GRADED QUIVER VARIETIES, QUANTUM CLUSTER ALGEBRAS
AND DUAL CANONICAL BASIS
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ABSTRACT. Inspired by a previous work of Nakajima, we consider perverse sheaves over
acyclic graded quiver varieties and study the Fourier-Sato-Deligne transform from a
representation theoretic point of view. We obtain deformed monoidal categorifications of
acyclic quantum cluster algebras with specific coefficients. In particular, the (quantum)
positivity conjecture is verified whenever there is an acyclic seed in the (quantum) cluster
algebra.

In the second part of the paper, we introduce new quantizations and show that all
quantum cluster monomials in our setting belong to the dual canonical basis of the
corresponding quantum unipotent subgroup. This result generalizes previous work by
Lampe and by Hernandez-Leclerc from the Kronecker and Dynkin quiver case to the
acyclic case.

The Fourier transform part of this paper provides crucial input for the second author’s
paper where he constructs bases of acyclic quantum cluster algebras with arbitrary co-
efficients and quantization.

CONTENTS
1. Introduction 1
Acknowledgments 3
2. Preliminaries 3
3. Monoidal categorification 15
4. A reminder on quantum unipotent subgroups 21
5. T-system in quantum unipotent subgroup 28
6. Twisted t-analogue of ¢-characters 32
7. Dual canonical basis 38
References 40

1. INTRODUCTION

1.1. Motivation. Cluster algebras were invented by Fomin and Zelevinsky in [FZ02].
They are algebras generated by certain combinatorially defined generators (the cluster
variables). The quantum deformations were defined in [BZ05]. Fomin and Zelevinsky
stated their original motivation as follows:

This structure should serve as an algebraic framework for the study of dual canonical
bases in these coordinate rings and their g-deformations. In particular, we conjecture that
all monomials in the variables of any given cluster (the cluster monomials) belong to this
dual canonical basis.

However, despite the many successful applications of (quantum) cluster algebras to
other areas (cf. the introductory survey by Bernhard Keller [Kell2]), the link between

(quantum) cluster monomials and the dual canonical basis of quantum groups remains
1
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largely open. Partial results are due to [Lamlla] [Lam11b] [HL11] for quivers of finite
and affine type.

Also, the following conjecture has attracted a lot of interest since the invention of cluster
algebras.

Conjecture 1.1.1 (Positivity conjecture). With respect to the cluster variables in any
given seed, each cluster variable expands into a Laurent polynomial with non-negative
integer coefficients.

This conjecture has been proved for cluster algebras arising from surfaces by Gregg
Musiker, Ralf Schiffler, and Lauren Williams [MSW11], for cluster algebras containing
a bipartite seed by Nakajima [Nakl1], and the quantized version for quantum cluster
algebras with respect to an acyclic initial seed by [Qin10]. Recently, Efimov obtained
further partial results on this conjecture for quantum cluster algebras containing an acyclic
seed using mixed Hodge modules, cf. [Efill]. After this article was posted on Arxiv,
Kyungyong Lee and Ralf Schiffler informed the authors about a combinatorial proof of
this conjecture for skew-symmetric coefficient-free cluster algebras of rank 3, ¢f. [LS12].

1.2. Strategy and main results. In [HL10]|, Hernandez and Leclerc propose monoidal
categorification as a new approach to Conjecture 1.1.1: for a given cluster algebra A,
find a monoidal category C such that its Grothendieck ring R is isomorphic to A and
the preimages of the cluster monomials are equivalence classes of simple objects. Naka-
jima observed in [Nak11] that the Grothendieck ring could be constructed geometrically,
following his series of works [NakO1] [Nak04] where he studied quantum affine algebras
via (graded) quiver varieties. As a consequence, he gave a geometric construction of the
cluster algebra associated with a bipartite quiver in the spirit of monoidal categorification.

Inspired by the previous work of Nakajima [Nak11], we use geometry of certain graded
quiver varieties to construct a deformed Grothendieck ring, and show that it is isomorphic
to the acyclic quantum cluster algebra. This proof consists of the following steps:

(1) use a new family of graded quiver varieties to construct a Grothendieck ring with
a new t-deformation, which is treated in detail in [Qin12b] (¢f. [Qinl2al);

(2) use the Fourier-Sato-Deligne transform to identify the t-analogue of g-characters
(qt-characters for short) of certain “simple modules” inside the Grothendieck ring
with the quantum cluster variables whose cluster expansions were obtained in
[Qin10];

(3) prove that the above identification is an algebra isomorphism.

The second step is crucial. We can no longer use Nakajima’s previous construction
because our quiver is not bipartite. Instead, we interpret the graded quiver varieties using
quiver representation theory. This allows us to use the Nakayama functor to construct the
pair of dual spaces to which we apply the Fourier-Sato-Deligne transform. This conceptual
interpretation allows us to simplify and generalize Nakajima’s previous work.

As a corollary, Conjecture 1.1.1 is true for any quantum cluster algebra containing an
acyclic seed.

Next, we change the quantizations of the t-deformed Grothendieck rings, the gt-characters,
the ring of gt-characters, and the acyclic quantum cluster algebra. Notice that the stan-
dard modules and the simple modules induce a dual PBW basis and a dual canonical
basis of the quantum cluster algebras, c¢f. [Qin12b] for a more general treatment. Fol-
lowing the idea of [GLS11a], we use T-systems to show that the quantum cluster algebra

A? is isomorphic to a certain quantum coordinate ring, by comparing the dual PBW
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bases of both algebras. As a consequence, up to specific g-powers, we could identify the
dual canonical bases of both algebras. Via this identification, up to specific g-powers,
the quantum cluster monomials are contained in the dual canonical basis of the quantum
coordinate ring.

1.3. Plan of the paper. In Section 2, we recall the definitions and some properties of
the ice quiver with z-pattern, of the graded quiver varieties, of the geometric constructions
of deformed Grothendieck rings, and of t-analogues of g-characters.

In Section 3, we give a representation theoretic interpretation of graded quiver varieties
and study the Fourier-Sato-Deligne transforms. We obtain the deformed monoidal cat-
egorification of an acyclic quantum cluster algebra and the positivity conjecture in this
case (Theorem 3.3.7 and Corollary 3.3.9).

In section 4, we recall the unipotent quantum subgroup following [Kim12]. In Section 5,
we recall the T-systems of quantum minors inside quantum coordinate rings.

In Section 6, we introduce new quantizations of the deformed Grothendieck ring, the
ring of gt-characters and the quantum cluster algebras. Then in Section 7, we show that,
up to specific g-powers, the quantum cluster monomials of these algebras can be identified
with certain elements in the dual canonical basis of the corresponding quantum unipotent
subgroups (Theorem 7.0.4).
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2. PRELIMINARIES

In this Section, we give the definitions and some basic properties of ice quivers, quantum

cluster algebras, graded quiver varieties, deformed Grothendieck rings, and t-analogues of
g-characters. More details can be found in [BZ05] [Nak01] [Nak04] [Nak11], or in [Qin10]
[Qin12b].

2.1. Ice quivers with z-pattern. A quiver () is an oriented graph, which consists of a
set of vertices I = {1,...,n} and a set of arrows ). For each arrow h, denote its source
by s(h) and its target by ¢(h). Associate to h a new arrow h which points from ¢(h) to
s(h). Denote the set {h|h € Q} by Q. Define H to be the disjoint union of 2 and Q. The
opposite quiver Q% of () consists of the vertices in I the arrows in . Sometimes we also
denote I and €2 by @)y and (), respectively.

The quiver @ is called acyclic if it contains no oriented cycles. It is called bipartite if
at any vertex ¢ € I, either there are no incoming arrows or there are no outgoing arrows.

Example 2.1.1. The acyclic quiver Q) in Figure 1 has vertices 1, 2, 3. Its opposite quiver
Q" 1s given by Figure 2.

Let @ be a full subquiver of another quiver @, which has vertices {1,...,m} and set of
arrows ). We say that @) is an ice quiver with principal part @ and coefficient type (or
frozen pattern) @ — Q). The vertices n+ 1,..., m are called frozen vertices.
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FIGURE 1. An acyclic quiver @)

F1GURE 2. The quiver Q%

Example 2.1.2. Figure 3 is an example of an ice quiver with m = 6, whose principal
part is the quiver in Figure 1.

(4)

FIGURE 3. An ice quiver @f of level 1 with z-pattern

We associate to @ an m X n matrix' B = (b;;) such that its entry in the position (i, j)
is
b;; = #{arrows from ¢ to j} — t{arrows from j to i}.

If further a compatible pair (A,E) is given, we can construct the associated quantum
cluster algebra A? following Section 2.2.

Example 2.1.3. The matrix B = Bq associated with the quiver Q) in Figure 1 is

0 1 1
-1 0 1
-1 -1 0

INotice that this convention is opposite to that of [Nak11].
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The matriz B associated to the ice quiver @ in Figure 3 is

0 1 1
-1 0 1
-1 -1 0
-1 0 0
1 -1 0
1 1 -1

The matriz Bg s invertible. Thus we have a canonical choice of A given by

o 0 0 1 0 O

0 0 0 1 1 0
a1 o0 002 11
A==Bg=|_1 1 22 0 -1 —2
0 -1 -1 1 0 -1

o o0 —-12 1 O

Let [ be a non-negative integer and () an acyclic quiver. Denote by mod C() the category
of finite dimensional right CQ-modules, or equivalently representations of the opposite
quiver Q°?. The indecomposable projectives are denoted by P;. The bounded derived
category D’(mod CQ) has an Auslander-Reiten quiver, from which we extract the full
subquiver supported on the vertices 7¢P;, i € I, 1 < d < I+ 1, and delete the arrows
among the vertices 71 P;, i € I. The resulting ice quiver () is called a level | ice quiver
with z-pattern, where the vertices corresponding to 74+1P; i € I, are chosen to be frozen.
In this case we also denote it by Ql The associated (I + 1)n X In-matrix B is denoted by
B* or Bf.

Example 2.1.4. The quiver in Figure 5 is a level 1 ice quiver with z-pattern. The quiver
in Figure 4 is a level 2 ice quiver with z-pattern.

FIGURE 4. An ice quiver @5 of level 2 with z-pattern

2.2. Quantum cluster algebras. We refer the reader to [Qinl0] for detailed definitions
and important properties.

Following [BZ05], we define (generalized) quantum cluster algebras over (R, v), where
R is an integral domain and v an invertible element in R. In the present paper we shall
only be interested in the case where (R,v) = (Z[v*],v) for a formal parameter v. We also
denote v2 by ¢ and v by gz2.

Let m > n be two positive integers. Let A be an m x m skew-symmetric integer matrix
and B an m X n integer matrix. The upper n x n submatrix of B, denoted by B, is called
the principal part of B.
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Definition 2.2.1 (Compatible pair). The pair (A, E) 1s called compatible if we have

(1) A-B) =g
for some n x n diagonal matrix D whose diagonal entries are strictly positive integers. It

1s called a unitally compatible pair iof moreover D is the identity matriz 1,,.

Let (A, é) be a compatible pair. The component A is called the A-matriz of (A, E),
and the component B the B-matriz of (A, B).

Proposition 2.2.2. [BZ05, Proposition 3.3] The B-matriz B has full rank n, and the
product DB is skew-symmetric.

We write A(g, h) for ' Ah, g, h € Z™, where ()T means taking the matrix transposition.
Definition 2.2.3 (Quantum torus). The quantum torus 7 = T (A) over (R,v) is the

Laurent polynomial ring Z[v*F)[x5, ... xt], endowed with the twisted product * such that
we have
29 % P = pA@h) p9th

for any g and h in Z™. Here for any g = (gi)1<i<n € Z™, 29 denotes the monomial
[licicm X

We denote the usual product in 7 by -, and often omit this notation.

Assume that R is endowed with an involution sending each element r to 7, such that ©
equals v~!. We extend the involution of R to an involution (anti-automorphism) of 7~ by
defining 29 = 9 for any g € Z™. N

A sign e is an element in {—1,+1}. Denote by b;; the entry in position (7, j) of B. For
any 1 < k£ < n and any sign €, we associate to B an m x m matrix E. whose entry in
position (i, ) is

0ij if £k
max (0, —eby) if 1 #k,j =k,

and an n X n matrix F, whose entry in position (i, j) is

i if i £k
max(0,eby;) ifi=k, j#k.

Fix a compatible pair (A, B) and the quantum torus 7 = T (Z™, A). Notice that the
quantum torus T = T (+, %) is contained in its skew-field of fractions, which is denoted
by F, cf. [BZ05, Appendix].

In the following, we consider triples (A, B, a2 ) such that (A, B ) is a compatible pair

and o’ = (z),--- ,2!,) is an m-tuple of elements in the quantum torus F.

r''m

Let T, be an n-regular tree with root ¢o. There is a unique way of associating a triple
(A(t), B(t), z(t)) with each vertex ¢ of T,, such that we have

(1) (A(to), B(to), z(to)) = (A, B, z), where 2 = (21, -+ , ), and _
(2) if two vertices ¢ and ¢’ are linked by an edge labeled k, then the seed (A(t'), B(t'), X (1))
is obtained from (A(t), B(t), X(¢)) by the mutation at k defined as below.
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Definition  2.2.4  (Mutation [BZ05]). Given any sign €, the mnew triple
(A(t"), B(t"),z(t')) obtained from (A(t), B(t),z(t)) by the mutation at k is given by

(3) (A(t), B(t)) = (E(t) " A(t) Ec(t), E(t) B(t)F(t)),
and
25, (t) * z(t') =v A (er,2 1 <icm bir(B)]+ei) H zk]+(t)
(4) 1<i<m
+ A (e 1 <i<ml ik ()] +e;) H :cj(t)[fbj’““(t),
1<j<m
(5) () =x;(t), 1<i<m, i#k.

Notice that here [ |, denotes the function max{0, }. We recall from [BZ05] that py is
an involution, and is independent of the choice of .

The triples (A(t), B(t),z(t)), t € T,, are called the (quantum) seeds. The elements
z;i(t), 1 <i < m,t e T,, are called the z-variables. The z-variables x;(t), 1 < i < n,
t € T,, are called the quantum cluster variables. For each t € T,, each monomial in
the x;(t), 1 < i < n, is called a quantum cluster monomial. Notice that for j > n, the
z-variables x;(t) do not depend on t.

Definition 2.2.5 (Quantum cluster algebra). The quantum cluster algebra A? = A49(+, *)
over (R,v) is the R-subalgebra of F generated by the quantum cluster variables z;(t) for
all the vertices t of T,, and 1 <14 < n, and the elements x; and acj_l for all j > n.

The specialization A = A9, is called the classical cluster algebra, which is also
denoted by AZ. If R = Z[v¥], we say that A7 and A are integral.

Theorem 2.2.6 (Quantum Laurent phenomenon). [BZ05, Section 5| The quantum cluster
algebra A? is a subalgebra of T .

Similarly, the cluster algebra A = A” is a subalgebra of the Laurent polynomial ring

7-|'v»—>1 = TZ-

2.3. Cluster category and quantum cluster variables. Let @ and B be given as in
Section 2.1. We associate to B the cluster algebra A% as in [FZ07]. Let the base field k
be the complex field C. Let W be a generic potential on Q in the sense of [DWZ08]. As
in [KY1 1] with the quiver with potential (Q W) we can associate the Ginzburg algebra
I = F(Q W) Denote the perfect derived category of I' by per" and denote the full
subcategory of perI' whose objects are dg modules with finite dimensional homology by
Dyql'. The generalized cluster category C = C(@,W) in the sense of [Ami09] is the quotient
category
C = perI'/Dy I

Denote the quotient functor by « : perI' — C and define

T, =n(el), 1<i<m,

T = ®i<i<mTi-

It is shown in [Plalla] that the endomorphism algebra of T is isomorphic to HT.

For any triangulated category U and any rigid object X of U, we define the subcategory
pr,,(X) of U to be the full subcategory consisting of the objects M such that there exists
a triangle in U

M1—>M0—>M—>EM1,
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for some M; and My in add X. The presentable cluster category D C C is defined as the
full subcategory consisting of the objects M such that

M € pro(T)Npre(X7'T) and  dim Exty (T, M) < oo,
cf. [Plallb).

We refer to [Plallb] for the definition of the iterated mutations of the object T'. There
is a unique way of associating an object T'(t) = ®1<;<n1;(t) of D with each vertex ¢ of
T,, such that we have

(1) T(ty) =T, and
(2) if two vertices ¢t and t' are linked by an edge labeled k, then the object T'(t') is
obtained from T'(¢) by the mutation at k.
Let F C perI" denote the full subcategory pr ., (I'). The quotient functor 7 : per[' — C

induces an equivalence F = pr,(T'). Denote by 7! the inverse equivalence. For an object
M € pro(T), we define its indezx indp M as the class [t~'M] in Ky(perT).

Theorem 2.3.1. [Plallb] (1) For any vertex t of T, the classes [indp T;(t)] form a basis
of Ko(perT).

(2) For a class [P] in Ko(perT'), let [[P] : T;(t)] denote its ith coordinate in this basis.
Then we have ([indr T;(t) : Tj])1<j<m = Gi(t), where g;(t) is the ith extended g-vector
associated with t, cf. [FZ07].

Definition 2.3.2 (Coefficient-free objects). An object M in C is called coefficient-free if
(1) the object M does not contain a direct summand T;, i > n, and
(2) the space Ext;(T;, M) vanishes for i > n.
For a coefficient-free object M € C, the space Exté(T , M) is a right H°T-module whose

support is concentrated on (). Thus, it can be viewed as a P(Q, W)-module, where W

is the potential on ) obtained from 1% by deleting all cycles through vertices j > n and
P(Q, W) is the Jacobi algebra of (Q,W). Denote by ¢ : Ko(mod P(Q,W)) — Kq(perT)
the map induced by the composition of inclusions mod P(Q, W) — Dy I" — perI. For

any vertex i of @, it sends [S;] to
(6) S olel= D el
arrows i—j arrows l—1

as one easily checks using the minimal cofibrant resolution of the simple dg I-module 5;,
cf. [KY11]. Thus, the matrix of ¢ in the natural bases is —B.

By the twisted Poincaré polynomial of a topological space Z, we mean the polynomial
p(Z) =3, (=1)Pdim H?(Z,Q). When @ is acyclic, we have the following construction.

Definition 2.3.3 (Quantum CC-formula, [Qinl0]). For any coefficient-free and rigid
object M € D, we denote by m the class of Ext;(T, M) in Ko(mod kQ), and associate to
M the following element in T%:

(7) Tar = 30 (Gre(Bxtd (T, M)))g @im Gre(B (1) yindr (M) =6(c),

where pq%( ) denotes the twisted Poincaré polynomial, and Gr.(Exts(T, M)) is the sub-

module Grassmannian of Ext(T, M) whose C-points are the submodules of the class e in
Ko(mod P(Q, W)).

The following theorem is the main result of [Qin10].
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Theorem 2.3.4 ([Qinl0]). Assume that the quiver Q) is acyclic. For any vertex t of T,
and any 1 <1 <n, we have

1) = Ti(t)-
Moreover, the map taking an object M to x); induces a bijection from the set of isomor-
phism classes of coefficient-free rigid objects of D to the set of quantum cluster monomials

of A1

2.4. Deformed Grothendieck ring via graded quiver varieties. In [Nakl11], Naka-
jima used graded quiver varieties associated with bipartite quivers to construct deformed
Grothendieck rings. In order to generalize his result to study acyclic quantum cluster
algebras, we will use a new family of graded quiver varieties and a modified version of
deformed Grothendieck rings for acyclic quivers ), which have been studied in [Qin12b].
For the convenience of the reader, we shall recall the basic definitions and properties of
these constructions.

Notice that, by the dimension of a complex variety, we always mean the complex di-
mension. By default, we only consider geometric points.

Graded quiver varieties. Assume that @) is an acyclic quiver with the set of vertices I =
{1,...,n}, such that b;; <0 whenever i > j, cf. Section 2.1 for the definition of b;;.

We denote the finitely supported bigraded vectors in N'*Z by w = (w;(a))ics.aez, and
the finitely supported bigraded vectors in N/XZ+32) by v = (v;(a));4. Let the associated
graded complex vector spaces be W = C¥ = @, ,W;(a) = @iva(Cwi(“) and similarly V =
C’ = @i,av;(a> - @i,acvi(a)'

The vectors w and v can be naturally viewed as elements in Z*®. For any d € R,
define the degree shift [d] of vectors n = n;(a) € Z"® by n[d);(a) = n;(a+d). For any two
vectors n' = nl(a), n? = n?(a) in Z™E if at least one of them has finite support, their
inner product is defined as n* - n* = >, nl(a)ni(a).

The Cartan matrix C associated with Q is the I x I matrix whose entry in position
(i,7) is

(2 if i = j

® o= { Lt 0170
Definition 2.4.1 (¢-Cartan matrix). We define the linear map

C,: Z[x(%%) _y gIxZ

such that for each n € ZIX(%JFZ), we have

O)  (Comel@) =ma+5)+mla—3) = 3 tanla+z)— 3 bgnle )

2 = =
:1<i<k Jk<j<n
It is called a g-analogue of the Cartan matriz C, or a g-Cartan matrix for short.

It is easy to see that C, naturally extends to a linear map from Z'*¥ to Z*® which is
also denoted by C,. Furthermore, C, commutes with [d], d € R.

The g-Cartan matrix C, is symmetric in the following sense.

Lemma 2.4.2. For any two vectors n*,n?> € Z™® if at least one of them has finite
support, we have the following identity:

1

(10) 7 - Con'l=5) = Car? ' [=3)
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Definition 2.4.3 (I-Dominance). A pair (v, w) is called I-dominant * if w — C,v € N/*Z,
Define the dominance order on the set of pairs (v,w), such that (v,w’) < (v,w) if
w — Cgv) = w— Cy(v+1"), for some v € N'*(Z+2),
We say v' < v if (v, w) < (v,w), or equivalently, if vi(a) > v;(a), for all (i,a). We say
w' <w if (0,w') < (0,w).
Definition 2.4.4 (Weight order). We define the total order (weight order) <,, on the set
of pairs (i,a), i € I, a € R, such that (I',a')<,(i,a) if a’ < a, orifad =a and i’ <i.

Denote the set {n € Z'*%|ny(a) = 0, Vk € I, a < 0} by E. Denote the set {n[3]|n € E}
by E[3].

Lemma 2.4.5. 1) C, restricts to an isomorphism from E[3] to E.
2) Cy restricts to an isomorphism from E to E[—3].

We denote the inverses of both the restriction maps by C L

Let ex, € N2 be the unit vector concentrated at the degree (k,a). Denote by Di,j
the dimension of Hompedcq (B, Pj), ¢ < j, namely the number of (possibly trivial) paths
from i to j in the quiver Q).

Lemma 2.4.6. The vector €, = C'q_l(ek,a) satisfies, for all k' € I,

- o0 ifb<a+1
(11) Cha " Chtp = { P ifb= a+§

Consider the opposite quiver Q7 and denote its set of arrows by (2. Define the function
¢ : H — {41} such that €(Q) = {1}, €(Q) = {—1}. Similarly, for a linear map B}, indexed
by h € H, we define (eB);, = e(h)By. Given finitely supported vectors v, v/ in N/*(Z+3)
and w in N?*% we define the following graded vector spaces

L*(v,v") = @0 Hom(Vi(a), V] (a)),
L<w (U), U) = @(i,a) Hom(m<a)7 V;(a - _))7
L= (v, w) = @& (;q) Hom(V;(a), Wi(a — 5)%

E= (v, ") = (Bnen.o Hom(Vi (@), Viipy(a))
® (@Eeﬁ,a Hom(Vs(E)(a), VZ(E)(@ —1))).

Notice that the weight order strictly decreases along the linear maps in the last three

spaces.
Consider the affine space
(12) Rep*(Q, v, w) = E<* (1,) @ L= (w, v) & L= (v, w).

Denote the coordinates of its points by

(370475) = ((Bh)heH; 0675) = ((bh)heﬂv (bﬁ)ﬁeﬁa (ai)ia (51)1)

(13) = ((Babna)n, (Babp o )5 (Balia)is (Bafia)i)-

2The [ here stands for “loop” in the quantum loop algebras.
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Define the analogue of the moment map p : Rep®(Q%, v, w) — L*(v,v[—1]) such that
w(B, o, B) = @ael—l—%,ielu(Bv @, B)ia

= EBi,a(Z(bh:abE,aJrl - bﬁ,a+1bh7a+1) =+ Oéi,aJr%ﬁi,aJrl)?
heQ

or u(B,a, ) = (eB)B + af for short.

(14)

Example 2.4.7. Let Q) be given as in Figure 1. Figure 5 is an example of the vector space
Rep®(Q°P, v, w), where the vertices denote the (i,a)-degree components of W and V' and
the arrows denote the corresponding linear maps. The components in the same rows have
the same i-degrees, and those in the same columns have the same a-degrees (or degrees
for short).

N
|
N[ —=
N—

1

Ws(—-1) / ‘{(m / Ws(1)

— — Va(
Wy(—1) )

\WQ(O)
AL\
Vi

i

N =
~—
4

Wa(1)

a
\

=
—
=~
—~
I
N[ =
~—

Wi(-1)

W1(0)

Wi(1)

FIGURE 5. Vector space Rep®(Q%, v, w)

The group G, = [[;,GL(Via) acts naturally on the level set ~'(0) such that for
g = (gia) € G,, we have g(a) = ga, g(8) = Bg~!, g(bp) = gt(h)bhgg(llz)a g9(by) = gt@bﬁgs}%)-
We fix the character of x of G, such that x(g) = []; ,(det gia)~".

The graded quasi-projective quiver variety M®(v,w) is defined to be the geometric
invariant theory quotient (GIT quotient for short) of u=*(0) with respect to y, and the
graded affine quiver variety Mg®(v,w) is defined to be the categorical quotient of 1~(0)
by the action of G,,. Then there is a natural projective morphism 7 from M*(v,w) to
Mo (v, w).

Denote the fibre of m over a point by m®,(v,w). When x = 0, we also denote the
fiber by L* = L*(v, w).

Remark 2.4.8. If the quiver QP is bipartite, our q-Cartan matriz Cy and quiver varieties
are isomorphic to those defined in [Nak11]. This can be seen by applying appropriate shifts
in the degrees a of the vectors v;(a), w;(a).

Let us define My*"® (v, w) to be the set of points in M®(v, w) such that the stabilizers
in G, of their representatives are trivial. Then the morphism 7 is an isomorphism from

T (Mo*" (v, w)) to Mo*™®(v,w), cf. [Qin12b].
Proposition 2.4.9. M;*"*(v,w) is non-empty if and only if (v, w) is I-dominant.

Theorem 2.4.10 (Transversal slice). Assume x is a point in My**®(v° w), which is
naturally embedded into a quotient My®(v,w). Let T be the tangent space of Mo* (v, w)
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1 1 0

at x. As (V0 w) is l-dominant, define wt = w — Cyv®, vt = v — 0. Then there exist
neighborhoods U, Ur, U+ of v € My*(V,W), 0 € T, 0 € My*(vt, wt) respectively, and
biholomorphic maps U — Up x UL, 7=Y(U) — Ur x 71 (U*), such that the following
diagram commutes:

M (v,w) D7 U) — Up x 77 (U) € T x Mt wh)
U

My (v, w) D — Urx ULt CT x My (vt wh)

IR

In particular, the fibre m®, (v, w) = 7~ 1(z) is biholomorphic to the zero fibre L*(v, w)
over 0 € Mo®* (v, wh).

Proposition 2.4.11. We have a stratification

(15) Mo® (v, w) = U w)>(w,) Mo 5 (v, w).

In particular, the variety Mo®*(w) = U, My*(v,w) has a stratification
= Ly M* " (v, w).

Mo* (w) =
Corollary 2.4.12. Let (v,w),(v°,w) be [-dominant pairs. Then we have My*"®(v°, w) C
M (v, w) if and only if (v°,w) > (v, w).

For any two pairs of vectors (v, w?), (v, w?), define quadratic forms d((v', wt), (v?, w?)),

d'((vh,wh), (v2,w?)), diy (w, w?), and & (w, w?) such that

(16) A" w'), (02, 02)) = (' = Cyt) - [~ 5] 40" w3,
5 1.2 1 1 -1 2

(17) dy (', w”) = —w'{5] - O w”,

(18) £'(w', w?) = —wl[%] O+ wQ[%] O

(19) d' (W' wh), (0%, w?) = d((v', wh), (0%, w?)) + diy (w', w?),

Notice that d’((0,w"), (0, w?)) equals dy (w', w?).

Remark 2.4.13. Ourd’ and c?W are different from d and C,le in [Nak04], but the properties
are similar.

Lemma 2.4.14. The following equality holds:
(20) d((v',w'), (v, w?)) = d'((0,w' = Cp), (0.w” = Cp?)).

Theorem 2.4.15 ([Qin12b)). The graded quiver variety M*(v,w) is smooth connected of
dimension d((v,w), (v,w)). Furthermore, it is homotopic to the zero fiber L*(v,w), and
its odd homology vanishes.
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Deformed Grothendieck ring. Let (v,w) be a pair of vectors. The map 7 : M*(v,w) —
M,*(w) is proper since it is the composition of a projective morphism and a closed em-
bedding. The rank 1 trivial local system over M*®(v,w) yields a perverse sheaf 1 (e (yw) =
C[dim M*(v,w)]. Define IC,,(v") to be the simple perverse sheaf generated by the rank
1 trivial local system on M* 8 (v/, w).

By the celebrated decomposition theorem [BBDS82], the sheaf m,(v) = m(1re(ww))
decomposes into a direct sum of shifts of simple perverse sheaves on M;*(w). The results
in [Nak01, Theorem 14.3.2] can be translated into the following.

Theorem 2.4.16. We have a decomposition

(21) 71-w(v) - @v’:(v’,w) is -dominant 69dEZ aiy’;wlow (U/)[d]a
where the coefficients af ., satisfy al ., € N, af ., = a;ﬁ,;w, Al ey = Oao if (v,w) is

d

. . /
l-dominant, and aj, ., vanishes unless (v',w) > (v, w).

We define the Laurent polynomial a, ,.,(t) in the Laurent polynomial ring Z[t*] to be

() =Yl ot

deZ

For each [-dominant pair (v, w), we define a set
Pw ={I1C,(v)|(v,w) is I-dominant}.

This set is of finite cardinality.

Let D.(M;*(w)) be the bounded derived category of constructible sheaves on Mg*(w),
and Q,, its full subcategory whose objects are isomorphic to the direct sums of the shifts
of the objects in P,. Then Q,, and P, are stable under the Verdier duality D. Let I,
be the quotient of the free abelian group generated by the isomorphism classes (L) in
Q,, modulo the relation (L) = (L) + (L") whenever L is isomorphic to L' @ L"”. The
group K,, has a natural Z[t*]-structure such that ¢(L) = (L[1]). The duality D induces
an involution () on K, which satisfies t(L) = t~*(L) and (ICy,(v)) = (ICy(v))

The decomposition (21) implies that, by abuse of notation, C,, has two Z[t*]-bases:
{IC,(v)|(v,w) is [-dominant} and {m,(v)|(v, w) is I-dominant}.

As in [Nakl1], we define the abelian group K*,, = Homgp+) (K, Z[t¥]). Let {L,(v)},
{xw(v)} be the bases of K£*,, dual to {IC\,(v)}, {m,(v)} respectively. Define another basis
{My(v)|(v,w) is I-dominant} of K£*,, by

(My(v), L) =y 8 M@=k qim [k (3!, | L),
k

Toy,w

where x,,,, is any point in My*"**®(v,w), i,,, is the inclusion, and ( , ) is the canonical

pairing. Notice that the definition of M, (v) is independent of the choice of x,,,. Indeed,
it suffices to check this for the elements L in the basis {7, (v)} and here it follows from
Theorem 2.4.10.

In the situation of Theorem 2.4.10, we have

<Mw (U/>’ Icw(v» = <Mw¢ (U,J_)7 IC,. (UL»'
By the properties of perverse sheaves, we have
(22) Ly(v) € My(v)+ > t'Z[tT M, ().
(v w)<(v,w)

Therefore, {M,,(v)|(v,w) is I-dominant} is a basis.
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Definition 2.4.17 ([Nakl11, 3.3]). Define R; to be the infinite rank free Z[t*]-module con-

sisting of the functionals (f,,) € [],, K*w such that we have (f,, [Cyy(v)) = (fpr, [Cyr (vF))

for any l-dominant pairs (v,w), (w,vt) appearing in Theorem 2.4.10.

Let M(w) = (fuw)w denote the functional determined by f, = M,(0) and L(w) =
(fu)w the functional determined by f,, = L,(0). Then {M(w)} and {L(w)} are two
bases of R;.

By [VV03], resp. [Nakll, Section 3.5], for any w, w', w?, such that w! +w? = w, we
have a restriction functor

Res,1 o : Do(Mo®(w)) = Do(Mo® (")) x De(Mo® (w?)).

w

wl w?
Furthermore, %:17w2 sends 7, (v) to
Dot pv2=y T2 (Ul) D 772 (UQ)[d((U2> w2>’ (Ula wl)) - d((vla wl)v (Uzv w2))]a

where (v!, w'), (v*, w?) are not necessarily /-dominant.

We define Res" = > 1 2, ﬁ\e/szlvwg[—g’(wl, w?)] for each w. Because these functors
are compatible with Theorem 2.4.10, they induce a multiplication of R;, which we denote
by ®.

The arguments of [VV03] imply the following result.

Theorem 2.4.18. The structure constants of the multiplication ® with respect to the
basis {L(w)} of R are positive:

(23) L(w") ® L(w?) =Y b2 o () L(w?)

with b . (t) € N[t*].
2.5. qt-characters. Define the ring of formal power series
(24) Y = Z[t*][[Yi(a)*lieraez,

where ¢, Y;(a) are indeterminates. We denote its product by -, and often omit this notation.
Given vectors w, v as before, we denote the monomial m = Y*~%* by m(v,w). By (20),
we have a naturally defined bilinear form d’ for such monomials. Fori € I, b € (% +7Z),
we sometimes denote m(e;p,0)™! by A p.
Endow Y with the twisted product * and the bar involution ( ) such that for any two
monomials m! = m(v!, wl), m? = m(v? w?), we have

(25) T—t ml=m,
(26) ml * m2 = t‘g(ml,m2)+67(m2,ml)mlm2.

The t-analogue of the g-character map is defined to be the Z[t*]-linear map x,( ) from
R.: to YV such that we have

(27) Yae() = S0 ma () Yo,

v

The following results follow from [VV03] and [Nak04, Theorem 3.5].

Theorem 2.5.1. x,:( ) is an injective algebra homomorphism from Ry to Y.
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deg = —1 deg =0
Wg(—l) < Wg(O)
Wy (—1) W5(0)
Wi(—1) < Bron W1(0)

FIGURE 6. Affine quiver variety M,*(v,w) = E,

3. MONOIDAL CATEGORIFICATION

Let us fix the following conventions.

e We always assume w € N/X{=10} (level 1 case). Furthermore, we assume v €
N*{=3} which is naturally identified with a dimension vector v € NZ.

e All the representations are those of the opposite quiver (Q°P.

e We assume the ice quiver @ is of level 1 with z-pattern.

By putting the above restriction of (v, w) on the definition of x,;, we obtain the trun-
cated character map y,;=". Notice that the truncation preserves all the [-dominant pairs.
Theorem 2.5.1 still holds for the truncated characters, ¢f. [HL10, Proposition 6.1].

3.1. Fourier-Sato-Deligne transform. For each multiplicity parameter m = (m;);c; €
N’ define the injective Q-representation I™ = @;c;I"™ and similarly the projective
representation P™ = @;c;P™.

Let (B, a, 3) be any point of Rep®(v,w) and r any path of Q°?. Define® the homomor-
phism z, to be the composition 8y B, along the path B, 7o if r is nontrivial and
Bi(ryus(ry if 7 is €; for some vertex ¢ € I. Notice that each z. determines a morphism from
P:E;;")(O) to I:(};g”(_l). Furthermore, we have the following result.

Proposition 3.1.1. When v is big enough, the affine quiver variety Mg(v,w) stabilizes
to the affine space E, = Hom(Pv©) [v(=1)),

Proof. The proof is the same as that of Proposition 4.6(1) [Nak11]. O
Example 3.1.2. Figure 6 is an example of the space E,,.

Definition 3.1.3. For each dimension vector v € N!| let F(v,w) denote the variety
parameterizing all the I-graded submodules X = (X;)ier of "D such that dim X = v.

Since Q% is acyclic, the variety F(v,w) is smooth projective and irreducible [Rei08,
Theorem 4.10].

3 In [Nak11], our z, is denoted by y, if r is nontrivial and z; if r is e; for some vertex i € I.
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We define the variety F(v, w) by
(28) Flo,w) = {((X,2) € Flo,w) x By | Imz C X}.

Proposition 3.1.4. The quasi-projective quiver variety M®(v,w) is isomorphic to the
variety F (v, w).

Proof. The proof goes the same as that of Proposition 4.6 [Nak11]. U

Corollary 3.1.5. The quasi-projective quiver variety M®(v, w) is smooth and irreducible.

Proof. View F(v,w) x E, as a trivial vector bundle over F(v,w). Then Flv,w) is a

subbundle. Therefore, F(v,w) is smooth. Moreover, since F(v,w) is connected, so is
F(v,w). As a smooth and connected variety, F (v, w) is irreducible. O

Let E denote the natural dual space of the complex vector space E,,. Let us write

F(v, w)L for the annihilator sub-bundle in F(v,w) x EZ of the sub-bundle F(v,w) C

F(v,w) x E,. Its fibre over any given point X = (X;) € F(v,w) consists of the linear
maps z* = (zF) € E! such that, for any point (X,z2) € F(v,w), the natural pairing

(z,2%) = > Tr(z}z,) vanishes.
Using the Nakayama functor v( ), we obtain

B = (Hom(P*©, 1*CD))* = Hom(I*Y, »(P*©)) = Hom(1*Y, 1),

Notice that each 2 determines a morphism from I:(J;()”(_l) to I:Eff)” ©

Example 3.1.6. Figure 7 is an example of the dual space E,.

deg = —1 deg =0
W5(—1) » W3(0)
Wy (—1) » 115(0)
Wi (-1) » 111(0)

FIGURE 7. Dual space E;,

Lemma 3.1.7. The fibre of ﬁ(v,w)L over any given point X € F(v,w) consists of the
maps 2* = (z}) € Hom(1*Y 1O such that

(29) X =0
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Proof. The composition z*z € Hom(Pw(O),I“’(O)) is a direct sum of components (z*z);;,
where 4,5 € [ and (2*z2);; € Hom(ijj(O),I;”i(O)). We can write the pairing (z, z*) as
Yoier Tr(2%2)i.

Denote the quotient module I~ /X by Y. We can choose decompositions of vector
spaces

Hom(P»©® 1vC1) = Hom(P*© X) @ Hom(P*© Y),
Hom (7Y 1) = Hom(X, 1) @ Hom(Y, 1)

and write z = (2x, 2zy) and 2* = (2%, 25) correspondingly. Then (2*z); equals (zhzx +
2y2y )i, Vi € I. Notice that the natural pairing (zx,2%) = >, Tr(2%2x): between
Hom(P*®, X) and Hom(X, I(®) is non-degenerate.

The fibre of F (v, w) over a given point X consists of the pairs (X, z) such that zy = 0.
Therefore, the fibre of F(v,w): over X consists of the pairs (X, z*) such that 2% = 0. In

other words, z*X vanishes.
O

Fix any element z* € Hom(I*1, [%(©) We define “W = (°W});cr to be the kernel of
z* and denote its dimension vector by “w. Then (°W, 2*) is contained in F*(°w, w). For
any 1 <i <n, X; is a subspace of 7W,.

Definition 3.1.8. For any vector w € NP>{=10} jts coefficient-free part ®w € NIX{=1.0}
and its pure coefficient part fw € spany{e; 1 + eioli € I} are defined such that w =
w4+ Tw and, for any i € I, either ®w;(—1) or ®w;(0) vanishes. Let J denote the set of
w such that w = *w.

Proposition 3.1.9. 1) The fibre of JEL(U,w) over z* is isomorphic to the submodule
Grassmannian consisting of the v-dimensional submodules of W .
2) When z* is generic, the module W is a generic representation of Q° with dimension

Tw.

Proof. 1) Any element (X, z*) in the fibre must satisfy X C “W. Conversely, given any

submodule ®V; of W, the collection (V;); is contained in F*(v, w) by the definition of
W and Lemma 3.1.7.
2) Since we are interested in generic maps, we can replace w by ®w without changing

the generic kernels. A generic kernel in this case is known to be a generic module, cf.
[Plalla). * O

Remark 3.1.10. If the quiver Q° is bipartite, let Iy denote the sink points and I; denote
the source points. Assume that w is contained in J. In [Nakll]|, Nakajima defined the
dimensions Wi (q")ier.acz. Then we have “w; =7 W;(1) for i € Iy and “w; =" W;(¢*) for
je .

3.2. Generic characters. Let the Fourier-Sato-Deligne transform from 7 : F (v,w) —
E, to mt : F+(v,w) — EZ be denoted by ¥. Define the set

L, ={I1C,(v) € Py|suppVIC,(v) = E. }.
Recall that ¥(IC,(v)) is a perverse sheaf over E¥.

“More precisely, it follows from [Plalla] that there is a bijection between the generic objects of the
cluster category associated with our quiver @ and the reduced w above.
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Definition 3.2.1 (Twisted rank). For any w,w’ € N™>{=10} e define the integer 7y
to be

(30) Fuow = 7(v, w) = (—1)3me M (©0) rank W(1C,,(v))

if we have w' = w — Cyv for some v € NP(z} such that supp W(1C,,(v)) = E* and zero
otherwise.

Notice that IC(0, w) is always contained in .Z,,. It follows that r,,,, = 1. Furthermore,
for each fixed w, only finitely many of the r, . are nonzero. The matrix (r, ) is upper
unitriangular with respect to the dominance order.

Remark 3.2.2. Our definition of ry, . is the twisted version of that of [Nakll, 6.1].

We define the almost simple pseudo-module L(w) to be the element in the Grothendieck
group R; such that we have

(31) L(w) = rywLw).

w/

Denote the truncated gt-characters x,;<°(L(w)) by LY (w).

Theorem 3.2.3. The truncated qt-characters of the almost simple pseudo-modules in )
are given by

(32) LY (w) =Y ¢~ e W py(Gr, W)y e,

v

Proof. By the arguments of the proof of [Nakl1l, Theorem 6.3], for

Lw) = Y rank WIC,(v)Ly(v),
v:ICw (V) EZLw

we have

Xq,tSO(L(w)/) _ Z = dim(Gr,, W) Z tk; dim Hk(Grv/ JW)Yw—qu’
v’ k

=3 ) rank UIC,(0)ay v ()Y

v 0:ICy(v)ELw

By Theorem 2.4.10 and 2.4.15, for any point z,, € Mo**(v,w) C M*(v,w), the
odd homology of m®,, . (v,w) vanishes. Therefore the contribution of a, . (t)ICy(v)

to the odd homology is zero, i.e. av,v/(t)tdimf(v’,w)—dim/vto'(v',w) t+2].

is contained in NJ
Also, dim F(v/,w) + dim Gr, °W = dim F(¢/, w) 4+ dim F-(v/,w) — dim E* is divisible
by 2. Therefore, by twisting the sign of the term L(w — C,v) appearing in L(w)" by
(—1)dimMo®(vw) “we obtain the alternating sums of Betti numbers of the fibre Gr, 7.
O

Denote the possibly non-reductive group Aut(I*=Y) x Aut(I*©) by Aut(w). It acts
on the affine space £ = Hom(/*(-Y 1%(©). Let p be any element in E. By [DF09], the
space E(p,p) = Hom g cger)(p, p[1]) describes the normal space of the orbit Aut(w)p in
E?, cf. also [Plalla, Lemma 5.4.6]. Here K’(CQ®P) is the bounded homotopy category of
injective complexes of Q°P-representations.
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Lemma 3.2.4 ([Plalla, Lemma 5.3.6]). If p is a minimal injective resolution of Kerp,
then we have
E(p,p) = Hom(ker p, 7" ker p),
where ' is the Auslander-Reiten-translation of the category of CQ°P-modules.

Lemma 3.2.5. Let p be generic. If the kernel Ker p is a rigid module, then the codimension
of the orbit Aut(w)p is zero.

Proof. This lemma is the application of Lemma 5.4.4 [Plalla] to generic maps with rigid
kernels. ]

Proposition 3.2.6. 1) If M is a rigid module with a minimal injective resolution z* € E,,,
then L(w) = L(w).
2) If a generic map z* in EY, has a rigid kernel, then L(w) = L(w).

Proof. Observe that the fibre map 7t : F* (v, w) — E* is Aut(w)-equivariant. Since the
Aut(w)-stabilizer in E? is connected, if there is an open dense orbit in the affine space EY
then IC'(0,w) is the only element in the set .%,,. The proposition follows from Lemma

3.2.4 and Lemma 3.2.5. 0
Proposition 3.2.7. In the notation of Definition 3.1.8, we have a factorization

(33) LY (w) = LY (%w) - LY (fw).

Proof. This proposition is a direct consequence of Theorem 3.2.3. U

3.3. From deformed Grothendieck rings to quantum cluster algebras. In this
section, we construct Z-linear algebra homomorphisms from the ring of formal power
series ) in which (truncated) gt-characters live to the quantum torus 7 in which quantum
cluster algebras live. Detailed proofs of these maps’ properties can be found in [Qin12b],
where the ice quiver is not restricted to the z-pattern, and the maps might not be algebra
homomorphisms. _

As in Section 2.1, let () be an ice quiver whose principal part @) is acyclic. Using the
notation of Section 2.3, we define the linear map ind( ) from the set of finitely supported
vectors in N'™*Z to Z™ such that ind(e;,), i € I, a € Z, is the vector of coordinates in
the basis [e;,I'], 1 < i < m, of the index of the coefficient-free object whose image in the
cluster category Cg is T;[—al.

Lemma 3.3.1 (|Qinl2b]). We have, for 1 <k <n,

(34) ind(ex0) = ek,
(35) ind(ex,—1) = €xyn — €k
Lemma 3.3.2 ([Qinl2b]). We have

(36) ind(w — Cyv) = ind(w) + Bu.

Define N = 2n. Notice that A(e;, Bv) =0, for any n+1 < i < N and v € N™.
Recall that the associated quantum torus is the Laurent polynomial ring

(37) T =Zlg*2)let, .. 2],
together with the twisted product * such that for any g*, ¢> € Z", we have

1 2 1 1,2 1.2
29 % 19 :qu(g 9°) p9' +9°
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It has the bar involution () given by (q229) = ¢~ 2a9.
Define the coefficient ring to be
ZPlg*] = ZIg* [, - o)

Let ZP denote its semi-classical limit under the specialization q% — 1.

Definition 3.3.3 (Correspondence map). The Z-linear map cor from Y to T is given by
(38) cor(t'Y") = qgkaz:i”d(“’)7

for any w, and integer A.

Remark 3.3.4. The map cor is denoted by the composition Ticor in [Qin12b].

Lemma 3.3.5 ([Qinl2b]). We have, for any w', i =1, 2,

(39) Cor(yw1 * YwQ) _ cor(le) . cor(sz),
Let us define
(40) M7 w) = COrXq,tSO(M(w)),
(41) LT (w) = corxg =°(L(w)).
Explicitly, we have
M7 (w) = Py (L(v, w))q—gdimM-(v,w)xind(w)xév

=3 cor((My(0), 7 (v)))a™ @25,

It follows from definition that the truncated gt-characters of the simple modules are
given by

(42) Xaa = (L(w)) = D a0 (B)Y 7.

v

Since ay 0., (t) equals @, 0., (t71), xq4( ) commutes with ().

Proposition 3.3.6 ([Qin12b]). Fiz w' and w?. If for alli,j € I and a > b € Z, either
(wh);(a) or (w?);(b) vanishes, then the multiplicative property holds:

MT(IUZ) % MT(’LUl) _ q%S’(wl,wQ)M7’<wl + wZ)‘

Theorem 3.3.7 (Deformed monoidal categorification). The map x,:=° is an algebra
isomorphism from Ry to A?l. Furthermore, the preimage of any cluster monomial is the
class of a simple module.

Proof. Let A? . denote the vector space spanned by the standard basis elements M7 (w)

sub
over ZP [qi%]. By Theorem 2.5.1, it is the image of the injective algebra homomorphism
Xq=". In particular, it is closed under the involution () and the twisted products (cf.
[Qin12b] for another proof).
By Theorem 3.2.3 and Theorem 2.3.4, A? , contains all the quantum cluster variables
and the frozen variables x, 1, -+ ,Z2,. Therefore it is equal to A9.
The second statement follows from Theorem 3.2.3, Theorem 2.3.4, and Proposition

3.2.6. 0
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Definition 3.3.8 (Strong positivity). A cluster algebra is called strongly positive, if it
has a basis such that the structure constants of the basis are positive and all the cluster
monomials are contained in the basis.

Corollary 3.3.9. The quantum cluster algebra A? is strongly positive.

Proof. The basis {L7 (w),w € J} has positive structure constants by Theorem 2.4.18 and
Theorem 2.5.1. It contains all the cluster monomials by Proposition 3.2.6. U

Corollary 3.3.10. (Quantum positivity) Any quantum cluster monomial m can be written

as a Laurent polynomial of the quantum cluster variables x;, 1 < i < n, in any given seed
with coefficients in N[g¥2, x5, |, ... ],

Proof. By the quantum Laurent phenomenon, we have
Zm*:(mi) Cm. [ l1<i<n ;"
= - 7

%

T
where m, = (m;)ier, div = (d;)ier are sequences of nonnegative integers and the coefficients

Cm, are contained in ZP [qi%]. Notice that we use the usual product - in this expression.
The quantum cluster monomial m equals L4(w) for some w. Also, the quantum X-
variable z;, 1 < i < m, equals L*(w;) for some w;. We can rewrite the above equation

as
> A maw) = [T 1A w)® - 1A (w)
me=(m;) i i
— g3, i) ind(w)) LA(Z dsw;) * LA(w).
The statement follows from Theorem 3.3.7 and (23). O

4. A REMINDER ON QUANTUM UNIPOTENT SUBGROUPS

In this section, we recall the definitions and some properties of quantum groups, the
dual canonical basis and quantum unipotent subgroups following [Kim12].

4.1. Quantum groups. A root datum is a collection (b, I, P, PY, {c;}icr, {hi}ticr, (, )),
where

(1) b is a finite-dimensional Q-vector space;
2) I is a finite index set;
) P C b* is a lattice (weight lattice);
) P¥Y = Homgz(P,Z) is the dual of P with respect to the natural pairing (, ) : PV ®
P —7Z;
5) a4, i € I, belongs to P (simple root);
6) h;, i € I, belongs to PV (simple coroot);
7) (, ) is a Q-valued symmetric bilinear form on h*,
that we have
(a) (hi,\) = 2(a;, A)/(ai, o) for i € I and A\ € P;
(b) the generalized Cartan matrix C, whose entry in position (7, j) is defined as
ai = (hi, o) = 2(ci, o) [ (v, i),
is symmetrizable;
(c) for each i € I, the value (o, ;)/2 is contained in Z-, which we denote by d;
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(d) {as};e; is linearly independent.
The collection (I,b,(, )) is called a Cartan datum.

Define the root lattice () to be the sub-lattice @iel Za; of P. Let Q4 denote £+ Zie[ L>o0v;.
For £ = .., &a; € Q4, where & € Z, we define tr(§) = > .., &. And we assume that
there exists w; € P such that (h;,w;) = 6;; for any 7,57 € I. We call w; the funda-
mental weight corresponding to i € I. We say A € P is dominant if (h;, \) > 0 for any
i € I and denote by P, the set of dominant integral weights. Define P = .., Zw; and
P+ = PﬂP+ = @ieIZZowi.

We assume that the root datum is always symmetric, i.e. the matrix C' is symmetric.
Then, for all i € I, we have d; = d for some d € Z-y. We introduce an indeterminate
v. For i € I, we set v; = v(@)/2d =y for all i € I. For £ = Y, ; &a; € @, we define
Ve = [T1e;(v3)8 = 0&P/4 = 4 where p is the sum of all the fundamental weights.

Let g be the corresponding Kac-Moody Lie algebra. Let U,(g) be the corresponding
quantum enveloping algebra which is the Q(v)-algebra generated by {e;, f; }icr U{v"}nepv
with the following relations:

<1> 0 = 1, Uh,Uh’ — ,Uh-l-h’,
(ii) vheu™h = viheie; Wt fio~h = p e £

(i) eif; — fiei = 0ii(ti — ;1) /(vi — 0 ),

1—aij 1—aij

il

() D (1o = Y0 LT =0,
k=0 k=0
where t; = v¥h | [n]; = (VP — 07"/ (v; — v ), [n)i! = [n)in — 1];---[1]; for n > 0 and

0! =1, e = ek /[k]l, £*) = ¥ /K] for i € T and k € Z,.
Let Ut (g) (resp. U, (g)) denote the Q(v)-subalgebra of U,(g) generated by e; (resp.
fi) for i € I. Then we have the triangular decomposition

U,(g) =~ U, (9) ®qu) Qv)[PY] ®qw) Uy (9),

where Q(v)[P"] is the group algebra over Q(v), i.e., @, pv Q(v)v". For £ = > &, € Q,
we set tg = vXier&ihi We have t,, = t;. We set Uy(g)e := {z € Uy(g) | tixt;' =
vhif g for all i € I}. We have the following root space decomposition:

Ui (g) = €D Ui (a)e.

§eQx

Automorphisms of U,(g). Let ~ denote the Q-algebra involution ~: U,(g) — U,(g) given
by

e; = e, E:fu 6:,0_17 vh ="

Let * denote the Q(v)-algebra anti-involution x: U,(g) — U,(g) given by

*(e:) = e, «(fi) = fi, *(W") = v
Let V be the Q(v)-algebra involution V: U,(g) — U,(g) given by
V(ei) = fi, V(fi) = e, V(") =ovh

Let ¢ be the composite V o . Then ¢ is a Q(v)-linear anti-involution satisfying

ple) = fi, o(fi) = e o(v") ="
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Let Q be the composition ~ o V o x. Then 2 is a Q-linear anti-involution satisfying
Qle;) = fi, Q(f;) = e, Q") =v", Q) =vh

This anti-involution is called by ¥ in [GLS11a, Section 6.4].

Coproducts and twisted coproducts. We have two coproducts Ay on U,(g) (cf. [Kas91,
Section 1.4]):

(43a) Ay (") = 0" @,
(43b) Afle) =601+t ey,
(43c¢) A(f) = Lot +10 f;

(44a) A_(v") =" @ o,
(44b) Afe) =t +1®e,
(44c) A (fi)=fivwl+t;® fi.

Define the Q(v)-algebra structure on UF(g) ® UF(g) such that we have

(71 @y1) (T2 @ 12) = @)W W)) g 20 @ Y1Y2,

for any homogeneous elements ;,y; (i = 1,2). Let r.: U (g) — UF(g) ® UL (g) be the
Q(v)-algebra homomorphisms such that we have, for any i € I,

ri(e)=e®1+1®e;,
r_(fi))=fi®l+1® fi

They are called the twisted coproducts. The relations between the coproducts A4 and the
twisted coproducts r1 are given by the following Lemma.

Lemma 4.1.1. For any homogeneous element x € UE(g)e, we have

Ay(x) = Z L)t wi(zm) © T(2),
where r+(x) = Y 1) @ X (2).
We have the following relation between the twisted coproducts.
Lemma 4.1.2. We have
r+oQ=flipo(Q®QN)ory,
where flip(z @ y) = y @ for any x,y € UL (g).

Proof. We prove the claim by induction. For any homogeneous element x = x’z” such that
the claim holds for 2’ and 2", that is r(€2(2")) = > Q(z(,)) ® Q(z];)) and r(Q(z")) =
> Ualy)) @Q(x())), where ry(2') = 3 a()) @]y, re(2”) = 3 x}) @y, we want to check

the claim for z. Note that r(z) = >3 vi(Wtx(1>’th<2>)$/(1)$’(’1) ® Ty (y. Therefore, we
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have
r+(Q(z)) = r£(Q(2'2"))
= r£(Q(2"))r=(Q(2'))
=) Q(aly) ® Qafy) - Ualy) @ Aaly))
= Z > T aly) )0 aly) © Qafy)Aaly)
Q) (32D v b ) (@lyaly) © (@lal))
=flipo (Q® Q) ory(z).

Hence the assertion holds. O

Bilinear forms. For i € I, we define the unique Q(v)-linear map ;r: UZ(g) — UZ(g)
(resp. r;: U (g) — UZ(g)) given by ;r(1) = O,ir(xj[) = 0;; (resp. ri(1) = 0, 7(x; =) = 8i))
foralli,j € I (xiseor f) and

(45a) ir(xy) = gr(x)y + o @)y ir(y),
(45Db) ri(zy) = U(Wty’a")n(m)y + ari(y)

for homogeneous x,y € U (g).
By Kashiwara [Kas91, §3.4], there exist unique symmetric non-degenerate bilinear forms
(, )+ on UE(g) such that we have

(zF, xi) =0;; (x=-eor f)
(1,1) =1
(re(z),y ® 2)x = (z,y2) for x,y, z € UE(g).
Define the dual bar-involutions o1 on UZ(g) by
(01(x),y)+ = (z,7)+ for arbitrary z,y € UF(g).

We often denote o1 by o for simplicity.
We have the following compatibility properties between Kashiwara’s bilinear form ( , )+
and the anti-involution (2.

Lemma 4.1.3 ([GLS11a, Lemma 6.1(b)]). For x,y € UX(g), we have
(2, )+ = (), Ay))=

4.2. Dual canonical basis.

Crystal basis. We define Q-subalgebras A, A, and A of Q(v) by

Ao— {f € Q(v); f is regular at v = 0},
= {f € Q(v); f is regular at v = oo},
.A = Q[v*].
Lemma 4.2.1 ([Kas91, Lemma 3.4.1], [Nak10]). For x € U, (g) and any i € I, we have

Tl(.%’)tz — t;lz”f’(I) '

e, x| =
le:, 7] p——




GRADED QUIVER VARIETIES AND QUANTUM CLUSTER ALGEBRAS 25

The reduced v-analogue A,(g) of a symmetrizable Kac-Moody Lie algebra g is the
Q(v)-algebra generated by ;- and f; with the v-Boson relations ;rf; = v~ (@) f; 1 +§; ;
for i,j € I and the v-Serre relations for ;r and f; for ¢ € I. Then U, (g) becomes a
A, (g)-module by Lemma 4.2.1.

By the v-Boson relation, any element x € U (g) can be uniquely written as = =

> 0 fi(”):rn with ;7(x,) = 0 for any n > 0. So we define Kashiwara’s modified root

operators ﬁ and €; by

gﬂf - Z fz‘(n_l)xm

n>1

};l‘ _ Z fi(n+1)xn'

n>0

By using these operators, Kashiwara introduced the crystal basis (£ (o0), B(0)) of
U, (g):
Theorem 4.2.2 ([Kas91]). We define

Z(00) = Z Aofiy -+ fil C U, (g),

1>0,i1,i, it €1
B(00) = {fiy -+ fal mod v.L(00); 1 > 0,y i, -+ iy € I} C L (00)/v.L(c0).

Then we have the following:

(1) Z(o0) is a free Ag-module with Q(v) ® 4, £ (00) = U (g);
(2) .%(0) C ZL(c0) and f;.L(c0) C Z(0);
(3) B() is a Q-basis of L (0)/vL(00);
(4) fi: B(oo) — B(c0) and &;: B(co) — B(co) U {0}:
(5) For b € B(co) with ¢(b) # 0, we have fig;b =b.

We call (Z(c0), B(0)) the (lower) crystal basis of U, (g), and £(0c0) the (lower)
crystal lattice. We denote 1 mod v.Z(00) € HB(c0) by us hereafter. For b € Z(c0), we set

gi(b) = max{n € Zs¢; el'b # 0} < oo, and €"**(b) = é?(b)b € B(x).

Canonical basis. Let : Q(v) — Q(v) be the Q-algebra involution sending v to v=!. Let
V' be a vector space over Q(v), 2y be an Ag-submodule of V', Z,, be an A.-submodule
of V, and V4 be an A-submodule of V. We define F = 4, N %, N V4.

Definition 4.2.3. We say that a triple (£, L, Va) is balanced if each £y, L, and
Vu generates V' as Q(v)-vector space and if one of the following equivalent conditions is
satisfied

(1) E— %/v% is an isomorphism,

(2) E — Zy/v 1% is an isomorphism,

(3) (LNVy) @ (v 1%L NVy4) = Vy is an isomorphism,

(4) Ag®@g E = L), A @ E = Lo, AR E — Vyu, and Q(v) g £ — V are
1somorphisms.

Let U, (g)a be the A-subalgebra generated by { fi(")}ie[,nzl. This is called Kostant-
Lusztig A-form.

Theorem 4.2.4 ([Kas91, Theorem 6]). The triple (£ (c0), L (), U, (g)4) is balanced.

(2
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Let G*: Z(00)/vL(00) — E = L(00) N ZL(0) N U, (g)a be the inverse of the
isomorphism F = .Z(c0)/v.Z (). Then BV := {G'*¥(b); b € %(c0)} forms an A-basis
of U, (g)4. This basis is called the canonical basis of U (g).

We define the dual canonical basis BY of U, (g) as the dual basis of B under Kashi-
wara’s bilinear form (, )_.

Proposition 4.2.5. We set
U, (0)4 = {z €U, (0); (x,U, (g)a)- C A},
Then (£(00),0(ZL(00)), U, (9)'%) is a balanced triple for the dual canonical basis B".
Here we have the following isomorphism of Q-vector spaces:
Z(00) No(L(00)) N, (9)F = L(00)/vL (o).

Denote its inverse by G'?. Then we have B’ = G"(%#(x0)), cf. [Kim12, Theorem 4.26].
Then the dual canonical basis BL” of U} (g) is defined to be Q(B™). Notice that the dual
canonical bases are dual bar-involution invariant (oi-invariant).

4.3. Quantum unipotent subgroup. Let W be the Weyl group associated with the
given root datum and s; the reflection associated with the root o;, 1 < i <n. Let £/: W —
Z>( denote the natural length function on W. For any given group element w € W, we
denote by R(w) the set of reduced words of w. Define &, (w) = {a € ®,;wla e d_}.

Following [Lus93, 37.1.3], we define the Q(v)-algebra automorphisms® T;: U,(g) —
U,(g) for i € I by

(46a) T;(v") = v

(46b) Ti(es) = —t; 1 fi,

(46C) E(fz) = —e4t;,

(46d) Ti(e;) = Z (—1)TU;T€ET)€J'€ES) for j # 1,
r+s=—(hi,0 )

(46¢) Ti(f;) = (=)o 7 £ £ for j # .
r+s=—(hi, ;)

Fix an element w € W with (w) = ¢ and a reduced word @ = (i1, ,i¢) € R(w).
We set

Br = Sip r Sipy (azk)
Then we have {0y }1<k<e = P4 (w).
Example 4.3.1. Let the Cartan matriz C' be given by

2 0 -1
c=10 2 -1
-1 -1 2

This automorphism is denoted by T] _y in [Lus93, 37.1.3] and this is denoted by T,7! in [Kim12].
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Take the Cozeter element ¢ = s3s95;. Take w = c® and choose the reduced word W =
(3,2,1,3,2,1) € R(w). Then we have

p1 = as,

P2 = az + as,

B3 = a + as,

By = a1+ az + as,
Bs = ai,

Bs = .

Define the lexicographic order <z on Z4 S0 associated with W e R(w) by
c=(c1,c0, ) <m € = (), ¢+, )
if and only if there exists 1 < p < £ such that we have ¢; = ¢}, -+ ,¢,.1 = ¢, _1,¢, < ¢,
Following Lusztig, for any non-negative integer m and any vector ¢ € Nf we denote
F(mpy) = Tz-l T (),
B(mf) =Ty - Ty(e]”).
Flc, W) = (Ceﬁe) (ce-1Be-1) -+ F(c1p),
E(c, E?) E(e1p1)E(c2fa) - - - E(afBy).
Let U, (w) and U} (w) be the Q(v)-subspace of U, (g) and U} (g) spanned by
Py = {F(c, W) | ¢ € Z,}.
and {E(c, W) | ¢ € Zt o) respectively. Lusztig has shown that the space U (w) is inde-
pendent of the choice of the reduced word @ € R(w). As a consequence of Levendorskii—

Soibelman’s formula, it can be shown that the subspace U, (w) is the Q(v)-subalgebra

generated by {F(S5k) h1<k<e- (cf- [LS90, 2.4.2 Proposition Theorem b)] and [DCKP95, 2.2
Proposition].)

Remark 4.3.2. By its construction, UX(w) can be considered as a quantum analogue of
the universal enveloping algebra of the nilpotent Lie algebra ny(w) = @iae%

For any c € Z>0, we set

up _ 1
e ®) = Fem) Fe )t © P
1
(E(Ca w)a E(C7 E?))Jr

Define the Q[v*!]-form U (w)gpyer) of Ug (w) by
[v:i:l @ Q +1 Fup W)

cezZt

E"(c, W) = E(c, W).

Ut (w )Q[ 41y is defined similarly.
By the Levendorskii-Soibelman formula [Kim12, Theorem 4.24] with respect to the set
= {F(c,¥)|c € 7t S0t Uy (w )Q[vﬂ] is a Q[v*!]-subalgebra generated by { F'P (1) }1<p<e-
We also obtain the following upper unitriangular property of dual bar involution o_ with
respect to &2 by the Levendorskii-Soibelman formula.
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Proposition 4.3.3 ([Kim12, Proposition 4.25]). We have
o(F™(c,w)) — F*(c,w) € Y  Qu*'|F*(c/,u).

c’'<ge
Proposition 4.3.4 ([Kim12, Theorem 4.26]). We have the following upper unitriangular
property:
G (b(c, W) — F™(c, W) € > vZ[o]F™(c, ).
c’'<c
Remark 4.3.5. In [Kim12, Theorem 4.26], we stated a slightly weaker statement about

the coefficient in the right hand side. But we have the integrality property [Kas9l, 6.1]
and [Lus93, Proposition 41.1.3], so we get the result in the above form.

Via the identifications of the dual canonical bases B}’ with the G'"?(%(c0)), the cor-
responding dual canonical basis elements are denoted by B (c, E?) respectively.
We have the following properties between €2 and T; . on U,(g).

Lemma 4.3.6 ([GLS11a, Lemma 7.2]). We have T, 0Q = Qo T,..
Lemma 4.3.7. We have Q(F"(c, W)) = E"(c, o).
Proof. Applying the anti-automorphism €2, we obtain
QF™(c, W) = QF™(coby) - F*P(c151))
= Q(F™(c151)) -+ QUF"™(cofr))
= E"(c1fr) -+ E™(cef).

As a consequence, we obtain the following property.
Proposition 4.3.8 ([GLS11a, Proposition 12.8]). We have
BP(c, W) € E™(c, W)+ > v 'Zv'|E™ (<, W).

c’'<c

4.4. Compatibility. For by, by € %(c0), we say by and by (or G™(by) and G"P(by)) are
multiplicative or compatible if there exists a unique element in %(c0), which we denote
by by ® by, such that G (b; ® by) equals vV GP(b;)G™(by) for some N € Z. By [Kim12,
Corollary 3.8], this condition is independent of the order on b; and by. We write by Lbs
when this holds.

5. T-SYSTEM IN QUANTUM UNIPOTENT SUBGROUP

5.1. Quantum coordinate ring. Following Kashiwara [Kas93b, §7] and Geif-Leclerc-
Schroer [GLS11a, §2], we define the quantum coordinate ring A,(g) as the subspace of
Hom(U,(g), Q(v)) consisting of the linear forms ¢ such that the left module U,(g)y
belongs to Oiy(g) and the right module ¥)U,(g) belong to O, (g°P). Its multiplication is
chosen to be the transpose of one of the coproducts A..

For any A € P, let V(\) and V(\)" denote the left irreducible highest weight module
and the right irreducible highest weight module respectively with highest weight A. The
highest weight vectors are denoted by my and n, respectively. Let (, )x: V(A\)" @ V() —
Q(v) be the bilinear form which is characterized by (ny, my), = 1 and (n,zm), = (nz, m)
for n € V(A)", m € V(\) and x € U,(g). We also have the bilinear form (, )x: V() ®
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V(A) — Q(v) which is characterized by (my,my)x = 1 and (m,xm’)y = (p(z)m,m’), for
z € U,(g) and m,m’ € V().

The following is a v-analogue of the Peter-Weyl decomposition theorem for the strongly
regular functions on the Kac-Moody group G, in the sense of Kac-Peterson.

Proposition 5.1.1 ([Kas93b, Proposition 7.2.2], [GLS11a, Proposition 2.1]). Let ®5: V(A\)'®
V(X) — A,(g) defined by

(Pr(n®@m),x) = (n,am)y (n € V(N)",m € V(N),z € Uy(g))

Then @ = @,cp, Pa: Bicp, VI @ V(A) = Ay(g) gives an isomorphism of U,(g)-
bimodules.

5.2. Quantum T-systems for quantum minors. Following [BZ05, Section 9.3|, we
define the v-analogue A* of a principal minor as :

(A 2) = (ny,2m,) Vo € U,(g), A € P,.

By its definition, we have (A* yv'z) = e(z)v"Me(y) for x € Ut (g),y € U, (g),h €
PY, where ¢: U,(g) — Q(v) is the counit.

For w € W and A € Py, let us denote by m,, the (dual) canonical basis element of
weight wA. We have the following description:

My = fi(lal) T fi(eae)m)\a

where (i1,12,--- ,17) € R(w) and ag = (si, - - - 54, (R, ), A) (1 <k <
My does not depend on the choice of a reduced word (iy,--- i) €
define nyy by npx = nAeESE) . ~ez(»;”).

For wy,wy € W and A € Py, we define the (generalized) quantum minor Ay, xw,
associated with (wi A, we) by

¢). It is known that
R(w). Similarly we

Apyaawsr = Pa(M;x @ My ).
By construction, we have Ay xwor € Au(8)wyrwn and
<Aw1)\,w2)\7x> = <nw1)\7 xmwg)\>)\ - <nw1/\x>mw2)\>)\
= (mwlka xmwz)\))\ = (Sp(x)mwl)nmwgk))\
for z € U,(g).
Denote v; = w; + s;ww; € Py

Proposition 5.2.1 ([GLS11a, Proposition 3.2]). (1) Fori € I, we have

A

_ -1
YirYi T AsiwiysiwiAwiywi U; Asiwz‘,wiAwi,Siwi

= AwiawiASiwiasiwi - UiASiwi,wiAwi,Siwi'

(2) For wi,ws € W and i € I with {(wys;) = L(wy) + 1 and l(wes;) = L(ws) + 1, we
have

A =A A — v A A
W17, W25 W1 8;T0;,W28;T; —W1T0;, W25 7 W1 8T, W2 W4 — W1 W;,W28;W;

- Awlwi:WQWiAwlsiwi7w2siwi - UiAwlsiwi,wzwiAw1wz‘7w25iwi'

We note that this relation does not depend on a choice of coproduct A, or A_.
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5.3. Quantum 7-systems for unipotent quantum minors. Let A,(ny) be the graded
dual of U (g) with respect to Kashiwara’s bilinear form. We define the product r% : A, (n.)®gw)
Ay(ng) = Ay(ng) by
<7"*i(1/11 ® ¢2),I> = (Y1 @ Yo, r(1)) .
Let pi: Ay(g) — Ay(ny) be the restriction linear homomorphism which is defined by
(p+ (), ) = (¥, ) for x € Uy (g).

We have the following twisting formula:
Lemma 5.3.1. Let ¢y € Ay(8)vy, 0, and 2 € Ay(8)vypun- Then we have

(47) p(AL(Y1 @ ) = 0220 (p (1) @ pac(¢2)).
Proof. This can be proved by the following straightforward calculation.

(AL (1 @ o), ) = (1 @ o, Ap(z)) (z € Up(g))
- Z <¢1 ® ¢27 t:ﬁ:wt (z(2) ® T2 )>

= Z <(t:|:wt(x(2))¢l) ® 2/}27 I ® $(2)>

= pF2—p2m) <7"ft(¢1 ® s), :v> (because Wtz (o) + o = ).
U
Let v4: Ay(ny) — UE(g) be the Q(v)-linear isomorphism defined by (¢4 (f), z)+ =
(f,z). It can be shown that 11 are Q(v)-algebra isomorphisms which intertwine r% and

the usual product of UE(g). For any given w € W, the associated quantum coordinate

ring A,(ny(w)) is defined to be the subalgebra (v, )~ (U} (w)) of A,(ny).
Unipotent quantum minors.

Definition 5.3.2. We define the quantum unipotent minor DX, \ on UF(g) by the

following formula.

w1 A, w2

(DilA,wQ)\ax):l: - (mw1)\7xmw2>\))\ - (QO(ZE)mwl/\,mwz)\))\,

where My, (TeSp. May,y) is the extremal weight vector of weight wi\ (resp. wal).

Remark 5.3.3. We have le)\wz)\ Yips (AT A war)

By construction we have o*Dy, | .\ = Dy \ ,.\. We also have, for any z € U (g),
(Q(DLA,W,\)’ T)_ = ( W1 A, wa\? Qz))y = (o (DL,\W,\)’ o(r))4
= (D nwan D))+ = (12, P(2)ths )1

(xuwlkﬂuwﬁ\))\ (uw2>\7xuw1>\)>\ (D;Q/\ w1/\7x>—'
(A

Since the opposite Demazure module V*(\) = U (g)m,, is compatible with the canon-
ical basis (see [Kas93a, Proposition 4.1 (i)]) and m,,) is also a dual canonical basis element,
we have Dy, € B® U{0}. It follows that D} , is contained in B} U {0}

Fix wy,ws € W and ¢ € I with ¢(w;s;) = ¢(w;) + 1. The following just follows from
Lemma 5.3.1.

Lemma 5.3.4. We have
* A+ +
¢+p+(A+<Aw13iwi,w25iwi ® Awlwi,wﬂﬂi)) =v les i T4, WQslwllewi,Wle‘?

* B+ +
¢+p+(A+(Aw15iwi,w2wi ® Awlwi7w25iwi)) =v wa,wl wzwlDunwi,wgsiwi’
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where
A= (wlwi — Wy, wgsiwi),
B = (wlwi — WoS;T0;, wgwi).
Lusztig’s parametrization. Fix w € W with £(w) = ¢ and a reduced word W = (i1,...,10) €
R(w). For 1 <a <b </ with i, =i, = i, we define the vector c[a,b] € ZZZO by
1 ifagkgbandik:ia:ib,
[a, b)), = )
0 otherwise,
for 1 < k < ¢. By convention, we define ¢[0,0] = 0, ¢[0,b] = c[1,b] if b > 1, and c[a,b] =0
if a > b. We set wt[a,b] = — wt G*(c[a, ], W) = D a<h<b with ig—ip—i, Ok For 1 <k <,

we have Wt[Kkmin, kK] = @i, — Siy - - - i, Wi, -
As in [GLS11b, Section 13], for any 1 < k < ¢ and j € I, we define

(48) k(j) = #{1 < s <k — 1, = j},
(49) Emin = min{l < s < {;i5 = it },
(50) kmax = max{l < s < {l;is =iy},
(51) k™ =max{{l <s<k—1;is =i} U{0}},
(52) Et=min{{k+1<s</li,=ix} U{{+1}}.
Proposition 5.3.5. For1 <a <b < { with i, =1, =1, we have
(53) G*P(cla, b, @) = D o o osy
(54) D
Proof. For a reduced word (iq, -+ ,4) of s;, ...s;,, we have

G (c[1,0 —a+1], (i, ,ip)) = Dy,

Sy 5,705

by [Kim12, Proposition 6.3].
By applying [Kim12, Theorem 4.20] (see also [GLS11a, Proposition 7.1]), we get the
result. O

Remark 5.3.6. It follows that B"(c[a,b], W) equals Dstl...sia,Wi,sil~~-sibWif which is de-
noted by D(a~,b) in [GLS11a].

Proposition 5.3.7 ([Kim12, Theorem 6.20]). {G" (c[kmin, k]; W) }1<kee forms a strongly
compatible family.

T-system.

Proposition 5.3.8. For any i € I and any wy, wy € W such that l(w;s;) = l(w;) + 1 for
J=1and 2, we have

A —14+B _
(55) D;‘tlslwz w28;wW; D'Ilwz w2w; =v " D$181w1 w2w; D:';lwz W2s;wWj; + le’YiﬂUQ'Yi'
Proof. The statement follows from Proposition 5.2.1 and Lemma 5.3.4. O

Proposition 5.3.9 ([GLS11a, Proposition 5.5]). For anyi € I and any 1 < a < b <1
with 1, = 1, = 1, we have

vAB"™ (cla, ], W)B™(c[a™,b7], W)
(56) =B (cla, b, W) B (cla, 8], W) + B (= Y eyela ()67 (), @),

JF#i
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Remark 5.3.10. It follows from [Kim12, Theorem 4.24] that the last term in (56) can
be rewritten as

BP(= Y ciela(7),07 ()], @) = ¢° [ B (cla (4), b ()], w)
i i
for some specific power C. Let us denote B}"(c[a,b], W) by DF[a,b]. Then we obtain
VD D ", b = v D o, b0 a8+ o T D (51,07
J#i
Example 5.3.11 ([HL11, Example 6.2]). Let the root datum be given as in Example 4.5.1.
Then we have

v~ 'D[4,4]D[1,1] = v~ 'D[1,4] + D[2,2]DJ[3, 3],
DI[5,5]D[2,2] = v 'D[2,5] + D[4, 4],
DI[6,6]D[3,3] = v~ 'D[3,6] + D[4,4].

o

6. TWISTED {-ANALOGUE OF ¢-CHARACTERS

In this section, we introduce new quantizations and define a twisted t-analogue of ¢-
characters th, which are slightly different from those used in Section 3.

Remark 6.0.12. In fact, our th 15 a t-analogue of the q-character defined for the finite
dimensional representations of the quantum loop algebra U,(Lg), where g is any skew-
symmetric Kac-Moody Lie algebra. It should be compared with the character introduced
by [Her04], which is defined for the case where g is a simple Lie algebra.

6.1. A new bilinear form. Let 7 denote the Auslander-Reiten translation of the de-
rived category D°(CQ — mod). It induces an automorphism of the Grothendieck group
Ko(DP(CQ — mod)) which is denoted by c.

For any object M of D*(CQ —mod), let [M] denote its class in the Grothendieck group.
We identify the root lattice Q = @®;e;Za; with the Grothendieck group Ko(D?(CQ—mod))
by sending the simple root a; to [S;] the class of the i-th simple module S;, for all i € I.
Notice that {«;,7 € I} is a Z-basis of the Grothendieck group. For any i € I, denote the
injective CQ-module with the socle S; by I; and the projective CQ-module with the top

Let 3 be the linear map from N'*Z to Ky(D’(CQ — mod)) such that

Blw) = wi(a) * [r*L[-1].
(i,a)

In particular we have B(e;(0)) = [L[—1]] = [T P], B(e;(—1)) = [P].
Lemma 6.1.1. For any v € N™*%+2) we have 5(Cpv) = 0.
Let (, ) denote the Euler form on Ky(D?(CQ — mod)).

Lemma 6.1.2. For any pairs (k,a), (K',b) in IXZ, e (b)-C; *(ex(a)) equals ([rP=2Py], [T Py])
ifb>a+ % and vanishes if not.

Proof. Take the vector v = (vy (b)), such that vy (b) = ([r*=*"2 By], [B]) if b > a + L and
v (b) =0 if b < a+ 5. We want to show Cpv = ex(a). Fix any j € I.
First, e;(d) - Cy(v) is zero for any d < a.
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Second, we have

e;(a) - Cy(v) = vj( a+ = > by a+

1:4<J

= Prkj — Z bwpkz

1:4<J

Finally, for any b > a + % 5, We use exact triangles in DP(CQ — mod) to obtain the
following result.

b= 3)+ Colw) = (6= 1) = S byulb = 1) + v5(0) = 3 by, ()

Ll>j i<y

= ([FO 2B B = > b([rTV 2 B B)

Recall that we have

E'(whw?) = —wl[%] O + MQ[%] -Colwt

q

Let us define a new bilinear form N( , ) on N/*Z guch that for any w!, w? in N*Z we
have

N(wh, w?) = wl[%] CColw? — wl[—l] Cotw? — w2[%] O w! + wz[—é] Ot

Clearly, we have N'(w!, w?) = =N (w?, w').

Define a symmetric bilinear form ( , ) on Ky(D°(CQ — mod)) such that for any z,y €
Ko(D*(CQ — mod)), (x,y) = (x,9) + (y, z). Notice that (x,cy) = —(y,z). Further define
(, )q to be the anti-symmetrized Euler form such that we have (z,v), = (x,y) — (y, x).

Lemma 6.1.3. Given any integer d > 1 and any i,j € I, we have

N(ei(0), €;(d)) = (B(ei(0)), B(e;(d))),
£'(es(0),¢;(d)) = (¢ Blej(d)), B(ei(0)))-
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Proof. We have

N(ei0),e5(d) =ex(O)]5] - C5es(d) = ex(O)]=3] - C;es(d)
~ )] € e0) + ¢ (d)]-5] - C;ef0)
=0-+0~ ([ B [B]) + ([P}, [P))
=0-+0 = ([P, [B]) + ([P, [P
(el [P
=(3(es(D). 5(ei(0)
Similarly, we have
/(ei(0), ¢5(d)) = — 2640 5] C () + 2e5(d)[5] - 5 es(0)

Similarly, we have the following result.

Lemma 6.1.4. The following equations hold:

N (ex(0). ¢;(0)) = (P, P) — (P, By,
E'(e4(0). ¢;(0)) =0,
N (ex(0), ¢;(~1)) = ([B]. [B)] - ¢ [P)).

Lemma 6.1.5. The difference between the quadratic forms N and —2&' is the anti-
symmetrized Euler form, i.e. N +2& = (, ).

Proof. 1t suffices to check the statements for the unit vectors e;(a), (i,a) € I X Z. 0

6.2. A new quantization of the cluster algebras. Define the 2n x 2n matrix L whose
entries are given by, for any 7,7 € I,

It is easy to check that L is skew-symmetric and L1, j4+n equals L; jin — Ljitn.
Let B be given as in Section 3.

Proposition 6.2.1. We have L(—B) = [23”] .
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Proof. For 1 <[,k < n, we have

(LB)u, = Z Liibi, + Z Lij(=brj) = Lijesn + Z Ok L jn

i<k jii>k Jii>k

Zka,B B,meP Zbkjl%,m—(B,—Zbijj»
j J

+ ((=Py, P), (B, 7' Py)) me + (B, — Zbkﬂ*ﬁm

:(Zbikpi_Pkapl (P, — szkP +Zbkﬁp g 1P]€_Zbk3 P)
=3 buP— P B) + (B~ + Y by P)

J

where we use exact triangles in the last equality. If [ = k, the entry equals —2. Else, it
becomes

O " biwP, B)+ (P, b Py) — (P, B) + P, B))
i<k >k
= Zplibz'k + Z bripji — (Pik + pri) = 0.
i<k >k

Similarly, we can compute (Lé)lm,k:

<L§)1+n,k = Z Liin,ibi + Z Litnj(—=bij) = Ligngsn + Z brjLisn jin

1:i<k jii>k jii>k
= g Ly ibir + § Liynj(=bkj) = Litnkin
i<k jii>k
+ > big(Lijin + Ligny)
J:ii>k
= E Litn,ibit — Lign pn + E brj Lt jin
iri<k >k

- <F)l7 Z bzkpz> + <Z bzkpz, T71Pl>
- (<pka -Pl> - <-P17T_1Pk> - <-Pl; Plc> + <Pk,T_l_Pl>)
+ () by P P —(B,Y by P

J J

:<Pl,—zbikpi+7:1pk + Py, — Zbkﬂ'*lpﬁ

i<k >k

-+ <Z bzk-P’L — T_lpk - Pk + Z bij_lpja T_I-Pl> = 0.
i J
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Example 6.2.2. Let the quiver Q and the ice quiver @f be given by Figure § and 9
respectively. The associated B-matriz is

0 0 1
0 0 1
- |11 21 o
B=|_1 ¢ o
0 -1 0
11 1

We have the matrices
0 0 1 1 -1 -1

o o 1 -1 1 -1

-1 -1 0 1 1 0
N = -1 1 -1 0 0 1|

1 -1 -1 0 0 1

11 0 -1 -1 O

0 0 1 1 —-120

0 0 1 -1 1 O
I -1 -1 0 0 0 0

-1 1 0 0 0 0

1 =10 0 0 O

0o 0 0 0 0 0

It is easy to check that L - (—B) = (213) :

FIGURE 8. A quiver @ of type As

(e
D1

FIGURE 9. A level 1 ice quiver with z-pattern of A3-type principal part
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Let us define the involution & : I — I such that £(i) =n+ 1 —i for any 1 <7 <n. For
1 <@ < n, define
(57) Bi = ¢ Bleg(0)), Buti = ¢ Blegi(—1)).
These notations are justified by the following example.

Example 6.2.3. Assume we are given the root datum and choose the Weyl group element
w = c? as in Example J.5.1, where we have obtained the positive roots 3;, 1 < j < 6. Let
the quiver Q be given as in Example 0.2.2. Then we have, for 1 < i <3, ¢ '(e;(0)) =
[P] = Bewy, ' Bles(=1)) = [T P] = Beqiyqs-

Let L be the 2n x 2n skew-symmetric matrix defined in [GLS11a, (10.2)]. By [GLS11a,
Proposition 9.5], it is uniquely determined by the following conditions: for any 1 < j <
1 < n,

Lij = (6i, B;);
z+n] (ﬁzaﬂj) <5i+mﬁj)7
Zi—&-n,j-i—n = (5za 6]) + (61'-&-717 Bj-i—n) (61’-&-717 BJ) - (6j+n7 B@)

Lemma 6.2.4. For all i ,] € I we have LU Zg(z‘){(]‘), Lz‘+n,j = Z{(i)+n,§(j); Li,j+n =
Lg() ¢G)+ns Livnjin = Lg( tneG)4n- Namely, we can identify L with L by permuting the
indices.

Proof. 1t suffices to consider the case ¢ > j. Recall that we have
N (€i(0),€;(0)) = (B(ei(0)), 5(e;(0)),
N(ei(=1),¢;(0)) = (Bei(—1), B(e;(0)),
N(ei(0),e;(=1)) = =N(e;(—1),:(0)) = —(B(e;(—1), B(e:(0)).
Straightforward computation verifies the statement. O

6.3. New t-deformations of Grothendieck rings and characters. We modify the
multiplication ® of Ry @z Z[t*2] such that (23) is replaced by

L(w") ® L(w?) = (12)B0)A0") waW w®)

and denote this modified version of R; @z Z[t* 5] by ICt 1 Similarly, we modify the
twisted multiplication * of ) ®zp= Z[t*2] such that (26) is replaced by

(58) mb s m? = 2N g2,
and denote this modified version of Y ®z+) Z[ti%] by yg.

In analogy to x,( ), we define the Z[t*]-linear map x;,( ) from K to yg such that
for all w € N™*% we have

(59) th(L(w)) = Z(Lw(O), Ww(v)ﬂdimM'(vvw)waqu'

v

H<0()

The map Xé{t( ) is called the twisted t-analogue of q-characters. Its truncation y is

defined similarly.

Theorem 6.3.1. th( ) is an injective algebra homomorphism from lCt% to yg.
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Proof. By Lemma 6.1.5, equation (58), which defines the twisted product of yg , can be
written as

1 1,2
ml * m2 :tQN(m m )m1m2

:(t%)<6(w2)ﬁ(w1)>a (t%)f%!’(wl,wz)mlmz‘

Then the statement can be easily deduced from Theorem 2.5.1 (¢f. the correction technique

in [Qinl12b]). O

7. DUAL CANONICAL BASIS

Let (E , L) be given as in Section 6. Consider the quantum cluster algebra Af; ¢ whose
initial compatible pair is chosen to be (B, L). It is a subalgebra of the quantum torus
T(L).

For any linear combination ), d;;, d; € Z, we define its degree deg(}_.d;a;) to be
>°;d;. Define the quadratic function N( ) : N*% — 7 such that for any w € N*%  we
have

N(w) = (B(w), B(w)) + deg ™' B(w).

By abuse of notation, let cor denote the Z-linear map from )/g to T (L) such that we
have

(60) cor(t%Y“’) = g2 @)

for any w and any integer A\. The arguments of Section 3.3 (or [Qin12b]) imply that cor

is an algebra homomorphism. -
Denote the image x,,=°(K ;) by A% For any w, denote cory,,=*(M(w)) by M*(w),

corx,=0(L(w)) by LA(w), and cory,=°(L(w)) by LA(w). Then {M*(w)}, {I:f(w)},

q,t

{L4(w)} are three homogeneous bases of the Ky(D?(CQ — mod)-graded algebra A1
Proposition 7.0.2. {L4(w)} and {LA(w)} contain all the quantum cluster monomials.

Proof. The statement follows from Theorem 3.3.7 and the existence of quantum F'-polynomials
(cf. [Trall] or the correction technique in [Qinl12b]). O

Therefore, A7 is the subalgebra of A, ¢ generated by all the quantum cluster variables
and the frozen variables x,.1, -+ ,Z2,. So we also call At a quantum cluster algebra.

Notice that the structure constants of either M or LA take values in Z[g¥], since the
map cor sends t to ¢q. Also, the non-diagonal entries of the transition matrix between
them takes values in ¢Z[q].

In order to be in accordance with the usual convention in constructing PBW basis (and
transition matrix in ¢7'Z[g"!]), we modify the bases {M“(w)} and {LA(w)} by intro-
ducing MA(w) = ¢~ 28BN fA(y), and LA(w) = ¢~ 2B@-Aw) [A(w). The elements
MA(e;(a)) = LA(e;(a)), i € I, a € {0,—1}, are called the dual PBW generators of Al

We follow the convention of Section 4 (and thus of [GLS11a]). Choose the Coxeter
element ¢ to be 85(1)85(2) Ce Sg(n).

Denote A = Q[v*]. The image ¢, U] (¢?)'} is called the integral form of A,(n(c?)),
which we denote by As(n(c?)). This is an A-algebra. Denote the A-algebra A Rzp+) A
by AqA.
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Proposition 7.0.3. There is a Ko(D?(CQ — mod))-graded algebra isomorphism % from
Ady to Ax(n(c?)), which sends MA(w) to the dual PBW basis element E™(c™S(w)).

Proof. As in [GLS11a, Proposition 12.1], we want to compare the T-systems in both
algebras. In Ay (n(c?)), we have, for any k € I,

vA B (cl€(k) + n.&(k) +n], W)BY (c[6(k), £(k)], W) = v PBY(c[¢(k), £(k) + n], W)
+ B (Y barcl€(0), £(D)] + Y brgel€(F) + n, £() + n), W),

i<k i>k

whete A = (u(€(K) +n, k), @ — u(€(k), &), B = (u(€(k), k), i — u(€(K) +n, k), and we
denote p(d,i) = s;, - - - s;,w; for any d € N, ¢f. [GLS11a, Proposition 5.5].

Notice that the PBW generators B (c[a, b], @) of Ax(n(c?)), 1 < a <b < 2n, i, =i,
satisfy the T-systems in Proposition 5.3.9. Further using Remark 5.3.10, we deduce
that Ag(n(c?)) is contained in the algebra 77 which is generated by B (c[€(i), £(1)], W),
BY(cl¢(i),£(i) + n], W), i € I, and their inverses.

It follows from Proposition 5.3.7 and the definition of L that there is an algebra iso-
morphism & from the quantum torus 7zp,+]A to 7" such that we have

(B (cl¢ (i), £(0)], @) = LA(e:(0)),
R(BY(c[€(i),£(0) + n], @) = LA(ei(~1) + ¢;(0)).

We refer the reader to [GLS11a, Proposition 11.5] for a detailed examination of k for
general w.

Notice that for any 7,5 € I, 1 < r < 2n, we have (w;, ;) = 05, (s, Beiy) = 1,
(ﬂrv Br) = 2.

From now on, fix any k& € I. We compute (@, Be(k)4n) as

(wk, 6§(k)+n) = (Sk8k+1 c S Wy Sg—15k—2" "+ S15pSp—1 """ Sk+106k~)
= (k= Qky Sk—15k—2" " * S1SnSn—1 " * Sk41 %)
= (wk, Sk—18k—2 " S1SnSpn—1""" Sk+1ak)
— (s Sk—15k—2 "~ S15nSn—1 " Sk410k)
= (@k, ar) — (SnSn—1" " Sk Be(k)4n)
=1+ (Bew Bery+n)-

So we have

A = (@k = Bewry — Bey+n, @k — (@ — Bery))
= (@k — Bek) — Betry+ns Bery)
= —1 — (Bewy, Be(ry+n)

B = (@ — Bewrys Beey + Beiy+n)

=-1- (Bf(k)u ﬁf(k)+n) + (wkaﬁs(k)w“n)
=0.
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Consider the quantum cluster algebra As A. For any @ € I, let 27 denote the quantum
cluster variable L*(e;(—1)). We have the following T-system:
+ q%L(Zz(k bik€itY ;5 bkj€itn er) H xfzk . (Izﬂ)bk,kﬂ o (x:;)b’“”.
i<k

We have L(epir, er)+2 = L, ;. bixe: +Zj>k brj€j+n, ). The above T-system becomes

—Lr(enimen)—1 % . _ -1 bik *  \b *\brr,
g2 enekcn) LTk =4 $n+k+H$i (@) ()

i<k
By definition, we have

1 . 1
zp = q2 LA(ex(0)), z = q2LA(er(—1)),
Ty = q2 P TBewn B P n) LA(e) (—1) + €5,(0)).

Also, we have L(epir, ex) = —(Ber(—1)), B(ex(0))) and 3,y bixS(ei(0)) 4D ;- 1, brjB(e;(—1)) =
Blex(=1)) + B(ex(0)).
Therefore, the T-system can be written as
g LBl BN LA (e, (—1)) # LA(er,(0))

= ¢ LA(er(=1) + er(0) + LAY bares(0) + D byye;(—1)).
i<k i>k
Therefore, x identifies the PBW generators. It follows that it gives an isomorphism
from A7, to Ax(n(c?)). O

Let Azp+)(n(c?)) denote the free Z[v*]-module generated by the dual PBW basis ele-
ments of A,(n(c?)).

Theorem 7.0.4. The map k is an algebra isomorphism from the quantum cluster algebra
A to Agpxy(n(c?)). It sends {LA(w)} to the dual canonical basis of Azp+(n(c?)). In par-
ticular, every quantum cluster monomials up to a v-power is sent into the dual canonical
basis.

Proof. The first statement follows from Proposition 7.0.3.

The bar-invariant basis { L4(w)} is uniquely determined by the dual PBW basis { M4 (w)}
and the upper unitriangular property. Similarly, the o, -invariant dual canonical basis of
Ax(n(c?)) is uniquely determined by the dual PBW basis of Ay (n(c?)) and the upper
unitriangular property. Because the isomorphism x commutes with these two involutions
and identifies the two dual PBW bases, it identifies the dual canonical bases as well.

The last statement follows from Proposition 7.0.2. 0
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