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Abstract. We discuss generalizations of some results on lattice poly-
gons to certain piecewise linear loops which may have a self-intersection
but have vertices in the lattice Z2. We first prove a formula on the rota-
tion number of a unimodular sequence in Z2 using toric topology. This
formula implies the generalized twelve-point theorem in [11]. We then
introduce the notion of lattice multi-polygons which is a generalization
of lattice polygons, state the generalized Pick’s formula and discuss the
classification of Ehrhart polynomials of lattice multi-polygons and also
of several natural subfamilies of lattice multi-polygons.

Introduction

Lattice polygons are an elementary but fascinating object. Many inter-
esting results such as Pick’s formula are known for them. However, not
only the results are interesting, but also there are a variety of proofs to the
results and some of them use advanced mathematics such as toric geometry,
complex analysis and modular form (see [4, 3, 9, 11] for example). These
proofs are unexpected and make the study of lattice polygons more fruitful
and intriguing.

Some of the results on lattice polygons are generalized to certain gener-
alized polygons. For instance, Pick’s formula [10]

A(P ) = ]P ◦ +
1

2
B(P ) − 1

for a lattice polygon P , where A(P ) is the area of P and ]P ◦ (resp. B(P )) is
the number of lattice points in the interior (resp. on the boundary) of P , is
generalized in several directions and one of the generalizations is to certain
piecewise linear loops which may have a self-intersection but have vertices
in Z2 ([5, 8]). As is well known, Pick’s formula can be proved using toric
geometry when P is convex ([4, 9]) but the proof was not applicable when P
is concave. However, once we develope toric geometry from the topological
point of view, that is toric topology, Pick’s formula can be proved along the
same line in full generality as is done in [8].
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Another such result on lattice polygons is the twelve-point theorem. It
says that if P is a convex lattice polygon which contains the origin in its
interior as a unique lattice point, then

B(P ) + B(P∨) = 12,

where P∨ is the lattice polygon dual to P . Several proofs are known to
the theorem and one of them again uses toric geometry. B. Poonen and F.
Rodriguez-Villegas [11] provided a new proof using modular forms. They
also formulate a generalization of the twelve-point theorem and claim that
their proof works in the general setting. Generalized polygons considered
in the generalization are what is called legal loops. A legal loop may be
regarded as a unimodular sequence of vectors in Z2. It is mentioned in [11]
that the proof using toric geometry is difficult to generalize, but we will
show in this paper that a slight generalization of the proof of [8, Theorem
5.1], which uses toric topology and is on the same line of the proof using
toric geometry, implies the generalized twelve-point theorem.

We also introduce the notion of lattice multi-polygons. A lattice multi-
polygon is a piecewise linear loop with vertices in Z2 together with a sign
function which assigns either + or − to each side and satisfies some mild
condition. The piecewise linear loop may have a self-intersection and we
think of it as a sequence of points in Z2. A lattice polygon can naturally be
regarded as a lattice multi-polygon. The generalized Pick’s formula holds
for lattice multi-polygons, so Ehrhart polynomials can be defined for them.
The Ehrhart polynomial of a lattice multi-polygon is of degree at most two.
The constant term is the rotation number of normal vectors to sides of the
multi-polygon and not necessarily 1 unlike ordinary Ehrhart polynomials.
The other coefficients have similar geometrical meaning to the ordinary
ones but they can be zero or negative unlike the ordinary ones. The family
of lattice multi-polygons has some natural subfamilies, e.g. the family of
all convex lattice polygons. We discuss the characterization of Ehrhart
polynomials of not only all lattice multi-polygons but also of some natural
subfamilies.

The structure of the present paper is as follows. In Section 1, we give a
formula (Theorem 1.1) which describes the rotation number of a unimodular
sequence of vectors in Z2 around the origin. Here the vectors in the sequence
may go back and forth. The proof uses toric topology. In Section 2, we
observe that Theorem 1.1 implies the generalized twelve-point theorem.
In Section 3, we introduce the notion of lattice multi-polygon and state
the generalized Pick’s formula for lattice multi-polygons. In Section 4, we
discuss the characterization of Ehrhart polynomials of lattice multi-polygons
and of several natural subfamilies of lattice multi-polygons.

1. Rotation number of a unimodular sequence

We say that a sequence of vectors v1, . . . , vd in Z2 (d ≥ 3) is unimodular if
each successive pair (vi, vi+1) is a basis of Z2 for i = 1, . . . , d, where vd+1 =
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v1. The vectors in the sequence are not necessarily in counterclockwise or
clockwise order. They may go back and forth. We set

εi = det(vi, vi+1) for i = 1, . . . , d.

Since each successive pair (vi, vi+1) is a basis of Z2 for i = 1, . . . , d, we have
εi = ±1 and

(vi, vi+1) = (vi−1, vi)

(
0 −εi−1εi

1 −εiai

)
with some unique ai ∈ Z for each i. The above identity is equivalent to

(1.1) εivi+1 + εi−1vi−1 + aivi = 0.

Theorem 1.1. The rotation number of the unimodular sequence v1, . . . , vd

(d ≥ 3) around the origin is given by

1

12

( d∑
i=1

ai + 3
d∑

i=1

εi

)
.

Proof. This is proved in [8, Section 5] when εi = 1 for every i and the
argument there works in our general setting with a little modification, which
we shall explain.

We identify Z2 with H2(BT ) where T = (S1)2 and BT is the classifying
space of T . We may think of BT as (CP∞)2. For each i (i = 1, . . . , d), we
form a cone ∠vivi+1 in R2 spanned by vi and vi+1 and attach the sign εi

to the cone. The collection of the cones ∠vivi+1 with the signs εi attached
form a multi-fan ∆ and the same construction as in [8, Section 5] produces
a real 4-dimensional closed connected smooth manifold M with an action
of T satisfying the following conditions:

(1) Hodd(M) = 0.
(2) M admits a unitary (or weakly complex) structure preserved under

the T -action and the multi-fan associated to M with this unitary
structure is the given ∆.

(3) Let Mi (i = 1, . . . , d) be the characteristic submanifold of M cor-
responding to the edge vector vi, that is, Mi is a real codimension
two submanifold of M fixed pointwise under the circle subgroup de-
termined by the vi. Then Mi does not intersect with Mj unless
j = i− 1, i, i + 1 and the intersection numbers of Mi with Mi−1 and
Mi+1 are εi−1 and εi respectively.

Choose an arbitrary element v ∈ R2 not contained in any one-dimensional
cone in the multi-fan ∆. Then Theorem 4.2 in [8] says that the Todd genus
T [M ] of M is given by

(1.2) T [M ] =
∑

i

εi,

where the sum above runs over all i’s such that the cone ∠vivi+1 contains
the vector v. Clearly the right hand side in (1.2) agrees with the rotation
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number of the sequence v1, . . . , vd around the origin. In the sequel, we
compute the Todd genus T [M ].

Let ET → BT be the universal principal T -bundle and MT the quotient
of ET × M by the diagonal T -action. The space MT is called the Borel
construction of M and the equivariant cohomology Hq

T (M) of the T -space
M is defined to be Hq(MT ). The first projection from ET × M onto ET
induces a fibration

π : MT → ET/T = BT

with fiber M . The inclusion map ι of the fiber M to MT induces a surjective
homomorphism ι∗ : Hq

T (M) → Hq(M).
Let ξi ∈ H2

T (M) be the Poincaré dual to the cycle Mi in the equivariant
cohomology. The ξi restricts to the ordinary Poincaré dual xi ∈ H2(M) to
the cycle Mi through the ι∗. By Lemma 1.5 in [8], we have

(1.3) π∗(u) =
d∑

j=1

〈u, vj〉ξj for any u ∈ H2(BT ),

where 〈 , 〉 denotes the natural pairing between cohomology and homology.
Multiplying the both sides of (1.3) by ξi and restricting the resulting identity
to the ordinary cohomology by ι∗, we obtain

(1.4) 0 = 〈u, vi−1〉xi−1xi + 〈u, vi〉x2
i + 〈u, vi+1〉xi+1xi for all u ∈ H2(BT )

because Mi does not intersect with Mj unless j = i − 1, i, i + 1, where
xd+1 = x1. We evaluate the both sides of (1.4) on the fundamental class
[M ] of M . Since the intersection numbers of Mi with Mi−1 and Mi+1 are
respectively εi−1 and εi as mentioned above, the identity (1.4) reduces to

(1.5) 0 = 〈u, vi−1〉εi−1 + 〈u, vi〉〈x2
i , [M ]〉 + 〈u, vi+1〉εi for all u ∈ H2(BT )

and further reduces to

(1.6) 0 = εi−1vi−1 + 〈x2
i , [M ]〉vi + εivi+1

because (1.5) holds for any u ∈ H2(BT ). Comparing (1.6) with (1.1), we
conclude that 〈x2

i , [M ]〉 = ai. Summing up the above argument, we have

(1.7) 〈xixj, [M ]〉 =


εi−1 if j = i − 1,

ai if j = i,

εi if j = i + 1,

0 otherwise.

By Theorem 3.1 in [8] the total Chern class c(M) of M with the unitary

structure is given by
∏d

i=1(1 + xi). Therefore

c1(M) =
d∑

i=1

xi, c2(M) =
∑
i<j

xixj
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and hence

T [M ] =
1

12
〈c1(M)2 + c2(M), [M ]〉

=
1

12
〈(

d∑
i=1

xi)
2 +

∑
i<j

xixj, [M ]〉

=
1

12
(

d∑
i=1

ai + 3
d∑

i=1

εi),

where the first identity is known as Noether’s formula when M is an alge-
braic surface and known to hold even for unitary manifolds, and we used
(1.7) at the last identity. This proves the theorem because T [M ] agrees
with the desired rotation number as remarked at (1.2). ¤

2. Generalized twelve-point theorem

Let P be a convex lattice polygon whose only interior lattice point is the
origin. Then the dual P∨ to P is also a convex lattice polygon whose only
interior lattice point is the origin. Let B(P ) denote the total number of the
lattice points on the boundary of P . The following fact is well known.

Theorem 2.1 (Twelve-point theorem). B(P ) + B(P∨) = 12.

Several proofs are known for this theorem ([1, 2, 11]). B. Poonen and
F. Rodriguez-Villegas give a proof using modular forms in [11]. They also
formulate a generalization of the twelve-point theorem and claim that their
proof works in the general setting. In this section, we will explain the gen-
eralized twelve-point theorem and observe that it follows from Theorem 1.1.

If P is a convex lattice polygon whose only interior lattice point is the
origin and v1, . . . , vd are the vertices of P arranged counterclockwise, then
every vi is primitive and the triangle with the vertices vi, vi+1 and the origin
has no lattice point in the interior for each i, where vd+1 = v1 as usual. This
observation motivates the following definition, see [11, 1].

Definition. A sequence of vectors P = (v1, . . . , vd), where v1, . . . , vd are in
Z2 and d ≥ 3, is called a legal loop if every vi is primitive and whenever
vi 6= vi+1, vi and vi+1 are linearly independent (i.e. vi 6= −vi+1) and the
triangle with the vertices vi, vi+1 and the origin has no lattice point in the
interior. We say that a legal loop is reduced if vi 6= vi+1 for any i. A (non-
reduced) legal loop P naturally determines a reduced legal loop, denoted
Pred, by dropping all the redundant points. We define the winding number
of a legal loop P = (v1, . . . , vd) to be the rotation number of the vectors
v1, . . . , vd around the origin.

Joining successive points in a legal loop P = (v1, . . . , vd) by straight lines
forms a lattice polygon which may have a self-intersection. A unimodular
sequence v1, . . . , vd determines a reduced legal loop. Conversely, a reduced
legal loop P = (v1, . . . , vd) determines a unimodular sequence by adding all
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the lattice points on the line segment vivi+1 (called a side of P) connecting
vi and vi+1 for every i. To each side vivi+1 with vi 6= vi+1, we assign the
sign of det(vi, vi+1), denoted sgn(vi, vi+1).

Definition. Let |vivi+1| be the number of lattice points on the side vivi+1

minus 1, so |vivi+1| = 0 when vi = vi+1. Then we define

B(P) =
d∑

i=1

sgn(vi, vi+1)|vivi+1|.

Clearly, B(P) = B(Pred).

For a reduced legal loop P = (v1, . . . , vd), we set

(2.1) wi =
(vi − vi−1)

det(vi−1, vi)
for i = 1, . . . , d,

where v0 = vd, and define P∨ = (w1, . . . , wd). It is not difficult to see that
P∨ = (w1, . . . , wd) is again a legal loop although it may not be reduced (see
the proof of Theorem 2.2 below). If a legal loop P is not reduced, then we
define P∨ to be (Pred)

∨. When the vectors v1, . . . , vd are the vertices of a
convex lattice polygon P with only the origin as an interior lattice point
and are arranged in counterclockwise order, the sequence w1, . . . , wd is also
in counterclockwise order and the convex hull of w1, . . . , wd is the polygon
P∨ dual to P .

Theorem 2.2 (Generalized twelve-point theorem [11]). Let P be a legal
loop and let r be the winding number of P. Then B(P) + B(P∨) = 12r.

Remark. Kasprzyk and Nill ([7, Corollary 2.7]) point out that the gener-
alized twelve-point theorem can further be generalized to what are called
`-reflexive loops, where ` is a positive integer and a 1-reflexive loop is a
unimodular sequence.

Proof. We may assume that P is reduced. As remarked before, the reduced
legal loop P = (v1, . . . , vd) determines a unimodular sequence by adding
all the lattice points on the side vivi+1 for every i, and the unimodular
sequence determines a reduced legal loop, say Q. Clealry, B(P) = B(Q)
and (P∨)red = (Q∨)red. In the sequel, we may assume that the vectors
v1, . . . , vd in our legal loop P form a unimodular sequence.

Since the sequence v1, . . . , vd is unimodular, sgn(vi, vi+1) = εi and |vivi+1| =
1 for any i. Therefore

(2.2) B(P) =
d∑

i=1

sgn(vi, vi+1)|vivi+1| =
d∑

i=1

εi.

On the other hand, it follows from (2.1) and (1.1) that

wi+1 − wi = εi(vi+1 − vi) − εi−1(vi − vi−1)

= εivi+1 + εi−1vi−1 − (εi + εi−1)vi

= −(ai + εi + εi−1)vi

(2.3)
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and that

det(wi, wi+1) = εi−1εi det(vi − vi−1, vi+1 − vi)

= εi−1εi det(vi − vi−1,−εi−1εivi−1 − εiaivi − vi)

= εi−1εi

(
det(vi,−εi−1εivi−1) + det(−vi−1,−εiaivi − vi)

)
= εi−1 + ai + εi.

(2.4)

Since vi is primitive, (2.3) shows that |wiwi+1| = |εi−1 + εi + ai| and this
together with (2.4) shows that

sgn(wi, wi+1)|wiwi+1| = εi−1 + εi + ai.

Therefore

(2.5) B(P∨) =
d∑

i=1

sgn(wi, wi+1)|wiwi+1| =
d∑

i=1

(εi−1 + εi + ai).

It follows from (2.2) and (2.5) that

B(P) + B(P∨) =
d∑

i=1

εi +
d∑

i=1

(εi−1 + εi + ai)

= 3
d∑

i=1

εi +
d∑

i=1

ai,

which is equal to 12r by Theorem 1.1, proving the theorem. ¤
Example 2.3. (a) Let

P = ((1, 0), (0, 1), (−1, 0), (0,−1), (−1,−1)).

Then P is a reduced legal loop whose winding number is 1 and

P∨ = ((2, 1), (−1, 1), (−1,−1), (1,−1), (1, 0)).

On the one hand, B(P) = 1 + 1 + 1 − 1 + 1 = 3. On the other hand,
B(P∨) = 3 + 2 + 2 + 1 + 1 = 9. Thus we have B(P) + B(P∨) = 12. The
left-hand side (resp. right-hand side) of the following picture shows P (resp.
P∨) together with signs, where the symbols ◦ and × stand for lattice points
in Z2.

(b) Let

Q = ((1, 0), (−1, 1), (0,−1), (1, 1), (−1, 0), (1,−1)).

Then Q is a reduced legal loop whose winding number is 2 and

Q∨ = ((0, 1), (−2, 1), (1,−2), (1, 2), (−2,−1), (2,−1)).

On the one hand, B(Q) = 6. On the other hand, B(Q∨) = 18. Hence,
B(Q) + B(Q∨) = 24. The left-hand side (resp. right-hand side) of the
following picture shows Q (resp. Q∨). Note that the signs on the sides of
Q and Q∨ are all +.
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(1,0)

(0,1)

(0,-1)

(-1,0)

(-1,-1)

+

-
(1,-1)

(1,0)

(2,1)(-1,1)

(-1,-1)

Figure 1. lattice points on P and P∨ and sides with signs

(1,0)(-1,0)

(-1,1)

(1,1)

(1,-1)
(0,-1) (-2,-1)

(1,-2)

(2,-1)

(1,2)

(0,1)

(-2,1)

Figure 2. lattice points on Q and Q∨

3. Generalized Pick’s formula for lattice multi-polygons

In this section, we introduce the notion of lattice multi-polygon and state
a generalized Pick’s formula for lattice multi-polygons which is essentially
proved in [8, Theorem 8.1]. This implies the existence of Ehrhart polyno-
mials for lattice multi-polygons.

We begin with the well-known Pick’s formula for lattice polygons ([10]).
Let P be a (not necessarily convex) lattice polygon, ∂P the boundary of P
and P ◦ = P\∂P . We define

A(P ) = the area of P , B(P ) = |∂P ∩ Z2|, ]P ◦ = |P ◦ ∩ Z2|,
where |X| denotes the cardinality of a finite set X. Then Pick’s formula
says that

(3.1) A(P ) = ]P ◦ +
1

2
B(P ) − 1.

We may rewrite (3.1) as

]P ◦ = A(P ) − 1

2
B(P ) + 1 or ]P = A(P ) +

1

2
B(P ) + 1
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where ]P = |P ∩ Z2|.
In [5], the notion of shaven lattice polygon is introduced and Pick’s for-

mula (3.1) is generalized to shaven lattice polygons. The generalization of
Pick’s formula discussed in [8] is similar to [5] but a bit more general, which
we shall explain.

Let P = (v1, . . . , vd) (d ≥ 3) be a sequence of points v1, . . . , vd in Z2,
where vi and vi+1 are linearly independent for i = 1, . . . , d and vd+1 = v1.
One may regard P as an oriented piecewise linear loop by connecting all
successive points from vi to vi+1 in P by straight lines as before. To each
side vivi+1, we assign a sign + or −, denoted ε(vivi+1). In Section 2, we
assigned the sgn(vi, vi+1), which is the sign of det(vi, vi+1), to vivi+1 but
ε(vivi+1) may be different from sgn(vi, vi+1). However we require that the
assignment ε of signs satisfy the following condition (?):

(?) when there are consecutive three points vi−1, vi, vi+1 in P lying on a
line, we have

(1) ε(vi−1vi) = ε(vivi+1) if vi is in between vi−1 and vi+1;
(2) ε(vi−1vi) 6= ε(vivi+1) if vi−1 lies on vivi+1 or vi+1 lies on vi−1vi.

A lattice multi-polygon is P equipped with the assignment ε satisfying (?).
We need to express a lattice multi-polygon as a pair (P , ε) to be precise, but
we omit ε and express a lattice multi-polygon simply as P in the following.
Reduced legal loops introduced in Section 2 are lattice multi-polygons.

Remark. Lattice multi-polygons such that three consecutive points are not
on a same line are introduced in [8, Section 8]. But if we require the con-
dition (?), then the argument developed there works for any lattice multi-
polygon. A shaven polygon introduced in [5] is a lattice multi-polygon with
ε = + in our terminology, so that vi is allowed to lie on the line segment
vi−1vi+1 but vi−1 (resp. vi+1) is not allowed to lie on vivi+1 (resp. vi−1vi) by
(2) of (?), i.e. there is no whisker.

Let P be a multi-polygon with a sign assignment ε. We think of P as an
oriented piecewise linear loop with signs attached to sides. For i = 1, . . . , d,
let ni denote a normal vector to each side vivi+1 such that the 90 degree
rotation of ε(vivi+1)ni has the same direction as vivi+1. The winding number
of P around a point v ∈ R2\P , denoted dP(v), is a locally constant function
on R2 \ P , where R2 \ P means the set of elements in R2 which does not
belong to any side of P .

Following [8, Section 8], we define

A(P) :=

∫
v∈R2\P

dP(v)dv,

B(P) :=
d∑

i=1

ε(vivi+1)|vivi+1|,

C(P) := the rotation number of the sequence of n1, . . . , nd.
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Notice that A(P) and B(P) can be 0 or negative. If P arises from a lat-
tice polygon P , namely P is a sequence of the vertices of P arranged in
counterclockwise order and ε = +, then A(P) = A(P ), B(P) = B(P ) and
C(P) = 1.

Now, we define ]P in such a way that if P arises from a lattice polygon P ,
then ]P = ]P . Let P+ be an oriented loop obtained from P by pushing each
side vivi+1 slightly in the direction of ni. Since P satisfies the condition (?),
P+ misses all lattice points, so the winding numbers dP+(u) can be defined
for any lattice point u using P+. Then we define

]P :=
∑
u∈Z2

dP+(u).

As remarked before, lattice multi-polygons treated in [8] are required
that three consecutive points vi−1, vi, vi+1 do not lie on a same line. But if
the sign assignment ε satisfies the condition (?) above, then the argument
developed in [8, Section 8] works and we obtain the following generalized
Pick’s formula for lattice multi-polygons.

Theorem 3.1 ([8, Theorem 8.1]). ]P = A(P) + 1
2
B(P) + C(P).

If we define P◦ to be P with −ε as a sign assignment, then

(3.2) ]P◦ = A(P) − 1

2
B(P) + C(P)

and if P arises from a lattice polygon P , then ]P◦ = ]P ◦.
Given a positive integer m, we dilate P by m times, denoted mP, in

other words, if P is (v1, . . . , vd) with a sign assignment ε, then mP is
(mv1, . . . ,mvd) with ε(vivi+1) as the sign of the side mvimvi+1 of mP for
each i. Then we have

(3.3) ](mP) = A(P)m2 +
1

2
B(P)m + C(P),

that is, ](mP) is a polynomial in m of degree at most 2 whose coefficients
are as above. Moreover, the equality

](mP◦) = A(P)m2 − 1

2
B(P)m + C(P) = (−1)2](−mP)

holds, so that the reciprocity holds for lattice multi-polygons. We call the
polynomial (3.3) the Ehrhart polynomial of a lattice multi-polygon P .

Remark. In [6], lattice multi-polytopes P of dimension n are defined and
it is proved that ](mP) is a polynomial in m of degree at most n which
satisfies ](mP◦) = (−1)n](−mP) whose leading coefficient and constant
term have similar geometrical meanings to the 2-dimensional case above.

4. Ehrhart polynomials of lattice multi-polygons

In this section, we will discuss which polynomials appear as the Ehrhart
polynomials of lattice multi-polygons. If am2 + bm + c is the Ehrhart poly-
nomial of a lattice multi-polygon P , then the coefficients (a, b, c) must be
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in the set

A =

{
(a, b, c) ∈ 1

2
Z × 1

2
Z × Z : a + b ∈ Z

}
because (a, b, c) = (A(P), 1

2
B(P), C(P)) and

B(P) ∈ Z, C(P) ∈ Z, A(P) +
1

2
B(P) + C(P) = ]P ∈ Z.

The following theorem shows that this condition is sufficient.

Theorem 4.1. A polynomial am2 + bm + c in m is the Ehrhart polynomial
of a lattice multi-polygon if and only if (a, b, c) ∈ A.

Proof. It suffices to prove the “if” part. We pick up (a, b, c) ∈ A. Then one
has an expression

(4.1) (a, b, c) = a′(1, 0, 0) + b′
(

1

2
,
1

2
, 0

)
+ c′(0, 0,−1)

with integers a′, b′, c′ because a′ = a−b, b′ = 2b and c′ = −c. One can easily
check that m2, 1

2
m2 + 1

2
m and −1 are respectively the Ehrhart polynomials

of the lattice multi-polygons P1,P2 and P3 shown in Figure 3, where the
sign of vivi+1 is given by the sign of det(vi, vi+1) for P1,P2,P3.

(1,1)

(1,0)

(0,1)

+-(1,1) (2,1)

(2,2)(1,2)

(1,0)

(1,1)

(1,-1)
(0,-1)

(-1,-1)

(-1,0)

(-1,1) (0,1)

Figure 3. lattice multi-polygons P1,P2 and P3 from the left

Moreover, reversing both the order of the points and the signs on the sides
for P1,P2 and P3, we obtain lattice multi-polygons P ′

1,P ′
2 and P ′

3 whose
Ehrhart polynomials are respectively −m2, −1

2
m2 − 1

2
m and 1. Since all

these six multi-polygons have a common lattice point (1, 1), one can produce
a multi-polygon by joining them as many as we want at the common point
and since Ehrhart polynomials behave additively with respect to the join
operation, this together with (4.1) shows the existence of a lattice multi-
polygon with the desired Ehrhart polynomial am2 + bm + c. ¤

In the rest of the paper, we shall consider several natural subfamilies
of lattice multi-polygons and discuss the characterization of their Ehrhart
polynomials. We note that if a polynomial am2 +bm+c in m is the Ehrhart
polynomial of some lattice multi-polygon, then (a, b, c) must be in the set
A.
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4.1. Lattice polygons. The most natural subfamily of lattice multi-polygons
would be the family of convex lattice polygons. Their Ehrhart polynomials
are essentially characterized by P. R. Scott as follows.

Theorem 4.2 ([12]). A polynomial am2 + bm + c in m with (a, b, c) ∈ A is
the Ehrhart polynomial of a convex lattice polygon if and only if c = 1 and
(a, b) satisfies one of the following:

(1) a + 1 = b ≥ 3
2
;

(2) a
2

+ 2 ≥ b ≥ 3
2
;

(3) (a, b) = (9
2
, 9

2
).

If we do not require the convexity, then the characterization of Ehrhart
polynomials becomes simpler than Theorem 4.2.

Proposition 4.3. A polynomial am2 + bm+ c in m with (a, b, c) ∈ A is the
Ehrhart polynomial of a (not necessarily convex) lattice polygon if and only
if c = 1 and a + 1 ≥ b ≥ 3

2
.

Proof. If P is a lattice polygon, then we have

C(P ) = 1, B(P ) ≥ 3, A(P ) − 1

2
B(P ) + 1 = ]P ◦ ≥ 0

and this implies the “only if” part.
On the other hand, let (a, b, 1) ∈ A with a + 1 ≥ b ≥ 3

2
. Thanks to

Theorem 4.2, we may assume that b > a
2

+ 2, that is, 4b − 2a − 6 > 2. Let
P be the lattice polygon shown in Figure 4. Then, one has

(0,0)

(0,4b-2a-6)

(1,2)

(a-b+2,0)

(a-b+2,2)

Figure 4. a lattice polygon whose Ehrhart polynomial
equals am2 + bm + 1

A(P ) = 2(a − b + 2) +
1

2
(4b − 2a − 8) = a

and

B(P ) = (a − b + 2) + 2 + (a − b + 1) + 1 + 4b − 2a − 6 = 2b.

This shows that ](mP ) = am2 + bm + 1. ¤
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4.2. Unimodular lattice multi-polygons. We say that a lattice multi-
polygon P = (v1, . . . , vd) is unimodular if the sequence (v1, . . . , vd) is uni-
modular and the sign assignment ε is defined by ε(vivi+1) = det(vi, vi+1) for
i = 1, . . . , d, where vd+1 = v1. When a unimodular lattice multi-polygon P
arises from a convex lattice polygon, P is essentially the same as so-called
a reflexive polytope of dimension 2, which is completely classified (16 poly-
gons up to equivalence, see, e.g. [11, Figure 2]) and the Ehrhart polynomials
am2 + bm + c of reflexive polytopes are characterized by the condition that
c = 1 and a = b ∈

{
3
2
, 2, 5

2
, 3, 7

2
, 4, 9

2

}
.

We can characterize the Ehrhart polynomials of unimodular lattice multi-
polygons as follows.

Theorem 4.4. A polynomial am2 + bm + c in m with (a, b, c) ∈ A is
the Ehrhart polynomial of a unimodular lattice multi-polygon if and only if
a = b.

Proof. If P is a unimodular lattice multi-polygon arising from a unimodular
sequence v1, . . . , vd, then one sees that

A(P) =
1

2

d∑
i=1

det(vi, vi+1)

B(P) =
d∑

i=1

det(vi, vi+1)|vivi+1| =
d∑

i=1

det(vi, vi+1)

and this implies the “only if” part.
Conversely, if (a, b, c) ∈ A satisfies a = b, then one has an expression

(a, b, c) = a′
(

1

2
,
1

2
, 0

)
+ c′(0, 0,−1)

with integers a′, c′ because a′ = 2a and c′ = −c. We note that the lattice
multi-polygons P2,P3,P ′

2 and P ′
3 in the proof of Theorem 4.1 are unimod-

ular lattice multi-polygons. Therefore, joining them as many as we want
at the common point (1, 1), we can find a unimodular lattice multi-polygon
whose Ehrhart polynomial is equal to am2 + bm + c, as required. ¤
Example 4.5. The P and Q in Example 2.3 are unimodular lattice multi-
polygons and we have ](mP) = 3

2
m2 + 3

2
m + 1 and ](mQ) = 3m2 + 3m + 2.

4.3. Left-turning (right-turning) lattice multi-polygons. We say that
a lattice multi-polygon P is left-turning (resp. right-turning) if det(v−u,w−
u) is always positive (resp. negative) for consecutive three points u, v, w in
P arranged in this order not lying on a same line. In other words, w lies in
the left-hand side (resp. right-hand side) with respect to the direction from
u to v. For example, P1, P2 and P3 in Figure 3 and Q in Example 2.3 (b)
are all left-turning.

The following theorem shows that the left-turning (or right-turning) con-
dition does not give any restriction on the Ehrhart polynomials.
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Theorem 4.6. Any polynomial am2 + bm + c with (a, b, c) ∈ A can be the
Ehrhart polynomial of a left-turning (or right-turning) lattice multi-polygon.

Proof. We pick up (a, b, c) ∈ A. Then one has an expression (4.1). As
mentioned above, P1,P2 and P3 in Figure 3 are left-turning. Moreover,
multi-polygons P4,P5 and P6 in Figure 5 are also left-turning and their
Ehrhart polynomials are respectively −m2, −1

2
m2− 1

2
m and 1. Since P4,P5

and P6 also have the common point (1, 1), we can join P1 through P6 as
many as we want at the common point so that we can find a left-turning
multi-polygon with the desired Ehrhart polynomial.

(1,0)

(1,1)

(1,-1)(0,-1)

(-1,1)

(1,0)

(1,1)

(1,-1)
(0,-1)

(-1,-1)

(-1,0)

(-1,1) (0,1)(-2,1)

(-2,0)

(-2,-1)

(1,1)

(2,0)

(2,-1)

(-1,0)

(-1,-1)

(0,1)
(-1,1)

(1,-1)

Figure 5. lattice multi-polygons P4,P5 and P6 from the left

Reversing both the order of the points in Pj and the signs on the sides
of Pj (j = 1, . . . , 6), we obtain the theorem for right-turning lattice multi-
polygons. ¤

Unfortunately, the signs of P4,P5 and P6 do not always coincide with the
sign of det(vi, vi+1). Thus, P4, P5 and P6 are not considered in Section 2
but these lattice multi-polygons are also of interest.

4.4. Left-turning lattice multi-polygons with all + signs. We con-
sider left-turning lattice multi-polygons P and impose one more restriction
that the signs on the sides of P are all +. In this case, some interesting
phenomena happen. For example, a simple observation shows that

(4.2) B(P) ≥ 2C(P) + 1 and C(P) ≥ 1.

We note that C(P) = 1 if and only if P arises from a convex lattice polygon,
and those Ehrhart polynomials are characterized by Theorem 4.2. Therefore
it suffices to treat the case where C(P) ≥ 2.

Theorem 4.7. A polynomial am2 + bm+ c with (a, b, c) ∈ A is the Ehrhart
polynomial of a left-turning lattice multi-polygon with all + signs if b ≥ c+1
and c ≥ 2.

Proof. We take an odd number α such that β = a − b + c + α+3
2

≥ 2 and

α +
∑2c−4

j=1 (−1)j−1(j − 1) ≥ 1. Since a + b ∈ Z, one has β ∈ Z. We also
set γ = 2b − 2c − 1. Since b ≥ c + 1, one has γ ≥ 1. We then define a
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left-turning lattice multi-polygon P = (v1, v2, . . . , v2c+2) with all + signs on
sides by setting

v1 = (0, 0), v2 = (−1, β), v3 = (−2, 2), v4 = (α, 0), v2c+2 = (−γ, 0),

and vi = (α, 0) +
i−4∑
j=1

((−1)j−1(j − 1), (−1)j−1) for i = 5, . . . , 2c + 1.

Figure 6 shows P with α = 3, β = 2 and γ = 1.

(0,0)

(3,1)

(-1,0)

(-2,2)

(3,0)(2,0)

(4,1)

(-1,2)

Figure 6. a left-turning lattice multi-polygon P with all + signs

Since |vivi+1| = 1 for i = 1, . . . , 2c+1 and |v2c+2v1| = γ, we have B(P) =
2c + 1 + γ = 2b. One easily finds that the rotation number of the normal
vectors of vivi+1’s is equal to c, so C(P) = c. One also easily finds that
]P◦ = β − 2 + (−1) · α−1

2
= a − b + c. It follows from the formula (3.2),

that is A(P) = ]P◦ + 1
2
B(P) − C(P), that A(P) = a. Therefore, ](mP) =

am2 + bm + c, as desired. ¤
The condition b ≥ c+1 in Theorem 4.7 is equivalent to B(P) ≥ 2C(P)+2

for a lattice multi-polygon P because b = 1
2
B(P) and c = C(P). On the

other hand, we have B(P) ≥ 2C(P) + 1 for a left-turning lattice multi-
polygon P with all + signs by (4.2). Therefore, the extreme case where
B(P) = 2C(P) + 1 is not covered by Theorem 4.7 and the following propo-
sition shows that this extreme case is exceptional.

Proposition 4.8. If P is a left-turning multi-polygon with all + signs and
B(P) = 2C(P) + 1, then A(P) ≥ 1

2
.

Proof. Since A(P) = ]P◦+ 1
2
B(P)−C(P) and B(P) = 2C(P)+1, it suffices

to show that ]P◦ ≥ 0.
Suppose that ]P◦ < 0. Then there exists a lattice point v such that

dP(v) < 0. This implies that there are p sides l1, . . . , lp of P (p ≥ 3)
winding around v clockwise, see Figure 7. Let qi (> 0) be the number of
sides of P between li and li+1 except li and li+1, where lp+1 = l1, and θi

(0 < θi < 180) the degree of the angle between the sides li and li+1. Then
one can verify easily that the counterclockwise winding angle between the
normal vectors of li and li+1 is (180 + θi) degree and the sum of the angles
of the normal vectors of the (qi + 2) sides, namely from li to li+1, is at most
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v
l

l

l

l

1

2

3

p

θl

θ1
θ2

Figure 7. a local structure of P around v with dP(v) < 0

(360( qi−1
2

) + 180 + θi) degree. On the other hand, since all signs are +, we
have B(P) ≥

∑p
i=1 qi +p. In addition, clearly,

∑p
i=1 θi = 180(p−2). Hence,

360 · C(P) ≤
p∑

i=1

(
360 · qi − 1

2
+ 180 + θi

)
= 180

p∑
i=1

qi + 180p − 360

≤ 180 · B(P) − 360,

which implies that B(P) ≥ 2C(P) + 2, a contradiction. Therefore, there is
no lattice point v with dP(v) < 0, which means that ]P◦ ≥ 0. ¤

We propose the following conjecture.

Conjecture 4.9. If P is a left-turning multi-polygon with all + signs and
B(P) = 2C(P) + 1, then

A(P) ≥
⌊

C(P)

2

⌋
+

1

2
.

If the above conjecture is affirmative, then we can characterize the Ehrhart
polynomials of left-turning lattice multi-polygons with all + signs as is
shown in the following example.

Example 4.10. The Ehrhart polynomial of the left-turning lattice multi-
polygon P with all + signs depicted below is 3

2
m2 + 7

2
m + 3. A similar

(0,0)

(-1,0) (1,0)

(1,1)

(-1,3)

(0,1)
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construction shows that for any integer c ≥ 2, there is a left-turning lattice

multi-polygon P with all + signs which satisfies A(P) ≥
⌊

C(P)
2

⌋
+ 1

2
, B(P) =

2C(P) + 1 and C(P) = c.

4.5. Lattice multi-polygons with all + signs. Finally, we consider lat-
tice multi-polygons P with all + signs, namely, we do not assume that P
is either left-turning or right-turning. However, this case is similar to the
previous one (left-turning lattice multi-polygons with all + signs). For ex-
ample, when C(P) 6= 0, then we still have B(P) ≥ 2|C(P)|+ 1. Thus, as a
corollary of Theorem 4.7, we obtain the following.

Corollary 4.11. A polynomial am2 + bm + c in m with (a, b, c) ∈ A is the
Ehrhart polynomial of a lattice multi-polygon with all + signs if b ≥ |c| + 1
and |c| ≥ 2.

Proof. When c ≥ 2, the assertion follows directly from Theorem 4.7. When
c ≤ −2, we reverse the order of v1, . . . , v2|c|+2 in P described in the proof of
Theorem 4.7 and reset β = −(a + b + c) + α+3

2
and γ = 2b + 2c − 1, where

α is an odd number such that β ≥ 2 and α +
∑2|c|−4

j=1 (−1)j−1(j − 1) ≥ 1. It

gives a (right-turning) lattice multi-polygon P ′ with all + signs. One finds
that

]P ′ = −(β − 2) +
α − 1

2
= a + b + c,

B(P ′) = −2c + 1 + γ = 2b and C(P ′) = c.

It follows from ]P ′ = A(P ′) + 1
2
B(P ′) + C(P ′) that A(P ′) = a. Therefore,

the Ehrhart polynomial of P ′ equals am2 + bm + c, as desired. ¤
The condition b ≥ |c|+ 1 is equivalent to B(P) ≥ 2|C(P)|+ 2. Thus the

case where B(P) = 2|C(P)| + 1 is not covered by Corollary 4.11, but P
must be left-turning or right-turning according as C(P) > 0 or C(P) < 0
when B(P) = 2|C(P)| + 1. Hence, we can say that when we discuss the
Ehrhart polynomials of lattice multi-polygons with all + signs, it suffices to
consider those of left-turning or right-turning ones when C(P) 6∈ {−1, 0, 1}.

On the other hand, on the remaining cases C(P) = 0 or C(P) = ±1,
which are exceptional, we can characterize the Ehrhart polynomials com-
pletely as follows.

Theorem 4.12. Let (a, b, c) ∈ A.

(a) When c = 0, a polynomial am2 + bm+ c in m is the Ehrhart polyno-
mial of a lattice multi-polygon with all + signs if and only if b ≥ 2.

(b) When c = 1, a polynomial am2 + bm+ c in m is the Ehrhart polyno-
mial of a lattice multi-polygon with all + signs if and only if either
b ≥ 5

2
or 3

2
≤ b ≤ 2 and a − b + 1 ≥ 0.

(c) When c = −1, a polynomial am2 + bm + c in m is the Ehrhart
polynomial of a lattice multi-polygon with all + signs if and only if
either b ≥ 5

2
or 3

2
≤ b ≤ 2 and a + b − 1 ≤ 0.
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Proof. (a) When P is a lattice multi-polygon with all + signs, it is clear
that B(P) ≥ 3. Since C(P) must be either 1 or −1 when B(P) = 3, we
have B(P) ≥ 4 when C(P) = 0, which means the “only if” part of (a).

Conversely, we pick up (a, b, 0) ∈ A with b ≥ 2. If a + b ≥ 2 (resp.
a + b ≤ 2), then let P = (v1, . . . , v4) be a lattice multi-polygon shown
in the left-hand side (resp. right-hand side) of Figure 8. Then we have

(0,0) (1,0)

(-1,2a+2b-3)

(1,2b-3)

(0,0) (1,0)

(0,2b-3)

(2,-2a+2b-3)

Figure 8. lattice multi-polygons with all + signs whose
Ehrhart polynomials equal am2 + bm

B(P) = 3 + (2b − 3) = 2b and C(P) = 0. One also has that

A(P) =
1

2
(2a + 2b − 3) − 1

2
(2b − 3) = a, if a + b ≥ 2,

A(P) =
1

2
(2b − 3) − 1

2
(−2a + 2b − 3) = a, if a + b ≤ 2,

as required.
(b) Let P be a lattice multi-polygon with all + signs and C(P) = 1.

As mentioned above, we have B(P) ≥ 3 and P must be left-turning when
B(P) = 3, which implies that P must arise from a convex lattice polygon.
When B(P) = 4, since all its signs are + and C(P) = 1, P can turn right
at most once. Hence P cannot have a self-intersection, which means that P
must arise from a (not necessarily convex) lattice polygon, and thus ]P◦ ≥ 0.
This implies the “only if” part of (b) because ]P◦ = A(P)− 1

2
B(P)+C(P)

(cf. (3.2)).
On the other hand, we pick up (a, b, 1) ∈ A. When a+1 ≥ b, Proposition

4.3 guarantees the existence of a lattice multi-polygon P with all + signs
and ](mP) = am2 + bm + 1. Thus we may consider the case where b ≥ 5

2
and a + 1 < b.

Let P = (v1, . . . , v5) be a lattice multi-polygon shown in Figure 9. Then
we have B(P) = 4 + (2b− 4) = 2b and C(P) = 1. One also has that ]P◦ =
−(−a+b−1) = a−b+1. Hence it follows from A(P) = ]P◦+ 1

2
B(P)−C(P)

that A(P) = a, as required.
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(-1,0)

(1,0)

(1,1)

(0,-a+b-1)

(-1,-2b+4)

Figure 9. a lattice multi-polygon with all + signs whose
Ehrhart polynomial equals am2 + bm + 1

(c) Let P be a lattice multi-poygon with all + signs and C(P) = −1.
Similarly to the case where C(P) = 1, we have B(P) ≥ 3 and P must arise
from a lattice polygon when B(P) = 3 or 4, where the vertices of a lattice
polygon are arranged in clockwise order and ε = +. Thus, when B(P) = 3
or 4, we have ]P ≤ 0, which is equivalent to A(P) + 1

2
B(P) + C(P) ≤ 0.

This implies the “only if” part of (c).
On the other hand, we pick up (a, b,−1) ∈ A. When 2b = 3 (resp.

2b = 4) and a + b − 1 ≤ 0, we define P(3) = (v
(3)
1 , v

(3)
2 , v

(3)
3 ) (resp. P(4) =

(v
(4)
1 , v

(4)
2 , v

(4)
3 , v

(4)
4 )) with all + signs by setting

v
(3)
1 = (1,−1), v

(3)
2 = (0, 0), v

(3)
3 = (−2a − 1, 1),

(resp. v
(4)
1 = (1,−1), v

(4)
2 = (0,−1), v

(4)
3 = (0, 0), v

(4)
4 = (−2a − 2, 1) ),

as shown in Figure 10.

(0,0)

(1,-1)

(-2a-1,1)

(0,0)

(1,-1)
(0,-1)

(-2a-2,1)

Figure 10. lattice multi-polygons P(3) and P(4) with all +
signs whose Ehrhart polynomials equal am2 + bm − 1

Then we have B(P(i)) = i and C(P(i)) = −1 for i = 3, 4. One also has
that

A(P(3)) =
1

2
det(v

(3)
3 , v

(3)
1 ) = a
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and

A(P(4)) =
1

2
(det(v

(4)
1 , v

(4)
2 ) + det(v

(4)
4 , v

(4)
1 )) = a.

When b ≥ 5
2
, similarly to (b), we define P ′ = (v′

1, . . . , v
′
5) with all + signs

on sides by setting

v′
1 = (0, a + b − 1), v′

2 = (−1,−2b + 4), v′
3 = (−1, 0),

v′
4 = (1, 1), v′

5 = (1, 0).

Then we have B(P ′) = 2b and C(P ′) = −1. One also has that ]P ′ = a+b−1.
Thus it follows from ]P ′ = A(P ′) + 1

2
B(P ′) + C(P ′) that A(P ′) = a, as

required. ¤
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