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Abstract. Let Ω ⊂ R2 be a smooth bounded domain and let Γ = {p1, · · · , pN} ⊂
Ω be the set of prescribed points. Consider the Liouville type equation

−∆u = λΠN
j=1|x− pj|2αjV (x)eu in Ω, u = 0 on ∂Ω,

where αj (j = 1, · · · , N) are positive numbers, V (x) > 0 is a given smooth
function on Ω, and λ > 0 is a parameter. Let {un} be a blowing up solution
sequence for λ = λn ↓ 0 having the m-points blow up set S = {q1, · · · , qm} ⊂
Ω, i.e.,

λnΠN
j=1|x− pj|2αjV (x)eundx ⇀

m∑
i=1

biδqi

in the sense of measures, where bi = 8π if qi /∈ Γ, bi = 8π(1 + αj) if qi = pj

for some pj ∈ Γ. We show that the number of blow up points m is less
than or equal to the Morse index of un for n sufficiently large, provided
αj ∈ (0, +∞) \ N for all j = 1, · · · , N . This is a generalization of the result
[14] in which nonsingular case (αj = 0 for all j) was studied.
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1 Introduction

Let Ω be a smooth bounded domain in R2 and λ > 0 is a parameter. Mo-
tivated by some physical problems in selfdual Gauge Field Theories such as
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Chern-Simons vortex theories or others (see [12], [15]), some researchers are
interested in the analysis of the problem

{
−∆v = λev − 4π

∑N
j=1 αjδpj

in Ω,

v = 0 on ∂Ω,
(1.1)

where Γ = {p1, · · · , pN} ⊂ Ω is the set of prescribed singular sources (called
“vortices”), δp is a Dirac mass supported at p, and αj > 0.

If we introduce the Green’s function of −∆ acting on H1
0 (Ω):

{
−∆xG(x, p) = δp for x ∈ Ω,

G(x, p) = 0 for x ∈ ∂Ω,

and write G(x, p) = 1
2π

log |x − p|−1 + H(x, p), where H(x, p) is the regular
part of G, then the problem (1.1) is equivalent to

{
−∆u = λΠN

j=1|x− pj|2αjV (x)eu in Ω,

u = 0 on ∂Ω
(1.2)

where u = v + 4π
∑N

j=1 αjG(x, pj) and V (x) = e−4π
PN

j=1 αjH(x,pj) is a smooth

positive function on Ω. By this reason, we are led to consider the problem
(1.2) for general smooth positive functions V . In this case, the study of
asymptotic behavior of solutions un for λ = λn → +0 in (1.2) was done by P.
Esposito in [5] (see also [6] [7]), which extends the results of [9], [10] where
the regular case (αj = 0, ∀j) was considered.

Theorem 1 (P. Esposito) Let V be a smooth positive function on Ω and set
K(x) = ΠN

j=1|x−pj|2αjV (x). Let {λn} be a sequence of positive numbers with
λn → 0 and let {un} be a solution sequence of (1.2) for λ = λn such that

Σn = λn

∫

Ω

K(x)eudx = O(1) as n →∞.

Then the following alternative holds:

(i) If Σn → 0 as n →∞, then un → 0 in C2,α(Ω) for some α ∈ (0, 1) and
un coincides with the unique minimal solution of (1.2).
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(ii) If Σn → L for some L 6= 0, then (up to subsequence) there exists a
nonempty finite set S = {q1, · · · , qm} ⊂ Ω (blow up set) such that {un}
is uniformly bounded in L∞loc(Ω \ S), and

λnK(x)eundx ⇀

m∑
i=1

biδqi
in the sense of measures, (1.3)

un →
m∑

i=1

biG(·, qi) in C2
loc(Ω \ S) (1.4)

as n →∞, where bi = 8π if qi /∈ Γ, bi = 8π(1 + αj) if qi = pj for some
pj ∈ Γ.

Furthermore, as for the location of blow up points in the case (ii), we
have the following:

If S ∩ Γ = φ, then (q1, · · · , qm) is a critical point for the function

F(x1, · · · , xm) =
m∑

i=1

H(xi, xi) +
m∑

i,j=1,i6=j

G(xi, xj) +
1

4π

m∑
i=1

log K(xi).

If S ∩ Γ = {pj1 , · · · , pjs} and S \ Γ = {qi1 , · · · , qik} with s + k = m,
then (qi1 , · · · , qik) is a critical point for the function

F̃(x1, · · · , xk) = F(x1, · · · , xk) + G(x1, · · · , xk; pj1 , · · · , pjs),

where

G(x1, · · · , xk; a1, · · · , as) =
1

4π

(
k∑

i=1

s∑
j=1

8π(1 + αj)G(xi, aj)

)
.

Also, as a vice versa of Theorem 1, Esposito constructed blowing up
solutions with a prescribed blow up set S under the additional assumption
that αj ∈ (0, +∞) \ N for all j = 1, · · · , N ; see [6].

In the following, let iM(u) denote the Morse index of a solution u of (1.2),
i.e., the number of negative eigenvalues of the operator Lu = −∆−λK(x)eu·
acting on H1

0 (Ω).
Now, we state the main result of this note, which is a generalization of

[13] [14] in this case.

3



Theorem 2 Let {un} be a solution sequence of (1.2) for λ = λn with Σn =
O(1) as n →∞ and let S = {q1, · · · , qm} be its blow up set (possibly S = φ).
Assume αj ∈ (0, +∞) \ N for all j = 1, · · · , N . Then m ≤ iM(un) for n
sufficiently large.

As a corollary, we obtain the following assertion.

Corollary 3 Let {un} be a solution sequence of (1.2) for λ = λn with Σn =
O(1) as n → ∞. Assume αj ∈ (0, +∞) \ N for all j = 1, · · · , N and the
Morse index iM(un) = 1 for any n large. Then the number of blow up points
of {un} is exactly 1.

Proof. By Theorem 2 and the assumption that iM(un) = 1 for n large,
we see that the number of blow up points ]S is 0 or 1 for the sequence {un}.
However, if ]S = 0, then {un} is uniformly bounded and Σn → 0. Thus by
Theorem 1, un coincides with the minimal solution un of (1.2) for n large.
It is well known that the minimal solution un is stable and its Morse index
is exactly 0. This contradicts to the assumption iM(un) = 1, thus we have
]S = 1.

2 Proof of Theorem 2

In this section, we prove Theorem 2 along the line of [13], [14]. Ana-
lytical tools needed for the study of singular Liouville equations are pro-
vided in Tarantello’s nice book [12]. In the proof, we need a concentration-
compactness alternative result of Bartolucci and Tarantello ([2], [3], see also
[12]: Proposition 5.4.32), which we recall here in the following form.

Proposition 4 Let vn satisfy

−∆vn = |x− p|2αWn(x)evn in B1(p) ⊂ R2,∫

Br(p)

|x− p|2αWne
vndx ≤ C for some r ∈ (0, 1],

where α > 0 and Wn is a C1 function on B1(p) such that

0 < b1 ≤ Wn ≤ b2, |∇Wn| ≤ A in B1(p)
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for some b1, b2, A > 0 uniformly in n.
Then there exists δ ∈ (0, 1] and a subsequence of vn (denoted by the same

symbol), for which only one of the following alternatives hold:

(a) vn is bounded uniformly in L∞loc(Bδ(p));

(b) sup
Ω′

vn → −∞ for every Ω′ ⊂⊂ Bδ(p);

(c) there exists zn ∈ B1(p) such that zn → p and vn(zn) → +∞, while
supΩ′ vn → −∞ for every Ω′ ⊂⊂ Bδ(p)\{p} and |x−p|2αWne

vn ⇀ βδp

in the sense of measures in Bδ(p) with β ≥ 4π. Furthermore if Wn →
W in C0

loc for some W , then β ≥ 8π.

Let {un} be a solution sequence to (1.2) for λ = λn with Σn = O(1)
as n → ∞. If Σn → 0, then S = φ and we have nothing to prove. Thus
we consider the case (ii) of Theorem 1, and we have a blow up set S =
{q1, · · · , qm} ⊂ Ω for (a subsequence of) {un}.

Let Ln = −∆x − λnK(x)eun(x)· : H1
0 (Ω) → H−1(Ω) be the linearized

operator around un and let λj(Ln, D) denote the j-th eigenvalue of Ln acting
on H1

0 (D) for a regular subdomain D ⊂ Ω. Next is the key in the proof of
Theorem 2.

Claim: There exist m disjoint open balls {Bi}m
i=1, each Bi ⊂⊂ Ω, such that

λ1(Ln, Bi) < 0 for any i ∈ {1, · · · ,m} and for n large .

Assuming for the moment the validity of Claim, we prove Theorem 2.
Indeed, by Claim, there exist m open balls B1, · · · , Bm which are disjoint,
such that

λ1(Ln, B
i) < 0 for i = 1, · · · ,m.

On the other hand, it is well known that

λm(Ln, Ω) ≤
m∑

i=1

λ1(Ln, Bi)

holds; see, for example, the Appendix of [13]. Combining these inequalities,
we have λm(Ln, Ω) < 0. Therefore by the definition of the Morse index of
un, we have m ≤ iM(un). This proves Theorem 2.
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In the following, we will prove Claim. Let S \ Γ = {qi1 , · · · , qik}. Since
K(x) = ΠN

j=1|x − pj|2αjV (x) is strictly positive smooth function near any
q ∈ S \ Γ, the argument in [14], which uses a concentration-compactness
result of [4] [8], works well around q ∈ S \ Γ. Thus we can find r disjoint
balls {B′

l}k
l=1 with the desired property. We refer the reader to [14] [13].

Next, we consider blow up points in S ∩ Γ = {pj1 , · · · , pjs} and, for
simplicity, we relabel S ∩ Γ = {p1, · · · , ps}. We choose r > 0 sufficiently
small such that Br(pi) ⊂⊂ Ω, {Br(pi)}s

i=1 are disjoint, and pi is the only
blow up point of un in Br(pi) for all i. Let xi

n ∈ Br(pi) be a point such that

un(xi
n) = max

Br(pi)
un(x) → +∞, xi

n → pi (i = 1, · · · , s),

as n →∞.
Now, let us define δi

n > 0 and ũi
n : Br/δi

n
(0) → R so that

(δi
n)2αi+2λne

un(pi) = 1,

ũi
n(y) = un(δi

ny + pi)− un(pi), y ∈ Br/δi
n
(0)

for i ∈ {1, · · · , s}.
First, we prove

Lemma 5 δi
n → 0 as n →∞.

Proof. Define vn(x) = un(x) + log λn. Then vn satisfies

−∆vn = |x− pi|2αiK̂i(x)evn in Br(pi), vn = un + log λn on ∂Br(pi),

where K(x) = |x − pi|2αiK̂i(x), K̂i(x) = ΠN
j=1,j 6=i|x − pj|2αjV (x). Note that

K̂i is a smooth, strictly positive function on Br(pi). Also, Theorem 1 (1.3),
(1.4) implies that

|x− pi|2αiK̂i(x)evndx ⇀ 8π(1 + αi)δpi
(2.1)

in the sense of measures on Br(pi) and

max
∂Br(pi)

vn(x)− min
∂Br(pi)

vn(x) = max
∂Br(pi)

un(x)− min
∂Br(pi)

un(x) = O(1) (2.2)

as n →∞. Recall the assumption αi /∈ N for all i. Therefore, we can apply
Proposition 5.6.50 and Corollary 5.4.24 in [12] to vn to conclude that

sup
Bρ(pi)

{vn(x) + (2αi + 1) log |x− pi|} ≤ C
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for any ρ < r, which implies
(
|xi

n−pi|
δi
n

)2(αi+1)

≤ eC , and

vn(pi) = max
Br(pi)

vn + O(1) (2.3)

as n → ∞. Thus un(pi) = un(xi
n) + O(1) → ∞ for any i = 1, · · · , s as

n →∞.
Now, we claim that vn(pi) → +∞ as n → ∞ for any i ∈ {1, · · · , s}. In-

deed, assume the contrary that there exists i ∈ {1, · · · , s} and a subsequence
(denoted by the same symbol) such that

(i) vn(pi) → −∞, or

(ii) vn(pi) → C for some C ∈ R.

When (i) happens, we see by (2.3) that
∫

Br(pi)

K(x)evn(x)dx ≤ emaxBr(pi)
vn

∫

Br(pi)

K(x)dx = evn(pi)+O(1)

∫

Br(pi)

K(x)dx → 0

as n →∞. On the other hand, since pi is the only blow up point of {un} in
Br(pi), (2.1) implies

lim
n→∞

∫

Br(pi)

K(x)evndx ≥ 8π(1 + αi),

which leads to a contradiction.
When (ii) happens, again by (2.3), we see maxBr(pi) vn = vn(xi

n) = O(1)
as n → ∞. Since xi

n → pi as n → ∞, this case can happen only when
the alternative (a) in Proposition 4 occurs: {vn} is bounded in L∞loc(Br(pi)).
On the other hand, since un = O(1) locally on Br(pi) \ {pi} by (1.4), vn =
un +log λn → −∞ on any compact set in Br(pi)\{pi}. This again leads to a
contradiction and we have proved the claim. Now, since (δi

n)2(1+αi) = 1
evn(pi)

,
we obtain the lemma.

Incidentally, by (2.1), (2.2) and (2.3), we can apply Theorem 5.6.51 in
[12], see also [1], to vn to obtain the following pointwise estimate

∣∣∣∣∣∣∣
vn(x)− log

evn(pi)

(
1 + 1

8(αi+1)2
cievn(pi)|x− pi|2(αi+1)

)2

∣∣∣∣∣∣∣
≤ C for x ∈ Br(pi),
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which is equivalent to
∣∣∣∣∣∣∣
un(x)− log

eun(pi)

(
1 + λn

8(αi+1)2
cieun(pi)|x− pi|2(αi+1)

)2

∣∣∣∣∣∣∣
≤ C for x ∈ Br(pi),

where ci = K̂i(pi).
Going back to the proof of Theorem 2, we see that ũi

n satisfies





−∆ũi
n = |y|2halphaiK̂i(δ

i
ny + pi)e

ũi
n in Br/δi

n
(0),

K̂i(δ
i
ny + pi) → ci = K̂i(pi) uniformly in C0

loc(R2),

ũi
n(0) = 0, max

B
r/δi

n
(0)

ũi
n = un(xi

n)− un(pi) = O(1),

∫
B

r/δi
n
(0)
|y|2αiK̂i(δ

i
ny + pi)e

ũi
ndy = O(1), (n →∞).

The third equation comes from (2.3).
At this stage, we can apply Lemma 5.4.21 in [12] to ũi

n to confirm that
ũi

n is uniformly bounded in L∞loc(R2) and along a subsequence,

ũi
n → U i(y) in C2

loc(R2) as n →∞, (2.4)

where U i satisfies 



−∆U i = ci|y|2αieU i
in R2,

U i(0) = 0,∫
R2 |y|2αieU i

dy < +∞.

By a classification result of Prajapat and Tarantello [11] and the assumption
αi /∈ N, we have

U i(y) = −2 log

(
1 +

ci

8(αi + 1)2
|y|2(αi+1)

)
for i = 1, · · · , s.

Now, we define

L̃i
n = −∆y − |y|2αiK̂i(δ

i
ny + pi)e

ũi
n(y)· : H1

0 (Br/δi
n
(0)) → H−1(Br/δi

n
(0)).

This operator is related to Ln by the formula

(δi
n)2Ln

∣∣∣
un(x)=ũi

n(y)+un(pi)
= L̃i

n,
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where x = δi
ny + pi for x ∈ Br(pi) and y ∈ Br/δi

n
(0). Also for a domain

D ⊂ Br(pi), we have

(δi
n)2λ1(Ln, D) = λ1(L̃

i
n, Di

n), Di
n =

D − pi

δi
n

, (2.5)

where λ1(L̃
i
n, Di

n) denotes the first eigenvalue of L̃i
n acting on H1

0 (Di
n).

Now, we show

Lemma 6 There exist disjoint balls {Bδi
nR(pi)}i=1,··· ,s for some R > 0 such

that λ1(Ln, Bδi
nR(pi)) < 0 for n large and for any i ∈ {1, · · · , s}.

Proof. For R > 0, we define

wR(y) = 2 log
8 + R2

8 + |y|2 ∈ H1
0 (BR(0)).

We will prove that (L̃i
nwR, wR)L2(BR) < 0 for n ∈ N and R > 0 sufficiently

large with BR(0) ⊂ Br/δi
n
(0). Indeed,

(L̃i
nwR, wR)L2(BR) =

∫

BR(0)

|∇wR|2dy −
∫

BR(0)

|y|2αiK̂i(δ
i
ny + pi)e

ũi
n(y)w2

R(y)dy

=: I1 − I2.

We observe that

I1 =

∫

BR(0)

16|y|2
(8 + |y|2)2

dy = 2π

∫ R

0

16r2

(8 + r2)2
rdr ≤ 32π (log R) [1 + oR(1)] ,

where oR(1) → 0 as R →∞. On the other hand, we have

I2 =

∫

BR(0)

|y|2αiK̂i(δ
i
ny + xi

n)eũi
n(y)w2

R(y)dy

= ci

∫

BR(0)

|y|2αi

(
1 + ci

8(αi+1)2
|y|2αi+2

)2

{
2 log

8 + R2

8 + |y|2
}2

dy + on(1)

= 8πci

∫ R

0

r2αi+1

(
1 + ci

8(αi+1)2
r2αi+2

)2

{
log(8 + R2)− log(8 + r2)

}2
dr + on(1)

= 8πci

[
4(αi + 1)

ci

+ oR(1)

] {
log(8 + R2)

}2
+ on(1)

= 32π(αi + 1)
{
log(8 + R2)

}2
[1 + oR(1)] + on(1),
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where we have used (2.4) and
∫ R

0

r2α+1

(1 + cr2α+2)2
dr =

∫ ∞

0

r2α+1

(1 + cr2α+2)2
dr + oR(1) =

1

2(α + 1)c
+ oR(1)

for α, c > 0. Thus we obtain

(L̃i
nwR, wR)L2(BR) = I1 − I2 ≤ −32π(αi + 1)

{
log(8 + R2)

}2
[1 + oR(1)] < 0

by taking n sufficiently large first, and then R > 0 large such that BR(0) ⊂
Br/δi

n
(0). This implies that the first eigenvalue of the operator L̃i

n on BR

is negative: λ1(L̃
i
n, BR) < 0. By this calculation and (2.5) proves that

λ1(Ln, Bδi
nR(pi)) < 0 for i = 1, · · · , s. These balls {Bi}s

i=1 = {Bδi
nR(pi)}s

i=1

can be disjoint if we choose sufficiently large n, since the blow up set S is
finite and δi

n = o(1) as n →∞.

Since balls {Bi}s
i=1 in Lemma 6 can also be made disjoint from balls

{B′
l}k

l=1 (former obtained around points in S \ Γ), we obtain Claim. The
proof of Theorem 2 is completed.
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Roma, Italy, 2003.

[6] (MR2139452) P. Esposito: Blowup solutions for a Liouville equation
with singular data, SIAM. J. Math. Anal. 36 (2005) 1310–1345.

[7] (MR2172566) P. Esposito: Blowup solutions for a Liouville equation
with singular data, in Proceedings of the International Conference “
Recent Advances in Elliptic and Parabolic Problems” (C.C. Chen, M.
Chipot, C.S. Lin (ed.)), World Scientific, (2005) 61–79.

[8] (MR1322618) Y. Y. Li, and I. Shafrir: Blow-up analysis for solutions
of −∆u = V eu in dimension two, Indiana Univ. Math. J. 43 (1994)
1255–1270.

[9] (MR1854696) L. Ma, and J. Wei: Convergence for a Liouville equation,
Comment. Math. Helv. 76 (2001) 506–514.

[10] (MR1061665) K. Nagasaki, and T. Suzuki: Asymptotic analysis for two-
dimensional elliptic eigenvalue problems with exponentially dominated
nonlinearities, Asymptotic Anal. 3 (1990) 173–188.

[11] (MR1855007) J. Prajapat, and G. Tarantello: On a class of elliptic
problems in R2: symmetry and uniqueness results, Proc. Roy. Soc. Ed-
inburgh 131 A (2001) 967–985.

[12] (MR2403845) G. Tarantello: Selfdual Gauge Field Vortices: An Analyt-
ical Approach, Progress in Nonlinear Differential Equations and Their
Applications 72, Birkhäuser, Boston (2008)
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