Asymptotic behavior of densities for stochastic
functional differential equations
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Abstract

Consider stochastic functional differential equations depending on whole past histories
in a finite time interval, which determine non-Markovian processes. Under the uniformly
elliptic condition on the coefficients of the diffusion terms, the solution admits a smooth
density with respect to the Lebesgue measure. In the present paper, we shall study the
large deviations for the family of the solution process, and the asymptotic behaviors of the
density. The Malliavin calculus plays a crucial role in our argument.
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1 Introduction

Stochastic functional differential equations, or stochastic delay differential equations determine
non-Markovian processes, because the current states of the process in the equation depend on
the past histories of the process. Such kind of equations was initiated b§ &ndt M. Nisio

in their pioneering work [7] about 50 years ago. As stated in [14], there are some difficulties

to study such equations, because we cannot use any methods in analysis, partial differential
equations, and potential theory at all. On the other hand, it seems to be more natural to consider
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the models determined by the solutions to the stochastic functional differential equations in
finance, physics, biology, etc., because such processes include their past histories, and can be
recognized to reflect real phenomena in various fields much more exactly.

The Malliavin calculus is well known as a powerful tool to study some properties on the den-
sity function by a probabilistic approach. There are a lot of works on the densities for diffusion
processes by many authors, from the viewpoint of the Malliavin calculus (cf. [2]). Moreover, it
is also applicable to the case of solutions to stochastic functional differential equations, regard-
ing as one of the examples of the Wiener functionals. Kusuoka and Stroock in [9] studied the
application of the Malliavin calculus to solutions to stochastic functional differential equations,
and obtained the result on the existence of the smooth density for the solution with respect to
the Lebesgue measure. On the other hand, it is well known that the Malliavin calculus is very
fruitful to study the asymptotic behavior of the density function related to the large deviations
theory (cf. Leandre [10, 11, 12, 13] and Nualart [17]). In fact, the Varadhan-type estimate of the
density function for the diffusion processes can be also obtained from this viewpoint. Ferrante
et al. in [4] discussed such problem in the case of stochastic delay differential equations, where
the drift term depends on the whole past histories on the finite time interval, while the diffusion
terms depend on the state only for the edges of the finite time interval. Mohammed and Zhang
in [16] studied the large deviations for the solution process under a similar situation to [4]. But,
the special forms on the diffusion terms play a crucial role throughout their arguments in [4, 16].

In the present paper, we shall study the large deviations on the solution process to the
stochastic functional differential equations. Our stochastic functional differential equations are
much more general, because they are time inhomogeneous, and not only the drift terms but also
the diffusion terms in the equation depend on the whole past histories of the process over a finite
interval. Furthermore, as a typical application of the large deviation theory and the Malliavin
calculus, we shall study the asymptotic behavior, so-called the Varadhan-type estimate, of the
density function for the solution process, which is quite similar to the case of diffusion pro-
cesses. The effect of the time delay plays a crucial role in the behavior of the density function,
and the obtained result can be also regarded as the natural extension of the estimate for diffusion
processes, which are the most interesting points in the present paper.

The paper is organized as follows: In Section 2, we shall prepare some notations and in-
troduce our stochastic functional differential equations. Section 3 will be devoted to the brief
summary on the Malliavin calculus, and the application it to our equations. We shall consider
some estimates, which guarantee the smoothness of the solution process, and the non degener-
acy in the Malliavin sense. The existence of the smooth density will be also discussed in Section



3. The negative-order moments of the Malliavin covariance matrix will be studied there, which
is important in order to give the estimate of the density function. Sections 4 and 5 are our main
goals in the present paper. In Section 4, we shall focus on the large deviation principles on the
solution processes. As an application of the result obtained in Section 4, we shall study the
asymptotic behavior on the density for the solution process. Moreover, we can also derive the
short time asymptotics on the density function, which can be interpreted as the generalization
of the Varadhan-type estimate on diffusion processes (cf. [10, 11, 12, 13, 17]).

2 Preliminaries

Letr and T be positive constants, and denote rasdimensional Brownian motion bW =
{W(t) = (W(t),...,WM(t));t € [0,T]}. LetA (i=0,1,...,m) beR%valued functions on
[0,T] x C([-r,0]; RY) such that, for each € [0,T], the mappingAi(t,-) : C([-r,0]; RY) >

f — Ai(t, f) € RY is smooth in the Fredt sense, and all Freehderivatives of any orders
greater than 1 are bounded. Under the conditions stated above, the fud¢tior, 1, ..., d)
satisfy the linear growth condition and the Lipschitz condition in the functional sense of the

form:
sup 3 A.t B)] <Cot (14 fll), (1)
te[0,T]i
sup Z} At T) —A(t,g)| <Cor [T — gl (2)
te[0,T]i

for f, g C([—r,0]; RY), where| || = SURc|_r | f(t)|. Denote byA = (Aq,...,An).

Let 0< € < 1 be sufficiently small. For a deterministic pathe C([—r,0]; Rd), we shall
consider theRY-valued procesX® = {X&(t);t € [-r,T]} given by the stochastic functional
differential equation of the form:

{x%t) - () (te [0, -

dX®(t) = Ao(t, XF) dt + e A(t,XF) dW(t) (t € (0, T)),

whereX¢ = {X¥(s+u);ue[-r,0]} is the segment. Since the current state of the solution
depends on its past histories, the procé&ss non-Markovian clearly. Since the coefficients

of the equation (3) satisfy the Lipschitz and the linear growth condition in the functional sense,
there exists a unique solution to the equation (3), via the successive approxidd&tidn=



{xe,(n) (t);te [—nT]} (n € Z.) of the solution procesX to the equation (3) as follows:

XEO(t)=n(t) (te[-r0), (4)
x&O(t)=n(0) (te(0,T]),
)=n() Lelni.

for n € N (cf. Ito-Nisio [7], Mohammed [14, 15]).

Proposition 2.1 For any p> 1, it holds that

sup [X5(t)|P
te[—r,T]

sup E

O<e<1

S C37 p,T,n:

Proof. Let p > 2 andt € [0,T]. The Holder inequality and the Burkholder inequality tell us to
see that

E| sup [Xé(1)|P| <Capln)®+CapE sup!XE(U!p]
T€[-1t] | T€[0]
- i ;
<Csplnll&+CspE | sup / Ao(s,Xs) ds ]
| refot] [0
T p]
+Cs,pePE | sup / A(s,X$) dW(s)
/ te(0t] |/0 |
t p
< Capllnl+CopT | E[[Ro(sXE)[] os
+Cg pePTP/21 /t mIEHA;(s XE) p} ds
P Oi; :

t
<CrpTn JrC&lﬁﬂ/ E| sup ’Xe(r)lp] ds
0 TE[*LS]

from the linear growth condition on the coefficies(i =0, 1, ..., m). Hence, the Gronwall
inequality enables us to obtain the assertiondor 2.
As for 1< p < 2, the Jensen inequality yields us to see that

1/2
sup \xf(r)\z"D ,

te[-r,T]

sup E
O<e<1

sup \Xg(t)\p] < ( sup E

te[—r,T] 0<e<1

which implies the assertion by using the consequence stated above. The proof is complete.
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3 Applications of the Malliavin calculus

At the beginning, we shall introduce the outline of the Malliavin calculus on the Wiener space
Co([0,T]; R™), briefly, whereCo ([0, T]; R™) is the set ofR™-valued continuous functions on
[0, T] starting from the origin. See Di Nunno et al. [5] and Nualart [17, 18]) for detailsH_et

be the Cameron-Martin subspacedif0, T]; R™) with the inner product

T .
@hn=[ o)-hndt (@heH),

Denote by¥ the set ofR-valued random variables such that a random variBbterepresented
as the following form:
F(W) = f(Wlhg], -, W]hn])

for W € Co([0,T]; R™), wherehy,--- ,hy € H, W[h] = fOT h(s) -dW(s) for he H, and f €
Cp(RMR). Here, we shall denote b7 (R™ R) the set of smooth functions dR" such that
all derivatives of any orders have polynomial growth. kar N, thek-th Malliavin-Shigekawa
derivativeDKF = {D" F:ug,--,uc€ [O,T]} for F € .7 is defined by

(ul7,..’uk)
JZla,-f(W[hl],...,vv[hn]) /Oulhj(sms (k=1),
Dy, - Dy F (W) (k> 2).

We shall consideb®F = F, which helps us to define the operaBtfor k € Z, . Forp> 1 and
ke Z,, letDy p be the completion of” with respect to the norm

(E[IF[P])YP (k=0),
IF

kp= K - 1/p
P E[|F|p]1/p+zllﬁz[\\DJF\\,E®J-] (ke N).
J:

Let Dy p(RY) be the set oR9-valued random variables with the components of which belong to
Dy p, and sele(RY) = N1 Mkez, Dip(RY). ForF € Dy 2(RY), theR? @ R9-valued random
variableVk given by

Td d

VF = <DF,DF>H = 0 EDUF . EDUF du

is well defined, which is called the Malliavin covariance matrix For
Before studying the application of the Malliavin calculus to the solution proXessthe
equation (3), we shall prepare two basic and well-known facts.



Lemma 3.1 (cf. Kusuoka-Stroock [9], Lemma 2.1)Let " be a real separable Hilbert space,
anda : [0,T] x Q = R™®TI be a progressively measurable process such that

*
| [ 1) o] <+

forall p> 1. Then, forany p>-2andr € [0, T], it holds that
sup

'$ (a)|IP
te[0,1] ] ch’p’r/o i;E [llai®)]|r] ds

Lemma 3.2 (cf. Nualart [17], Proposition 1.3.8)Let {B(t);t € [0,T]} be a(%)-adapted,
R™® RY-valued process such tha(t) € Dy o(R™® RY) for aimost all te [0, T}, and that

E|:/OT/OT’DUB(t)|2dUdt:| < o0,

Then, for each £ [0, T}, it holds thatf§ B(s) dW(s) € D1 2(RY), and that

p
E

/O "o (8) dW(s)

r

t UAL t
ou ([ Beaws ) = [ pedut [ Do)
Now, we shall return our position to study the application of the Malliavin calculus to the
solution process (3).

Proposition 3.3 Let n€ Z, and0 < £ < 1. Then, for each & [—r, T], theR9-valued random
variable X&) (t) is in Dw (RY). Moreover, for each k Z.., it holds that

E| sup HDKXS’(n)(t)Hﬂ@k@Rd < CiokpT.n> (6)
te[-r,T]
N CiikpT,
£ e [5G D0 | < BT, ™
te[—r,T]

Proof. At the beginning, we shall consider the cgse- 2, inductively onk € Z. As for
k=0, it is a routine work to check the assertion via th@d¢r inequality and the Burkholder
inequality, from the Lipschitz condition and the linear growth condition on the coefficients
A (i=0,1,...,m), similarly to Proposition 2.1. Next, we shall discuss the dasel. Let

n € N, because the assertionm#= 0 is trivial. SinceDX®(" =0 fort € [—r,0], we have only

to prove the assertion fore (0, T]. The chain rule on the operatbrand Lemma 3.2 tell us to
see that

u t
DuX&M(t) = & / A(s, X V) gy ds+ / DA (s, X&) D¢ ™Y ds
0 - 0
t (8)
+e / DA(s, X ™ Y Dx&E™ Y aw(s)
0

6



forue [0,T] (cf. Ferrante et al. [4], Lemma 6.1), where the symba$ the Freckt derivative
in C([—r, 0l; ]Rd). Thus, the Hlder inequality and Lemma 3.1 enable us to get the assertions.

Finally, we shall discuss the general c&seZ... Suppose that the assertions are right until the
casen— 1. Remark that

t
Dﬁl, Uk (/0 Als, Xs&(nil)) GW(S))
k-1 t £,(n-1) k-1 Ut (n-1)
=0 s ([ Puc(AXE™ ) ) aw(s) ) 4Dl 2y ([ AGXE ) as

Uo-(k)/\t _ _
:/ Dl SXS( ))> WS+ > / Dl oty (A(s’xsgy(n 1)>) ds

geBy 0

from Lemma 3.2, wher&y is the set of permutations ¢f, ..., k}. Since

DEL <A| (S Xss(nfl))>
=olt ., (OA(s X6 Y) Dy X"

k—1
_ k-1 Dkflfj DA|(S va(n*]-)) Dj+1 x& £,(n-1)
- Z ZO ; Ug (1) Yo (k—j) » O3S Ug(k—j+1) > Yo (k—1),Uk S
ey = J

fori=0,1,...,m and

Dﬁl,...7UkX£7(n) (t)

t 1
= Dﬁl,...,uk( A Po(sXE" ))ds> . (e /O A(s,xé(”‘l))avv(s))

UgNt g £,(n—1)
=y e/o D0 o1 (A(s,xS )) ds

t
+/ D Uk S ng(nfl))> ds+ 8/0 D517~-~7Uk (A(S,Xssv(nfl))) dVV(S),

we can get the assertion by using theéldter inequality, Lemma 3.1 and the assumption on the
case untik — 1 of the induction.

The case k p < 2 is the direct consequence by the Jensen inequality. The proof is com-

plete. O

Proposition 3.4 Fort € [r,T], theR%-valued random variable ¥t) is in D, (RY). Moreover,

for each ue [0, T], theRY @ R9-valued proces$DyX¢(t);t € [—r, T]} satisfies the equation of



the form:
DuXé(t)=0 (te[-r0 ort<u)
UAL t
DuXE(t) :e/o A(s,X$) ds+/o DAo (s, X$) DuXs ds et (9)
€ [u,T]).
+£/Ot DA(s, X ) DuXs dW(s)

Proof. Let p > 1 andk € Z be arbitrary. For eache [—r,T], the sequencéX®(W(t); ne N}
is the Cauchy one imk,p(Rd), from Proposition 3.3. Hence, we can find the limit, denoted
by X&(t), in D p(RY). Then, it is a routine work to see that the proc¢¥s$(t);t € [-r,T]}
satisfies the equation (3), via thé@lder inequality and the Burkholder inequality, from the con-
ditions on the coefficients; (i =0, 1, ..., m), which impliesXé(t) = Xé(t) fort € [—r, T] from
the uniqueness of the solutions. Thus, we carXgete Dy p(RY) fort € [r, T]. Similarly, we
can check thaf DyX(t); u € [0, T]} satisfies the equation (9), by taking the limit in each terms
of (8) via the Hdlder inequality and Lemma 3.1. O

Foru € [0,T], denote by{Z¢(t,u);t € [-r,T]} theRY ® RY-valued process determined by
the following equation:

ZE(t,u) =0 (te[-r,0ort <u),
Z&(u,u) = lq (10)
dZ®(t,u) = DAo(t, XF) ZE(-,u)dt + DAL, XE) ZE(L W dW(t)  (te (uT)),
whereZf (-,u) = {Z&(t+1,u); T € [-1,0] }.
Corollary 3.5 t
UA
DuXE(t) :s/ ZE(t,s)A(s, X$) ds
0
Proof. Direct consequence of Proposition 3.4, and the uniqueness of the solution to (91

Finally, we shall introduce the well-known criterion on the existence of the smooth density
for the probability law ofX(t) with respect to the Lebesgue measuréRin

Lemma 3.6 (cf. Kusuoka-Stroock [9]) Suppose that the uniformly elliptic condition on the
coefficients A(i =1, ..., m) of the equatior(3):

m

inf _inf_inf Z\(Z-A;(t,f))2>0. (11)

{€S94-1t€[0,T] feC([-r,0];RY);

Then, for each € (0, T] and0 < € < 1, there exists a smooth density(py) for the probability
law of X (t) with respect to the Lebesgue measure dv/ér
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Proof. SinceX(t) € Do (Rd) from Proposition 3.4, it is sufficiently to study thatetvé(t)) ! ¢
Np>11LP(Q) under the uniformly elliptic condition (11). Denote by

VE(t) :/0t _izg(t,u)Ai(u,Xj)Ai(u,Xj)*ZE(t,u)*du.

Then,Vé(t) = £2V£(t), so we have only to discuss the moment estimatéh). As stated in
Lemma 1 of Komatsu-Takeuchi [8], we shall pay attention to the boundedness of

sup E[(¢ 972"

for any p > 1, which is sufficient to our goal. Since

E [(Z -\7£(t)Z)7p] = rlp)/om/\p‘lﬂi [exp(—=A Z-VE(t) Q)] dA,

we have to study the decay order of sug 1 E [exp(—A { -VE(t){)] asA — +,
Let A > 1 be sufficiently large. Remark that

E [Hzf(t, u)— |d||£d®Rdi| <Cu2pT (t— U)p/2

for any p > 1, from the Burkholder inequality and thedider inequality. Le€ > 1/2, 1<y <
2 and 0< 0 < (y—1)/2. Writetg :=t—A~¢, and let{ € S%1. Then, we see that

E [exp(~{ V() )]

<Eq[exp(-A{-VEM) )] +P /tt 12 (t,u) — 1| 36 pa du= A —V]
3

+P| sup |X5(s)|>A°
se[—r.t]

=. Il+|2+|37

where

t
Ea[-]:=E| - :/ |1Z2(t,u) — lgFa padu <A™, sup \xg(s)}<)\0].
te

se[—rt]

The Chebyshev inequality yields that

t p
([l o)

9

I, <AYPE < C137p7T,\—(25—V)I0,




Similarly, the Chebyshev inequality leads to

I3< A PE | sup |XE(s)|?

se[—rt]
from Proposition 2.1. On the other hand, asligwe have

t m )
exp<—)\/t .;}Z-Ze(t,u)Ai(u,Xj)\ du)]
A
exp(——zégj Ly Z\Z A (U,XS) ] dU)

A ,i\m<u7x5>\2du)]

Sexp()\l—wza) exp(—)‘E inf inf inf Z\\Z “A( uf >

{eS9-1 uel0,T] feC([—r,0;RY)

<CuaprnA P

1 <Eq

<Eq

< Cisexp(—CipA).
Therefore, we can get

E[exp(—A {-VE(t){)] <CizpTnA 2P

so we have
sup E |({-VE) Q) | =7 sup E|(-VE(1)¢) P| <Crgpre P
ZeSd‘l ZESd_l
for any p > 1. The proof is complete. O

Remark 3.7 Consider the case
AL, f)=A(t,f0) (i=1,...,m),

whereA : [0,T] x RY — RY with the good conditions on the boundedness and the regularity.
Now, our stochastic functional differential equation is as follows:

{x%t) —n() (te[-r0),

) (12)
dX®(t) = Ao (t,X5) dt + e A(t,X*(t)) dW(t) (t € (O, T]),

whereA= (A,...,An). Then, we can get the same upper estimate of the inverse of the Malli-
avin covariance matrix é(t) for Xé(t) in the hypoelliptic situationwhich means that the linear
space generated by the vecté{s(i = 1,...,m) and their Lie brackets spans the sp&e(cf.
Takeuchi [19]). O
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4 Large deviation principles for X#

At the beginning, we shall introduce the well-known fact on the sample-path large deviations for
Brownian motions. See also [13]. Recall thits the Cameron-Martin space@§([0, T]; R™).

Lemma 4.1 (cf. Dembo-Zeitouni [3], Theorem 5.2.3)The family{Po (eW)*l; 0<e<1}
of the laws oEW over Cé([O,T] ; Rm) satisfies the large deviation principle with the good rate
function I, where

f 2
I(f) = % (teH).
+o  (f¢H)

For f € H, letx" = {x'(t);t € [-r,T]} be the solution to the following functional differen-
tial equation:

(13)

x'(t) =n(t) (te[-r0]),
dx’(t) = Ao (t, X ) dt+A(t, ) f(t)dt  (t € (0,T)).

Denote by
Co([-r.THRY) = {we C([-r. T RY);w(t) = n(t) (t € [-1,0])}.

Theorem 1 The family{]Po (Xf)fl; 0<e< 1} of the laws of X over G, ([-r,T]; RY) sat-
isfies the large deviation principle with the good rate functipwhere

r(g):inf{l(f); feH, g:xf},

and | is the function given in Lemma 4.1.

Theorem 1 tells us to see, via the contraction principle (cf. Dembo-Zeitouni [3], Theorem
4.2.1).

Corollary 4.2 For each te [0, T], the family{IPo (Xs(t))_l; O0<e< 1} of the laws of X(t)
overRRY satisfies the large deviation principle with the good rate functiomhere

I(y) =inf {{(@): g€ Cp (-1 TI: R y=g(t) }

andi is the function given in Theorem 1.

Now, we shall prove Theorem 1, according to Azencott [1] agdndre [10, 11, 12, 13].
Our strategy stated here is almost parallel to [4, 16].
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Proposition 4.3 For any a> 0, the mapping
Ha:={f € H;|[fln <a} > f —x" € Cy([-r,T]; RY)
is continuous.

Proof. Let f, g € Ha. Since

+/Ao ds+/

we see that
sup \x )| < Inlle+ sup |x )|
Te[—rt] Te[0t]

t .
<2+ /0 Ao(0) [ds [ A(S ) meps | (9) ds

t .
<CooTn +C217T/0 (1+]f(9)]) <1+ sup ]x ]) ds

TE[—T

from the linear growth condition oAg and the boundednessAf(i = 1,...,m), which tells us
to see that

sup ’Xf(T)‘ <C2711.a
Te[-rT]

On the other hand, since
K1) 00 = [ {Ao(sxd) A9 (xg)}

/ {A(s, (s) —A(s,xQ) g(s)} ds

fort € (0,T], and theR%-valued functiong\ (i = 1,...,m) are bounded, we have

sup |x" (1) —x3(1)|
Te[—rt]

= sup |x"(1) —x8(1)|

1€[0t]

g/t’AO s, x0) — Ao (s, ’ds+/otHA(S,X§)—A(San)

o], s s
§C237T/0 TES[UPS]‘X —X9(1)| <1+_i}fi(s)‘> ds

12

RM@RA ‘ (S) ‘ ds

| T(s) —9(s)|ds

R”@Rd



+Coatnallf -9l

The Gronwall inequality tells us to see that

sup [x"(1) —x¥(1)] < Coarallf — 9l exp

C323,T/0t <1+§’fi(5)|> dS]

T€[-rt]
<Cos1nallf—0aln,
which complets the proof. O
Proposition 4.4 Suppose that the9-valued functions A(i = 1,...,m) are bounded. Then, for

any fe Handp > 0, there existip, > 0 andg, > 0 such that

P
1€[-1,T] 1€[0,T]

sup [X5(1)—x"(1)] > p, sup [eW(T)— f(7)] gap]

2
P
<Co6T,f,p EXP [—C27.,T,f 3
forany0 < € < &p.

Proof. Define a new probability measur® thy

_eXp[/”“f' . HzngzH]'

The Girsanov theorem tells us to see that®&valued proces$v~\/(t) =W() - f(t)/e;te
[0,T]} is also them-dimensional Brownian motion under the probability meastpe det
{Xevf(t) te[-r,T]} be theR%-valued process determined by the following equation:

X&) =n(t) (te[-r0), (14)
dX& T (t) = Ao (t, X5 ") dt + AL, XET) {edWi(t) + f(t)dt} (te (O,T)).
Write M(t) == [SA(s,XE ") dW(s). Remark that

sup [X&T (1) —x"(1)] = sup [X&T(1) —x"(1)|
Te[—rt] 1€[0,t]

< [ JAo(s X6 1) ~Ao(s ) ds
+ [ A xe) -asK)|

S)|ds+ sup |[eM(T
ancze |98+ SUD [eM(D)
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< Cog1 /Ot sup |X&" (1) —x"(7)] <1+_i{fi(s)}> ds

Te[—r.9

+ sup [eM(T)].
T€(0t]

The Gronwall inequality tells us to see that

sup [X&'(1)—x'(1)| < ( sup |8M(T)|> exp
Te[-rt] 1€[0,t]

CosT /Ot <1+§i|fi(s)}> ds]

<CpoT,t ( sup ng(T)|> -

T€[0t]
For eactkk =1,...,d, the martingale representation theorem enables us to see that there exists
a 1-dimensional Brownian motiofBX(t);t  [0,T]} starting at the origin with

) B (M9 0). 90 = [ 5 [A () s

for k=1,...,d. Remark that{MX)(t) < Czor, because of the boundedness of Rfevalued
functionsA; (i=1,...,m). Since

P| sup [BY1)|> P | <V2exp
1€[0.Cao7] CaiT, 1€

p?
 ACa7C3y 1 ¢ €2

from the reflection principle on Brownian motions, we have

P| sup |X5(1)—x"(1)|>p, sup [eW(T)—f(1)]<ap
Te[-r,T] 1€[0,T]
=P| sup |X&'(1)—x"(1)] >p, sup |eW(1)| <ap
| T€[-1,T] 1€[0,T]
<B| sup M(1)] > =—F
| ref0,T] Coot £ €
<B| sup [BT)|> =L
| 7€[0,C307] Coor1 €
2 k p
<P sup |BY(1)| > —————
_Hl{re[o,cgoﬂl | Coo f \/Hg}]
V3 o
<v2dexp|-—
- P 4Ca07 Cog7 (de? |’
which completes the proof. O
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Proposition 4.5 It holds that

lim limsupelnP | sup |X%(t)| >R| = —co.
Rt e\0 te[—r,T]
Proof. LetN > 2 be sufficient large. From thedlformula, we see that

<1+ }xf(t)f)N = (1+n©O)P)" +/Ot N (1+ |xf(s)\2) " 2exE(9) - Al XE) dW(s)

+/Ot{N (1+\x£(s)|2)N_1 (2X£(S)'Ao(s,><§)+82_2‘Ai(s7><§) 2)
+2N(N —1)&? (1+ ’Xf(s)f)Nz.i <X£(S) .Ai(S,XSE))Z} ds.

Defineog = inf {t > 0; |X4(t)| > R}. Then, it holds that

E [<1+|X£(t/\0R)|2>N}

< (14 02"

+E /O“"R{N (1 xeef) (zxf<s> ofsX) 675 [A ()

)
F2N(N—1) &2 (1+ |xf(s)\2)Nzi (x€<s) A (s,xg))Z} ds

|

from the linear growth condition on the coefficiess (i = 0,1,...,m) of the equation (3).
Hence, the Gronwall inequality implies that

t N
< (L+n)le)"+ Caar (N+€2N+2N?) B [/0 (1+[x*(sr o)) ds]

N
E {(1+ XE(tAar)[?) } < (14[In]l»)" exp[Caat (N+ 2N +e2N?) 1] .
In particular, takingN = 1/¢ yields that

E [(1+ IXE (t A OR) ﬁlﬂ < (14]n]l=)"* eXp[CgaT (%—i—l) t] .

Therefore, the Chebyshev inequality leads us to see that

P| sup |X5(t)|>R| =P[or<T]

te[—r,T]
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<p|

<(1+R) YR {<1+ XE(T A oR) ‘2>N}

1/¢
Lt [n]2 L
(iife) ewlear (c+1) 7).

XE(T Aog)| = R

IN

so we have

. 1 2
limsupe InP | sup |X*(t)| >R| <In <M> +Cs37T,
e\,0 te[—rT]

which completes the proof.
LetR> 1. Defineog = inf {t > 0; |Xé(t)| > R}, andX®R(t) = XE(t A OR).
Proposition 4.6 For anyd > 0O, it holds that
lim limsupeinP [ sup [X&(t) —XER(t)| > 6] = —o,
Rt e\ 0 te[—r,T]

Proof. Remark that

P

sup |XE(t) —XER(t)] > 5
te[—r,T]

<P| sup |[X5(t)—X*R(t)| >0, sup [XE(t)|<R|+P

sup |X&(t)] > R]

[ te[-r,T] te[-rT] te[-r,T]
=P| sup |[XE(t)—XER(t)| > 35, or>T| +P[oR< T]

_te[fr,T}
=P [O'R < T]
<P|[x*(TAoR)| =R

1/e
1+ n]2 1
<(im) ewlosr (p)7)

as seen in the proof of Proposition 4.5. So, we can get

2
limsupe INP| sup |X*(t) —X&R(t)} >0| <lIn (%) +Ca37T,
e\,0 te[—r,T] 1+R

which completes the proof.
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Proof of Theorem 1We shall prove the assertion in two steps of the form: the case where
A (i=1,...,m) are bounded, and the general casé\pfi = 1,...,m).

Step 1 Suppose that the coefficiems (i = 1,...,m) are bounded. Propositions 4.3 and 4.4
are sufficient to our goal (cf. [1, 3]). In fact, the large deviation principle for the fal{{ﬂys
(Xg)_l; 0< € <1} comes from the one fofPo (sW)_l; 0<e<1}inLemma4.l.

Step 2 We shall discuss the general casefiii = 1,...,m). LetR> 1, andF be a closed set
in C, ([-1,T]; RY). Denote byFr = F NB(0; R), and byFy the closed-neighborhood of,
whereB(0; R) is the open ball i€, ([—r, T]; RY) with radiusR centered at @ Cy, ([—r, T]; RY).
Then, it holds that

P[XE € F]

<P|X*€F, sup [X%(t)|<R|+P
te[-r,T]

sup |XE(t)| > R]
te[-r,T]

=P [XReFg] +P

sup |XE(t)| > R] .

te[-r,T]

As seen in Stepl, we have already obtained the large deviation princip{l@ &(rXevR) _1; 0<
e< 1} with the good rate functiofk, wherel (f)is givenin Lemma 4.1, and

fR(g):inf{l(f); feH, g=x", sup |x'(t)]| < R}.

te[-r,T]
So, we have

limsupe InP [X&R e RR] < — inf ix(q).
nst p [ FR| < Jnf rR(9)

Therefore, we can get

limsupe INP[X& € F]
[2AN0)

< lim — inf i V [ limsupe InP | sup [X¢(t)| >R
- R—>+oo{ ( gerr R(Q)) ( s\Op [te[r?l’]‘ ( >‘ ]) }

- (-t 7@)

< —infl
< éggl(g)

from Proposition 4.5, which completes the proof on the upper estimate of the large deviation
principle.

17



Next, we shall pay attention to the lower estimate of the large deviation principlés bet
an open set i, ([—r,T]; Rd), and takegin GNB(0; R). Then, we can find > 0 such that
B(§; ) C G. Thus, we have

~1(@) = —Tr(8)

<— inf T

= genlgisz F9

< 1 H g,R ~N -
_Ilrgn\lgfslnIP’[X €B(§;5/2)]

<liminfeln {IP[XE €G)+P
&\O0

sup | XE(t) —X&R(t)| > é] }

te[-r,T] 2

< (Iiminfs INP[X® € G]) V[ liminfeInP | sup [X&(t) —X&R(t)| > °
ENO eno te[-r,T] 2

L )

The first equality is right, because @&™B(0; R), while the third inequality is the consequence
of the large deviation principle fotéR as seen in Step 1. The forth inequality is right, because
X¢ € B(§; 8/2)° underx&R ¢ B(§; 5)° and SUR-[_r 7] |XE(t) — X&R(t)| < 8/2. Taking the
limit as R — +oo leads us to see that

_N ~ < . . 8
1(g) < Ilrsn\lgfe INP[X¢ € G]

from Proposition 4.6, which completes the proof on the lower estimate of the large deviation
principle. The proof of Theorem 1 is complete. OJ

5 Density estimates

In this section, we shall consider the estimate of the dempsittyy) for the solutionX®(t), from
the viewpoint of the Malliavin calculus.

Theorem 2 (Upper estimate) Suppose that th&%-valued functions A(i = 1,...,m) satisfy
the uniformly elliptic conditior{11). Then, it holds that

limsupe?In p®(t,y) < —I(y), (15)
e\0

where the functiotis give in Theorem 1.

Proof. Let 0< o < 1 be sufficiently small, and, € C3(R%; [0,1]) such that

AU@{l (2=l < o)
0 (|z—y|>20).

18



TakeU = H?:l[aj,bj] c RY such thalU c SupdAg]. Then, the integration by parts formula
tells us to see that

P[X%(t) € U]
= B [Iy (X (1)) Ao (X°(1))]

XE1(t) Xed(t) . .
/ / Tu (Y1,---,Yd) dy1---dyal 1.4y (XE(1), Ag (XE(1)))

:/E
U

=K

where

and? is the Skorokhod integral operator. Remark that, under the uniformly elliptic condition
(11) on theR9-valued functionsy; (i =1,...,m),

Ira..a (X0, Ao (x(1))|

<CaapTn H (Vee) ™

LP(Q)
|X£(t)||ﬁ,y H/\U (Xe(t)) HK,U

La(Q) |
—2d
<CgspTn€ 7,

wherea, y, 0 > 1 andB, k € Z,., by using Proposition 3.4, and the proof of Lemma 3.6. Hence,
the densityp® (t,y) can be estimated from the above as follows:

d |
ll%m@““mﬂﬁ ..... m@*mAﬂﬁmﬂl
J:

B [|F g (X0 A0 (X4 (1)) | suping (X (1)
< Caspr.n € XPIXE() € SupdAg]]Ye,

pé(t,y) =E

whereq > 1 such that 1p+1/q= 1. From Theorem 1, we have

limsupe? INP[XE(t) € SupgAg]] < — inf  I(2).

e\0 zeSupiig]
Since the functior is lower semi-continuous, taking the limit as\, 0 andg ™\, 1 enable usto
see that

limsupe? Inpé(t,y) < —I(y),
e\o
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which is the conclusion of Theorem 2. OJ

Remark 5.1 As sated in Remark 3.7, a similar problem can be also studied under the hypoel-
liptic condition, in the case

At f)=A(t,f0) (i=1....m),
whereA : [0, T] x RY — RY with the good conditions on the boundedness and the regularity (cf.

[19]). 0

Now, we shall study the lower estimate of the dengiyt,y) for the solution process (3).
Before doing it, we shall prepare some arguments.

Proposition 5.2 Let f € H, and suppose the uniformly elliptic conditi¢tl) on the functions
A (i=1,...,m). Then, it holds that
detv'(t) >0

for each te (0, T], where V (t) is the Gram matrix for k(t).

Proof. Letu € [0,T], and{Z(t,u);t € [-r,T]} be theRY @ R%-valued mappings given by the
following functional differential equation:
Z(t,u)=0 (t e [-r,0] ort € (O,u)), (16)
dZ(t,u) = OAo(t, ) Zi(- u)dt + OA(L X ) Z(u) f ()t (t e [u,T)),

whereZt( u) = {Z(t+1,u); T € [-r,0]}. From the condition on the coefficients (i =
.., m), we see that

sup ||Z(t,u)

g
rejut HR%R"
T _ —
< sup /DAo(s,xé)Zs(-,u)ds + sup /DAsxS)Z( u) f(s)ds
Tefut] [1/u RIQRI  1e(Ut] RIRRI

S/t(”[]Ao(S,Xsf)H 1 0RY) ®Rd+HDASXS ch[ r,0];RY) Rd‘ |> ds

+/ ()DAO 5% H S ®Rd+HDA(s,xé)HC([_LO];Rd)@Rd |f'(s)|)

X sup [ Z(T, )~ lallpagza ds
TE[s—r.9

t m t m _
§C36,T/ <1+ Zl|f'(5)‘) dS+C37,T/ <1+ ZLUI(S)}) sup [Z(t,u) — lg|lgagra ds.
u i= u i= T€(u,s]
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Remark that

/ut <1+i|f’i(s)}> ds < /UT <1+i\f’i(s)|> ds< Cagt1 (T —u)¥2

Hence, the Gronwall inequality tells us to see that

sup [1Z(7,u) —lallzdega < Cag r.1 (T —U)™2
T€[U,T]

On the other hand, remark that we have already seen in the proof of Proposition 4.3 that

sup {X )| <Cozrn.t-
Te[—rt]

Now, we shall pay attention to the lower estimate ofudét). Since, for eachu € [0, T],
{Dux(t);t € [-r,T]} satisfies the equation

Dux'(t) =0 (t € [-r0),

we have At
Dux'(t) = / Z(t,s)A(s,x!) ds
0

similarly to Corollary 3.5. Hence, the Gram matviX(t) can be expressed as follows:

:/otz_(t,u)A(u,xf,)A(u,xl‘;)*z_(t,u)*du.

Let Ty € [0, T] be sufficiently close td@ . So, we see that

detv' (t) = det{/ot Z(t,u)A(u,x!) A(u,xl‘:)*z_(t,u)*du]
d
{ZGIQI 1/ Al Xf))zdu}
d
_ 2
:{Zégg 1/ (u Xf)) du}

x]I( sup |x(t)] §C227T7n7f> ]I( sup [|Z(T,u) —la||gespa < Caor.f (T—Ta)l/z)
te[—r,T] UE[Ty,T]
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m d
{ézégil/ Z Z A (u f> du—/T:i;HZ_(T,U)—ldHIE%Rd‘Ai(uyxlﬁ)‘zdu}

X H( sup |x'(t)] < CZZ,T,r;,f) H( sup ||Z(T,u)— ld|| gaopa < Caor.f (T —Ta)l/z)
te[-r,T] ug(Ty,T]

{75

x]I( sup |x'(t)| Ssz,T,n,f> H( SUD HZ (T,u) = ld||gagpe < Cao.¢ (T_Ta)1/2>

te[—rT] ug(Ty, T

- d
a At.a)—c T-T,)?
z'?,gi;“ Ai(t,9))" —Caot.n.f ( ) }

> Carrn,f (T— Ta)d
x 1 ( sup |x"(1)] < sz,m,f) I ( sup || Z(T,u) — la|| gaopa < Caor.t (T —Ta)l/z)
te[—r,T] UE(Ta,T]
=Car1n,f (T —Ta)d,

which is strictly positive. Here, we shall remark that there exists the corGfaft, ¢ > 0 with

m

ert]fg i;(( -Ai(t,9)° = Caot.n.t (T—Ta) > Cart.t,

NI =

because the functions (i = 1,...,m) satisfy the uniformly elliptic condition (11), ant is
sufficiently close tdl', which justifies the sixth inequality. O

Forf e H, let {X&f(t) ;te[-r,T]} be theRY-valued process determined by the following
equation:

{x&fm —n() tel-ro) .

dX&T(t) = Ag(t, X5 ") dt + e At X5 ) dW(t) + At XET) f(t)dt  (te (0,T)).
Let {ZT(t);t € [-1,T]} be theR%-valued process determined by the following equation:

{meo (t € [-r,0)),

8 . e (18)
dZ'(t) = A(t, ) dW(t) + DAg(t, X ) Zf dt+ DAt ) Zf f )t (t € (0, T)).
Lemma 5.3 Lette (0, T]. It holds that

lim ]
A0

Y“*f(t)—zf(t)H ~0
kp

for any p> 1 and ke Z.., where ¥:'(t) = (X&1(t) —x'(t)) /e.
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Proof. We shall prove the statement along the following procedure:
Step 1 For anyp > 1,

imE
e\o

sup |X&T(t) - xf(t)\p] =0.
te[—r,T]

In fact, since
X0 X0 = [ {Ao(sXE") ~Ao(sxd) } os
/ (s X&) —A(s xs)} ()ds+£/ A(s, X&) aw(s)

fort € [0, T], and the coefficientsy (i =0, 1, ..., m) satisfy the Lipschitz condition and the
linear growth condition, we can get the assertion of Step 1 by using dfedeHinequality, the
Burkholder inequality and the Gronwall inequality. fog [0, T],

Step 2 For anyp > 1,

imE| sup [Y&Tt)—ZT(t)|°| =0,
N0 te[nT]} © ()}

which tells us to see that the assertion of Lemma 5.3 holds in the cé&se 0Of

In fact, we shall remark that
A (s XN —A (s x)
€
Cnafe oy (vef  3t) L L /vet —2a e.f L Vof (et of
=UOA (s.%) <Ys ZS>+2<YS JOA (5,0 X8 +(1—0)%5) (X xs)>

from the Taylor theorem far=0, 1, ..., m, where O< g < 1 is the constant. Since
f

e f
Ye’f(t)—zf(t):/t [AO(S’XS ) ~ofs ) —DAo(s,xg)Zsf] ds
0 £
+/t
+ [ {Axe") ~Asx) } awes

fort € [0,T], and the coefficient&i(t,-) (i=0, 1, ..., m) areinCP_p(C([-r,0]; RY) ; RY) with
respect to the second variableGf[—r,0] ; Rd) for eacht € [0,T], we can get the assertion in
Step 2 via the ldlder inequality, the Burkholder inequality and the Gronwall inequality.

DA ()2

A(sXET) —A(s x)
£

—DA(s,x,;)ZSf] f(s)ds

Step 3Letu € [0,T]. Then, for anyp > 1,

sup E

O<e<1

sup [DuYE (1)[P| < +e.

te[—r,T]
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Remark that

UA efy f
Doe (1) — / t{ (5XE1) + A(s,Xs) A(s,xs)}dS

g

+/ {DRo(s, X ") DX~ DA (s )Dux;}ds
+/O {DA(sxs”)D X&' — DA(s,x!) DX }f
—1—/ DA(s, X8 ") DuXET aw(s)
0
fort € [u,T]. Since
UAL .
Dux' (t) = / A(sx!) ds+ / DAo(s,x!) Dux! ds + / OA(s x!) D! f(5)ds,
0
as seen in Proposition 5.2, we have

sup |Dux'(t)| < Cazrn.1-
te[—r,T]

Moreover, similarly to Proposition 3.4, we have

sup [DuX&f ()P
te[—r,T]

< CazpTn,f

for any p > 1. Then, the assertion in Step 3 can be justified by using tidet inequality, the
Burkholder inequality and the Gronwall inequality.

Step 4 Letu e [0,T]. Then, for anyp > 1,

limE
&\0

sup |DyY®'(t) - Duzf(t)\p] =0.
te[—r,T]

In fact, since

u sf
Duvafa):/{ (s X8 + A(S’XS Als }Hs<t

+/ DA (s, XE7) Dy Po(s ) Duxg}ds
+/ DAsx;‘fngf DA(s X! ) Dx! }f
+/O DA(s.XE ") DyXE T dw(s),
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~ u ~
DJZ! (1) :/0 {A(sX) + DA K) 2L} Tiecyy ds
~s - t
+ [ DA(sx!) D2 f(s)ds+ [ D?A(sx!) [Duxg,
)

for t € [u,T], and the coefficients(t,-) (i =0,1,...,m) are inCy, ,(C([-r,0; RY); RY)
with respect to the second variable@{[—r,0]; RY) for eacht € [0,T], the assertion can be
obtained via the Elder inequality, the Burkholder inequality and the Gronwall inequality. Here,
O2A (s,x) [+, -] (i=0,1,..., m) are bilinear mappings o@([—r,0]; RY) x C([—r,0]; RY),
andDZA(s,xé) = (DzAl(s,xé),...,Dzh(s,xé)).

Step 5 Letk € N be arbitrary, andiy, ..., ux € [0, T]. Then, for anyp > 1,

limE

Ug,...,u
N0l te[-rT] (U

sup D, Yo" (t) —Df /uk)Zf(t)|p] =0.

geeey

: k-1 ujAt
+ _ZlD(Uly...,Uj—l,Uj+1 ..... Uy ) </0 #(s) ds) ,

for adapted processesandy with nice properties. Then, we can get the assertion by induction
onk e N.

Then, the assertion is the direct consequences of Step 2 and Step 5. The proof of Lemma
5.3 is complete. O

Theorem 3 (Lower estimate) Suppose that th&%-valued functions A(i = 1,...,m) satisfy
the uniformly elliptic conditior{11). Then, it holds that

liminf £2In pé(t,y) > —I(y), (19)
2AN0)
where the functiot is given in Theorem 1.
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Proof. Since the assertion of Theorem 3 is trivial in the casE(p)‘: +0c0, we shall suppose
that I_(y) < +oo. Letd € Cy (]Rd ; ]R) be non negative. For sufficiently smalkQo < 1, recall
the functionAs as introduced in the proof of TheoremZ; € Cy (Rd; 0,1]) such that

/\g(z){l 2~y < o).
0 (|z—y| > 20).

Then, the Girsanov theorem tells us to see that

(x5 (1)) exp( /tmf' >—2—12||f||a>]

— enp( LB 49 i et ) exp( (5 Sawis >_)]
zexp(—””@%m)ﬂz o(x& (1) (/Zf $) Wi (s <20)]
zexp(—””@%‘m) E ¢(X87f(t))/\a (s/o i;fi(s)d\Ni(s)>] .

Here, the third inequality comes from the non-negativity in the exponent

E[®(XE(t))] =E

1 20

_E/ot f(S)M(S) + 29 >0,

while the forth inequality holds because okOA, < 1 and/As # 0 on the complement of
[—20,20]. Thus, the limiting argument enables us to see that

pe(ty) > exp( ””‘;;40) E |&(X5" (1) As <s/ )]
2 _ :
_ £_d exp( ||ﬂ|2£‘:40') E 50 Ygf /\0 (8/ Zlfl(s)qwl(s)”
wheredy is the Dirac delta function. Since
tm o .
&(YE (1) Ao <£/o Z\f'(s)dW'(s))] <1

from Lemme 5.3, we have
&(Y5 (1) Ao (SAt.ifi(S)“\Ni<s)>]> -
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Moreover, from the definition of the functidrfy), we can findf € H with y = x(t) such that

IflE _ -
) <l(y)+o.

Hence, it holds that

2
|Im£\}‘5]f£ Inp®(t,y) > (—2 +20 | > -I(y)—30.

Taking the limit aso ™\, 0 completes the proof. O

Corollary 5.4 Suppose that thR%-valued functions Ali = 1,...,m) satisfy the uniformly el-
liptic condition(11). Then, it holds that

I(
p(t,y) ~exp [—M] (20)
ase \, 0, where the functiohis given in Theorem 1.

Proof. Direct consequences of Theorems 2 and 3. O

Finally, we shall study the asymptotic behavior of the dengityy) for X(t) in a short time.
Let 0< ro < r be a constant, ande RY. We shall consider the case

nt)=x (te[-r0]),

Ao(t,f)=0, AT =A(ff0) (i=1..,m),
wheref € C([-r,0]; RY) such thatf (t) = f(t) (t € [-1, —ro]) andf(t) = f(—ro) (t € [~10,0)),
for f € C([-r,0]; RY). Suppose that the functiods (i = 1,...,m) satisfy the uniformly elliptic

condition of the form:
m
H . . ~ 2
inf inf inf A (f, > 0. 21
(€St feC([-r,—ro];RY) yeRI (& (CA) (21)

For0< e <1, letX = {X(t);t € [-r,T]} andX® = {X&(t);t € [-r,T]} be theR%-valued
processes determined by the equations of the form:

X(t) = x (te[r,0), o2
dX (t) = A(X, X(1)) dW(t) (t€ (0,T]),

{xs(t)—x B (t € [-1,0)), 22
dX®(t) = e A(XE, X5(1)) dW(t) (t e (0,T]),

whereA = (Aq,...,An). Remark thaX = X¢|__,. Denote byp(t,y) (or, p(t,y)) the density
for the probability law ofX(t) (X#(t), respectively), whose existence can be justified under the
uniformly elliptic condition (21) on the coefficients (i=1,...,m). Then, we have
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Corollary 5.5 Suppose that the functiods (i = 1,...,m) satisfy the uniformly elliptic condi-
tion (21). Then, it holds that

pley) ~exp| - 22| @0 (24)

Proof. Recall that

X (210) = x+ /O (% X(9) W (9
=X+ s/oro,&()?szs,x(ezs)) dW(s)
=X+ s/oro,&(x id, X (€%s)) dW/(s),

whereid € C([—r,—rq]; ]Rd) such thatid(t) = 1 (t € [-r,—rg]). Here, the second equality
holds from the scaling property on the Brownian motidip while the third equality follows
from £2s—rg < 0. On the other hand, recall that

XE(r) = X+ € /0 * R(RE,XE(5)) dW(S)
:x+e/0r°/1(x id, XE(5)) AW(s),

because o§—ro < 0. From the uniqueness of the solutions, we hn(/ezro) = X&(rp) in the
sense of the probability law. Hence, we can get

P(e%r0,y) = p*(ro,y).
As for the densityp®(ro,y), we have already obtained the asymptotic behavior of the form:

p*(ro,y) ~ exp {_I_i_g)}

ase \, 0, in Corollary 5.4. Taking = £2ro completes the proof. O

Remark 5.6 In particular, consider the case of

Ao(s, F) =0, A(sf)=A(f(0) (i=1,....m), n(t)=x(te[-r0),
whereA; € CY, ,(RY; RY) such that the functions; (i = 1,...,m) satisfy the uniformly elliptic
condition of the form:

m
n 2

inf _inf Y (¢-A(y))

> 0. (25)
{est-1yeRY&
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Then, our equation can be written as follows:

{X(t) — X (t € [-1,0)), 26)

dX(t) = A(X(t)) dW(t) (t e (0,T)),
whereA = (Ay,...,An). Although our settings include the effect of the time-delay parameter
the effect of the parameteiin the equation (26) can be ignored. Hence, the solu{tm(t) te
[—r,T]} is the diffusion process, so we have only to choosel in the starting point of our
study. Moreover, the choice of= 1 tells us to see that Corollary 5.5 is the well-known fact, that
is, the Varadhan-type estimate, on the asymptotic behavior of the density function for diffusion
processes. Hence, Corollary 5.5 can be also regarded as the generalization of the short-time
estimate of the density for diffusion processes. O

Remark 5.7 Ferrante et al. in [4] discussed the large deviation principle for the solution process
X¢ and the asymptotic estimate of the density, in the case of

A(s, f)=A(s f(s—1)) (i=1,...,m),

whereA : [0,T] x RY — RY with Ai(t, ) € C? (RY; RY) for eacht € [0, T]. Moreover, suppose
that the functiong\; (i=1,...,m) satisfy the uniformly elliptic condition of the form:

m

inf inf inf At,Y)2> 0.
(it Jf it 2 (¢-Ait,y))

On the other hand, Mohammed and Zhang in [16] studied the large deviation principle for
the solution procesk?, in the case of

AL ) =AEft-r),f1) (=1,...,m),

whereA, : [0, T] x R4 x RY — R with Aj(t,-,-) € C7, ,(RY x RY; RY).
Since the special forms of the coefficients on the diffusion terms are quite essential in their
arguments [4, 16], our situation cannot be included in their frameworks at all. O
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