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Abstract. Let 2 C R? be a smooth bounded domain and let T = {p;,--- ,py} C
Q) be the set of prescribed points. Consider the Liouville type equation

—Au = )\Hé\f:1|m —pi?V(z)e" nQ, u=0 ond,

where ; (j = 1,--+, N) are positive numbers, V(x) > 0 is a given smooth
function on €, and A > 0 is a parameter. Let {u,} be a blowing up solution
sequence for A = \,, | 0 having the m-points blow up set S ={q1, - ,¢n} C
Q,ie.,

MDY o — pi P9V (x)e" da — Y " bid,
i=1
in the sense of measures, where b; = 8r if ¢; ¢ I', b; = 87(1 + ) if ¢; = p;
for some p; € I We show that the number of blow up points m is less
than or equal to the Morse index of w, for n sufficiently large, provided

aj € (0,400) \Nfor all j =1,---,N. This is a generalization of the result
[14] in which nonsingular case («; = 0 for all j) was studied.
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1 Introduction

Let Q be a smooth bounded domain in R? and A > 0 is a parameter. Mo-
tivated by some physical problems in selfdual Gauge Field Theories such as
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Chern-Simons vortex theories or others (see [12], [15]), some researchers are
interested in the analysis of the problem

{—Av = Xe' — 47 Z;VZI 0y, in Q, (11)

v=20 on 012,

where I' = {py,--- ,py} C Q is the set of prescribed singular sources (called
“vortices”), d, is a Dirac mass supported at p, and a; > 0.
If we introduce the Green’s function of —A acting on Hj(Q):

—A,G(z,p) =0, for z € Q,
G(z,p) =0 for z € 09,

and write G(z,p) = 5=log |z — p|~* + H(x,p), where H(z,p) is the regular
part of G, then the problem (1.1) is equivalent to

{—Au = MY |z = p PV ()" inQ, (1.2)

u =0 on 0f)

where u = v+47 Zjvzl a;G(z,p;) and V(x) = ™7 Zjt1o5H (@) s 3 smooth
positive function on Q. By this reason, we are led to consider the problem
(1.2) for general smooth positive functions V. In this case, the study of
asymptotic behavior of solutions u,, for A = A, — 40 in (1.2) was done by P.
Esposito in [5] (see also [6] [7]), which extends the results of [9], [10] where
the regular case (o; =0, Vj) was considered.

Theorem 1 (P. Esposito) Let V' be a smooth positive function on Q and set
K(x) =10, |z —p;|*9V (x). Let {\,} be a sequence of positive numbers with
An — 0 and let {u,} be a solution sequence of (1.2) for X = A, such that

X, = An/ K(z)e'dr = O(1) asn — oo.
Q

Then the following alternative holds:

(i) If 3, — 0 as n — oo, then u, — 0 in C**(Q) for some a € (0,1) and
uy, coincides with the unique minimal solution of (1.2).



(i1) If ¥, — L for some L # 0, then (up to subsequence) there exists a
nonempty finite set S ={q1, - ,qm} C Q (blow up set) such that {u,}
is uniformly bounded in LS. (Q\ S), and

loc

MK (z)e"dx — Z bjd,, in the sense of measures, (1.3)
i=1
up = > biG(,q) inCpL(Q\S) (1.4)
i=1

as n — oo, where b; =8 if ¢; ¢ I', b; = 8n(1+ ;) if ¢; = p; for some
p; € r.

Furthermore, as for the location of blow up points in the case (ii), we
have the following:

If SNT = ¢, then (q1,- -+ ,qm) 1S a critical point for the function

m m 1 m
Flay,--- ,xm):ZH(xi,xi)—i- Z G(xi,xj)—i-EZlOgK(xi).
i=1 ij=1i%j i=1

If SN =A{pj,--,p;,} and S\T ={q,, -, ¢, } with s+ k = m,
then (gi,,- -+ ,qi,) is a critical point for the function

F<$1a"' ,fl'fk) :f(xlf" 71:/6) +g($17 y ks Pjyyt 7pj5)’

where

k s

Gy, - s an, - ,as) = ﬁ (ZZ8W(1+%‘)G(%%‘)> :

i=1 j=1

Also, as a vice versa of Theorem 1, Esposito constructed blowing up
solutions with a prescribed blow up set S under the additional assumption
that a; € (0,400) \Nforall j =1,---, N; see [6].

In the following, let i3/ (u) denote the Morse index of a solution u of (1.2),
i.e., the number of negative eigenvalues of the operator L, = —A — MK (x)e"
acting on H}(Q).

Now, we state the main result of this note, which is a generalization of
[13] [14] in this case.



Theorem 2 Let {u,} be a solution sequence of (1.2) for X = \, with ¥,, =
O(1) asn — oo and let S ={q1,- -+, qm} be its blow up set (possibly S = ¢).
Assume a; € (0,400) \ N for all j = 1,--- |N. Then m < iy(u,) forn
sufficiently large.

As a corollary, we obtain the following assertion.

Corollary 3 Let {u,} be a solution sequence of (1.2) for A = X\, with ¥,, =
O(1) as n — oo. Assume a; € (0,400) \N for all j = 1,--- N and the
Morse indez iy (uy,) = 1 for any n large. Then the number of blow up points
of {u,} is exactly 1.

Proof. By Theorem 2 and the assumption that iy (u,) = 1 for n large,
we see that the number of blow up points 5 is 0 or 1 for the sequence {u,,}.
However, if S = 0, then {u,} is uniformly bounded and ¥, — 0. Thus by
Theorem 1, u, coincides with the minimal solution u, of (1.2) for n large.
It is well known that the minimal solution w, is stable and its Morse index
is exactly 0. This contradicts to the assumption iy (u,) = 1, thus we have

45 = 1. 0

2 Proof of Theorem 2

In this section, we prove Theorem 2 along the line of [13], [14]. Ana-
lytical tools needed for the study of singular Liouville equations are pro-
vided in Tarantello’s nice book [12]. In the proof, we need a concentration-
compactness alternative result of Bartolucci and Tarantello ([2], [3], see also
[12]: Proposition 5.4.32), which we recall here in the following form.

Proposition 4 Let v, satisfy
— Av, = |z — pl**W,(z)e’" in By(p) C R?,

Br(p)

where o > 0 and W, is a C* function on By(p) such that



for some by, by, A > 0 uniformly in n.
Then there exists § € (0,1] and a subsequence of v, (denoted by the same
symbol), for which only one of the following alternatives hold:

(a) vy, is bounded uniformly in L2.(Bs(p));

(b) supwv, — —oo for every Q' CC Bs(p);
Q/

(c) there ezists z, € Bi(p) such that z, — p and v,(z,) — 400, while
Supq v, — —oo for every Q' CC Bs(p) \ {p} and |x — p[**W,e’" — 36,
in the sense of measures in Bs(p) with > 4w. Furthermore if W,, —
W in C?  for some W, then 3 > 8.

loc

Let {u,} be a solution sequence to (1.2) for A = A, with ¥, = O(1)
asn — oo. If ¥, — 0, then S = ¢ and we have nothing to prove. Thus
we consider the case (ii) of Theorem 1, and we have a blow up set § =
{q1,- -, qm} C Q for (a subsequence of) {u,}.

Let L, = —A, — A\, K(x)e"@. . HYQ) — H(Q) be the linearized
operator around u,, and let A;(L,, D) denote the j-th eigenvalue of L,, acting
on H}(D) for a regular subdomain D C €. Next is the key in the proof of
Theorem 2.

Claim: There exist m disjoint open balls { B}, each B* CC €, such that
M(L,,B") <0 for any i € {1,--- ,m} and for n large .

Assuming for the moment the validity of Claim, we prove Theorem 2.
Indeed, by Claim, there exist m open balls B!, ... B™ which are disjoint,
such that

M(Ln,B) <0 fori=1,---,m

On the other hand, it is well known that
(L, Q) Z (Ln, BY)

holds; see, for example, the Appendix of [13]. Combining these inequalities,
we have A, (L,, ) < 0. Therefore by the definition of the Morse index of
Uy, we have m < iy (u,). This proves Theorem 2. O



In the following, we will prove Claim. Let S\ I' = {q;,, - ,q;}. Since
K(x) = II}L |z — p;[**V (x) is strictly positive smooth function near any
g € S\ T, the argument in [14], which uses a concentration-compactness
result of [4] [8], works well around ¢ € S\ I'. Thus we can find r disjoint
balls {Bj}F_, with the desired property. We refer the reader to [14] [13].

Next, we consider blow up points in SNI = {p;,---,p; } and, for
simplicity, we relabel SN T = {p1,--- ,ps}. We choose r > 0 sufficiently
small such that B,.(p;) CC 2, {B,(p;)};_, are disjoint, and p; is the only
blow up point of u, in B,(p;) for all i. Let ¢, € B.(p;) be a point such that

Up (7)) = max u,(z) — +oo, 2t —p; (i=1,---,85),
Br(pi)
as n — 0o.
Now, let us define 0/, > 0 and @, : B, 5 (0) — R so that

(8222 e ) = 1,

un(y) = un<5;y +pz) - Un(pl), Yy < Br/(;% (0)

forie {1,---,s}.
First, we prove

Lemma 5 0/ — 0 as n — oo.
Proof. Define v, (z) = u,(x) 4+ log A,,. Then v, satisfies
—Av, = |z — pi)** Ki(x)e’  in By(pi), vp = un+log, on dB.(p:),
Nzl = pi?%V (). Note that

K; is a smooth, strictly positive function on B,(p;). Also, Theorem 1 (1.3),
(1.4) implies that

where K (z) = |z — p;[** K,(2), K;(z) = IV

| — il K(z)et da — 8m(1+ o)), (2.1)
in the sense of measures on B,(p;) and

max v,(x) — min v,(r) = max u,(zr) — min u,(x) = O(1 2.2
OB (p:) ( ) 0B (pi) ( ) 9B (pi) ( ) 9B (pi) ( ) ( ) ( )

as n — oo. Recall the assumption «; ¢ N for all i. Therefore, we can apply
Proposition 5.6.50 and Corollary 5.4.24 in [12] to v, to conclude that

sup {v,(x) + (20 + 1) log |z — p;|} < C
Bp(Pi)



|25 —pil
k3

2(Oli+1)
‘) < eY and

for any p < r, which implies (

vn(pi) = max v, + O(1) (2.3)
Br(pi)
as n — oo. Thus u,(p;) = un(2l) + O(1) — oo for any i = 1,--- ,s as
n — oo,
Now, we claim that v,(p;) — +00 as n — oo for any i € {1,--- ,s}. In-
deed, assume the contrary that there exists i € {1,--- , s} and a subsequence

(denoted by the same symbol) such that
(i) vn(pi) — —o00, or
(ii) vu(p;) — C for some C € R.
When (i) happens, we see by (2.3) that

/ K (x)e®dy < emaXBrp) vn / K(z)dz = e”"(pi)+o(1)/ K(z)dx — 0
By (p:) Br(pi)

B, (pl)

as n — 00. On the other hand, since p; is the only blow up point of {u,} in
B.(p:), (2.1) implies

lim K(z)e"dx > 8m(1 + o),
"0 J Br(pi)
which leads to a contradiction.

When (ii) happens, again by (2.3), we see maxp, p,) Un = vpn(z}) = O(1)
as n — oo. Since z!, — p; as n — oo, this case can happen only when
the alternative (a) in Proposition 4 occurs: {v,} is bounded in L3 (B, (p;)).
On the other hand, since u, = O(1) locally on B,.(p;) \ {p:} by (1.4), v, =
up +log A, — —o0 on any compact set in B,.(p;) \ {p;}. This again leads to a
contradiction and we have proved the claim. Now, since (47,)20F2) =
we obtain the lemma.

Incidentally, by (2.1), (2.2) and (2.3), we can apply Theorem 5.6.51 in
[12], see also [1], to v, to obtain the following pointwise estimate

evn(p'i)
vp () — log 5| < C forx € B(p),




which is equivalent to

eun(pi)
un(l’) — log 5 <C forze Br(pi)>

(1 srciene o = piece)

A

where C; = KZ (pz)
Going back to the proof of Theorem 2, we see that u! satisfies

(A, = |y[Pheirhai Ky (8Ly + py)e®™  in B, 5i (0),
R(0hy + ) — & = Ky(pr)  uniformly in O, (E2),

n .
r/8n

Js, . o WP Ki(By + p)etdy = O(1),  (n— o).

\

The third equation comes from (2.3).
At this stage, we can apply Lemma 5.4.21 in [12] to @, to confirm that

@' is uniformly bounded in L7 (R?) and along a subsequence,

il — U'(y) in C?

loc

(R?) as n — oo, (2.4)
where U’ satisfies 4 .

—AU? = ¢i|y|*@eV"  in R?

U‘0) =0,

Jeo lyPP@ieV dy < +o0.

By a classification result of Prajapat and Tarantello [11] and the assumption
a; ¢ N, we have

U'(y) = —2log (1 + G )2|y|2(o"'+1)> fori=1,---s.

Now, we define

L, = =8, =y RSy + p)e™ - Hy(Byys; (0) = H ' (Byyay 0)).

n

This operator is related to L, by the formula

(6)*L | =L,
un (x)=0% (y)+un(pi)
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where @ = 0Ly + p; for © € B,.(p;) and y € B,/5(0). Also for a domain
D C B,(p;), we have

(52)2/\1(Lm D) - >\1([~/:‘17 D;L), D! =

n (5}1 ?

where A\, (L%, D?) denotes the first eigenvalue of L acting on H}(D?).
Now, we show

(2.5)

Lemma 6 There exist disjoint balls { Bsi g(p;) }i=1,... s for some R > 0 such
that Ai(Ly, Bsi (pi)) < 0 for n large and for any i € {1,--- ,s}.

Proof. For R > 0, we define

We will prove that (L% wpg, Wr) 2By < 0 for n € Nand R > 0 sufficiently
large with Br(0) C B, /si (0). Indeed,

(Liwr, wr) 2By = / Vwg|*dy — / |y K (8Ly + pi)e™Dwh(y)dy
Br(0) Br(0)
== [1 - [2.
We observe that

16]y|” /R 1672
[:/ —————dy =27 ————=rdr < 327 (log R) [1 + ogr(1)],
' Br(0) (84 [y]?)? o (8+72)2 ( ) (1)]

where og(1) — 0 as R — oo. On the other hand, we have

= / [y K (0 + 2 )e™ Wwi, (y)dy
Br(0)

20 8 RQ 2
= ci/ 1 5 {210g+—2} dy + 0, (1)
Br(0) <1 4 _ |y|2ai+2> 8+ |yl

8(a¢+1)2
R 200+ )
= 87?@/ 5 {log(8 + R?) — log(8 + r*) } " dr + 0,(1)
P U s
4(a; + 1
= 8m¢; [% + 03(1)] {log(8 + RQ)}2 + o,(1)

— 327 (a; + 1) {log(8 + B}’ [1 + 0x(1)] + 0(1),



where we have used (2.4) and

R 7,,204—4—1 00 T,2a+1 1
/0 (1 + cr2a+2)2 " /0 (1 + cr2at2)2 r+or(l) 2(a+1)c +or(1)

for o, ¢ > 0. Thus we obtain
(f/;wR,wR)Lz(BR) = Il — _[2 S —3277'(051‘ + ].) {10g(8 + RQ)}Q []_ —|— OR<1)] < 0

by taking n sufficiently large first, and then R > 0 large such that Bgr(0) C
B, 5i (0). This implies that the first eigenvalue of the operator L} on Bp
is negative: A\ (L‘,Bg) < 0. By this calculation and (2.5) proves that
At(Ln, Bsi g(pi)) < 0 for i = 1,---,s. These balls {B;};_; = {Bs r(pi)}i—:
can be disjoint if we choose sufficiently large n, since the blow up set S is
finite and 0" = o(1) as n — oo. [

Since balls {B;}?_; in Lemma 6 can also be made disjoint from balls
{B/}F_, (former obtained around points in S \ I'), we obtain Claim. The
proof of Theorem 2 is completed. U
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