof of the claim in Lemma 4.5 shows that there is a polynomial
H in τi ’s andti ’s such that

(h− H)(w) = 0 for w ∈ V−i wheneveri ≤ q,

and that the polynomialH is of the form

H =
(
gw + δ(τ j − sw( j))gw′

) q−1∏
k=1

(τk + s3)

wheregw andgw′ are some polynomials int1, t2, t3, and the degree ofgw

(resp.gw′) is 2(k− q+ 1) (resp. 2(k− q)). Therefore the rank of the additive
group consisting of all such polynomialsH is given by

r(k− q+ 1)+ r(k− q).

Similarly, assume that there is someq ∈ [3] such that

h(w) = 0 for w ∈ V− or w ∈ V+i wheneveri < q,

whereV+i = {(v,+) | v(i) = 3}. Then, the proof of Lemma 4.5 shows that
there is a polynomialH′ in τi ’s, ti ’s and f such that

(h− H′)(w) = 0 for w ∈ V− or w ∈ V+i whenever i ≤ q,

and that the polynomialH′ is of the form

H′ = s1s2s3

(
g′w + δ(τ j − sw( j))g

′
w′

) q−1∏
k=1

(τk + s3)

wherew andw′ are the two vertices ofV+q andg′w andg′w′ are some poly-
nomials int1, t2, t3, and the degree ofg′w (resp. g′w′) is 2(k − 2 − q) (resp.
2(k− 3− q)). Thus, the rank of the the additive group consisting of all such
polynomialsH′ is given by

r(k− 2− q) + r(k− 3− q).

Let G+q (resp.G−q) be the the additive group consisting of all polinomials
h of degree 2k such that

h(w) = 0 for w ∈ V− or w ∈ V+i wheneveri < q

(resp.h(w) = 0 for w ∈ V−i wheneveri < q ).
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Then, the rank ofG+3 is r(k− 5)+ r(k− 6) by the above argument. The rank
of G+2 is equal to rankG+3 plus the rank of additive group consisting of all
polynomialH′ such that

(h− H′)(w) = 0 for w ∈ V− or w ∈ V+i whenever i ≤ 2,

so the rank ofG+2 is rankG+3 + r(k− 4)+ r(k− 5). Similarly, the rank ofG+1
is equal to rankG+2 plusr(k− 3)+ r(k− 4), namely

(4.11) rankG+1 =
6∑

i=4

(r(i) + r(i − 1)).

In the same way, we have

(4.12) rankG−3 = rankG+1 + r(k− 2)+ r(k− 3),

and

(4.13) rankG−q = rankG−q+1 + r(k− q+ 1)+ r(k− q) for q = 1,2.

Therefore, it follows from (4.11), (4.12) and (4.11) that

d(k) = rankG−1 =
k−5∑
i=k

(
r(i) + r(i − 1)

)
= r(k) + 2

k−1∑
i=k−5

r(i) + r(k− 6)

wherer(i) = 0 for i < 0. Namely,

d(k) =


r(0) for k = 0
2
∑k−1

i=0 r(i) + r(k) for 1 ≤ k ≤ 5
r(k− 6)+ 2

∑k−1
i=k−5 r(i) + r(k) for k > 5.
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Therefore,

F(H∗T(G2), x) =
∞∑

k=0

d(k)x2k

= r(0)+
5∑

k=1

2 k−1∑
i=0

r(i) + r(k)

 x2k

+

∞∑
k=6

r(k− 6)+ 2
k−1∑

i=k−5

r(i) + r(k)

 x2k

=

∞∑
k=0

r(k)x2k +

∞∑
k=6

r(k− 6)x2k

+2

 5∑
k=1

k−1∑
i=0

r(i)x2k +

∞∑
k=6

k−1∑
i=k−5

r(i)x2k


= (1+ x12)(r(0)+ r(1)x2 + r(2)x4 + · · · )
+2(x2 + x4 + x6 + x8 + x10)(r(0)+ r(1)x2 + r(2)x4 + · · · )

= (1+ 2x2 + 2x4 + 2x6 + 2x8 + 2x10+ x12)F(Z[t1, t2, t3], x)

= (1+ x2)(1+ x2 + x4)(1+ x6)F(Z[t1, t2, t3], x)

=
1

(1− x2)3
(1+ x2)(1+ x2 + x4)(1+ x6),

proving the lemma. □

We abbreviate the polynomial ringZ[τ1, τ2, τ3, t1, t2, t3, f ] as Z[τ, t, f ].
The canonical mapZ[τ, t, f ] → H∗T(G2) is a grade preserving homomor-
phism which is surjective by Lemma 4.5. It easily follows from (4.1) and
(4.2) that

e1(τ) = 0,(4.14)

e2(τ) − e2(s) = 0,(4.15)

2 f − e3(τ) − e3(s) = 0, and(4.16)

f 2 − f e3(s) = 0.(4.17)

Therefore the canonical map above induces a grade preserving epimor-
phism

(4.18) Z[τ, t, f ]/I → H∗T(G2),

where

I =< e1(τ),e2(τ) − e2(s),2 f − e3(τ) − e3(s), f 2 − f e3(s) > .

We note thatZ[τ, t, f ]/I is aZ[t]-module in a natural way.
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Lemma 4.8. Z[τ, t, f ]/I is generated by
∏3

k=1 τ
ik
k f j for 0 ≤ ik ≤ 3 − k and

j = 0,1 as aZ[t]−module.

Proof. Clearly the elementsΠ3
k=1τ

ik
k f j with no restriction on exponents, gen-

erateZ[τ, t, f ]/I as aZ[t]−module. The identity (4.14) means

(4.19) τ3 = −τ1 − τ2.

By using (4.19), we have

e2(τ) = τ1τ2 + τ3(τ1 + τ2) = τ1τ2 − (τ1 + τ2)
2 = −τ2

1 − τ2
2 − τ1τ2.

Therefore,τ2
2 = −τ2

1 − τ1τ2 − e2(τ), and hence

(4.20) τ2
2 = −τ2

1 − τ1τ2 − e2(s)

by (4.15). It follows from (4.19) and (4.20) that

e3(τ) = τ1τ2τ3

= −τ1τ2(τ1 + τ2)

= −τ2
1τ2 − τ1τ

2
2

= −τ2
1τ2 + τ1(τ

2
1 + τ1τ2 + e2(s))

= τ3
1 + τ1e2(s),

Thereforeτ3
1 = −τ1e2(s) + e3(τ) and hence

(4.21) τ3
1 = −τ1e2(s) + 2 f − e3(s)

by (4.16). Therefore,τ3−k+1
k is written as (4.19), (4.20) and (4.21), satisfying

that the exponent ofτk is less than or equal to 3− k and that off is 0 or 1.
In addition, f 2 is written as (4.17), so we can always assume the exponent
of f to be 0 or 1. This completes the proof of the lemma. □

Now we are in a position to complete the proof of Theorem 4.4.

Proof of Theorem 4.4.If two formal power seriesa(x) =
∑∞

i=0 ai xi andb(x) =∑∞
i=0 bi xi in x with real coefficientsai andbi satisfyai ≤ bi for everyi, then

we express this asa(x) ≤ b(x).
The Hilbert series of the freeZ[t]-module generated by

∏3
k=1 τ

ik
k f j is

given by 1
(1−x2)3 x2(

∑3
k=1 ik+3 j), so it follows from Lemma 4.8 that

(4.22) F(Z[τ, t, f ]/I , x) ≤ 1
(1− x2)3

∑
0≤i1≤2, 0≤i2≤1

x2(i1+i2)
1∑

j=0

x6 j
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and the equality holds above if and only ifZ[τ, t, f ]/I is free as aZ[t]-
module. Here the right hand side in (4.22) above is equal to

1
(1− x2)3

(1+ x2)(1+ x2 + x4)(1+ x6)

which agrees withF(H∗T(G2), x) by Lemma 4.7. ThereforeF(Z[τ, t, f ]/I , x) ≤
F(H∗T(G2), x). On the other hand, the surjectivity of the map (4.18) implies
the opposite inequality. ThereforeF(Z[τ, t, f ]/I , x) = F(H∗T(G2), x). This
means that the inequality in (4.22) must be an equality and henceZ[τ, t, f ]/I
is free as aZ[t]-module, in particular, as aZ-module. Since the map in
(4.18) is surjective andF(Z[τ, t, f ]/I , x) = F(H∗T(G2), x), we conclude that
the map in (4.18) is actually an isomorphism. This proves Theorem 4.4.□
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