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Abstract. In this paper, we consider the following elliptic problem with the
nonlinear Neumann boundary condition:

—Au+u=0 on €,

(E,) u>0 on €,
% =uP on 012,

where (Q is a smooth bounded domain in R?, v is the outer unit normal vector
to 0f), and p > 1 is any positive number.

We study the asymptotic behavior of least energy solutions to (E,) when
the nonlinear exponent p gets large. Following the arguments of X. Ren and
J.C. Wei [10], [11], we show that the least energy solutions remain bounded
uniformly in p, and it develops one peak on the boundary, the location of
which is controlled by the Green function associated to the linear problem.
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1. Introduction.

In this paper, we consider the following elliptic problem with the nonlinear
Neumann boundary condition:

—Au+u=0 in €,

(E)) u>0 in 2, (1.1)
g—jf =uP on 012,



where (2 is a smooth bounded domain in R?, v is the outer unit normal vector
to 092, and p > 1 is any positive number. Let H'(Q) be the usual Sobolev
space with the norm [|u[%: gy = [, (IVul® +u?) dz. Since the trace Sobolev
embedding H'(Q) — LPT(9Q) is compact for any p > 1, we can obtain at
least one solution of (1.1) by a standard variational method. In fact, let us
consider the constrained minimization problem

C? :mf{/Q (IVul* +v®) dx | u € Hl(Q),/

» |u|Ptds, = 1} . (1.2)

Standard variational method implies that C’z is achieved by a positive func-

tion u, € H'(Q) and then u, = C’z/(p_l)ﬂp solves (1.1). We call u, a least
energy solution to the problem (1.1).
In this paper, we prove the followings:

Theorem 1 Let u, be a least energy solution to (E,). Then it holds

1 < limiinf [[up|| oo a0y < limsup [Jup|| o a0) < Ve.

p—0o0 p—00

To state further results, we set

v, = up/(/aQ updsy). (1.3)

Theorem 2 Let Q C R? be a smooth bounded domain. Then for any se-
quence v, of v, defined in (1.3) with p, — oo, there exists a subsequence
(still denoted by v,, ) and a point xy € O such that the following statements
hold true.

(1) ,
u n
I
I faQ Upndsy "

in the sense of Radon measures on 0S).

(2) v,, — G(-,20) in CL(Q\ {z0}), L1(Q) and LY(OQ) respectively for any

1 <t < oo, where G(x,y) denotes the Green function of —A for the
following Neumann problem.:

{—AxG(x,y) +G(z,y) =0 inQ, (1.4)

g%(x, y) = dy(x) on 0.



(3) =z satisfies
vT(xo)R(xO) =0,

where T(xg) denotes a tangent vector at the point zo € OS2 and R is the
Robin function defined by R(x) = H(z,z), where

1 _
H(z,y) = G(z,y) — —log |z —y|™"
denotes the reqular part of G.

Concerning related results, X. Ren and J.C. Wei [10], [11] first studied
the asymptotic behavior of least energy solutions to the semilinear problem

—Au = uP in €,
u >0 in €2,
u=>0 on 0f)

as p — oo, where  is a bounded smooth domain in R?. They proved that
the least energy solutions remain bounded and bounded away from zero in
L*°-norm uniformly in p. As for the shape of solutions, they showed that the
least energy solutions must develop one “peak” in the interior of 2, which
must be a critical point of the Robin function associated with the Green
function subject to the Dirichlet boundary condition. Later, Adimurthi and
Grossi [1] improved their results by showing that, after some scaling, the
limit profile of solutions is governed by the Liouville equation

—AU =¢Y inR? / eVdr < oo,
RQ

and obtained that lim, . ||ty = /e for least energy solutions u,,.
Actual existence of concentrating solutions to (1.1) is recently obtained by
H. Castro [4] by a variational reduction procedure, along the line of [7] and
[6]. Also in our case, we may conjecture that the limit problem of (1.1) is

AU =0 in R%,
%—g = eV on OR?,

faRi eVds < oo,

and lim, .« ||ty Lo90) = /e holds true at least for least energy solutions
u,. Verification of these conjectures remains as the future work.
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2. Some estimates for Cg.

In this section, we provide some estimates for Cg in (1.2) as p — o0.
Lemma 3 For any s > 2, there exists Dy > 0 such that for any u € H'(Q),

~ 1
L) < Dss?|lull g

[[ul
holds true. Furthermore, we have

lim D, = (271'6)_%.

§—00

Proof. Let u € H'(Q). By Trudinger-Moser trace inequality, see [5] and the
references therein, we have

m|u(z) — usal?
exp ds, < C(Q
A ( IVl ®)

for any u € HY(Q), where usq = |a+2\ Joq uds,. Thus, by an elementary
inequality ﬁ < e” for any x > 0 and s > 0, where ['(s) is the Gamma
function, we see

]' S
72 1) o ol

s/2
1 / lu(z) — ugo|? o2
= T ds,m*?||Vul|3
['((s/2)+1) Joq ( HVUH%Q(Q) L2(9)

lu(z) — upa|? _s/2
§/ exp [ T = | ds,m 2| Vul$s
Ci9) ( ||VU||%2(Q) e

< | Va3,

Set
D, = (T(s/2+ 1)"* C(Q)Vor 125712,

Then we have
||u — U8Q||LS(BQ) S D531/2||VU||L2(Q).

Stirling’s formula says that (I'( + 1)) ~ ()2 as s — 00, s0 we have

1 1/2
lim D, — <_) .
5§—00 2me
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On the other hand, by the embedding ||ul/z2@a0) < C()||ul| g1 for any
u e HY(Q), we see

1 Vo)
< 2 < 1(Q)-
jonl < s ([ uPdss) < ol

Thus,
lullLsa0) < |lu —uaall L @) + ||uaal s (o0
< |Ju — uaa|| L @0) + PENERS
C(Q)|8Q|1/5‘1/2
S 31/2||U||H1(Q) (D(S) —+ 51/2 .
Put

C(Q)‘@Q’US—I/Q
gl/2 :

D(s) = D(s) +

Then, we have lim,_, D(s) = lim,_.o, D(s) = \/21% and

-
llullzs(a0) < Dss?|lull g

holds. U]

Lemma 4 Let Q be a smooth bounded domain in R?. Then we have

lim ng = 27e.

p—00
Proof. For the estimate from below, we use Lemma 3. By Lemma 3, we
have

ull7ps1 o0y < Day (p+ Dllullfn g

P+l

2me < liminf, . pCy, since lim, o Dpy1 = (27e)

For the estimate from above, we use the Moser function. Let 0 < [ < L.

First, we assume QN B (0) = QN B} where B = Br(0)N{y = (y1,y2) | y2 >
0}. Define

for any u € H'(Q), which leads to D2 <L> < pCZ. Thus, we have

-1/2.

1/2
(log L/DY?*,  0<|yl <l,y€ B},

1 log I,
mily) = =3 Gogre I SWl<Ly e
07 LSMaQGBz



Then ||le||L2(B{) = 1 and since m; = 0 on 9B} N {ys > 0}, we have

! L
Hml”iﬁl @Bf) — 2/ |ml(y1)|p+1dy1 + 2/ |ml(y1)|p+1dy1
0 !

z2£<%;b@wﬂﬁwm:m< ?%@myw

2

Thus ||my)? > (20)7+1 L1og (L/1). Also,

Lr+1(8Bf) —

|mlH 255 //|ml| rdrd0
_/ /|ml|2rdrd9+/ / |y |*rdrdd
o Jo o Ji

=. Il -+ [2.

We calculate

l2
L =— 10g<L/Z>,

2
L—— /L(lo L/r)rd
P log(L/n) Ji R
2o 1 L2
= —5 — 5 log(L/l
3~ e+ T T

12 1 L2—1?

Thus we have [|m]%, BH = T2 T legL/n 4

Now, put [ = Le™ 2 and extend my by 0 outside B] and consider it as
a function in H*(€2). Then

p02< Hmluip(Blj:) B P pHmlHiz(Bz-)
H l”Lp+l(aB+) ||mlHLp+1 33+) HmlHiP‘H(aBi)‘

We estimate

—— — 2Te,

p < p - p 9
3 3 = —1 e
Imull s oms) — @7 Llog(L/1)  \P+ (2L)7+

s



and

2 2 1 L1212
Plimallza gy <p<_5+log(L/z> 3 >

2

ImallFia o)~ (20)71 Llog(L/1)
__2me D _L_Zef(pﬂ) N 2 L1 — e pth) 0
(2L)71 \p+1 2 p+1 4

as p — 00. Therefore, we have obtained limsup, ., pC’g < 27e in this case.

In the general case, we introduce a diffeomorphism which flattens the
boundary 052, see Ni and Takagi [9]. We may assume 0 € 02 and in a neigh-
borhood U of 0, the boundary 02 can be written by the graph of function
v 0QNU = {x = (x1,22) | o = (x1)}, with ¥(0) = 0 and 88—;”1(0) = 0.
Define z = ®(y) = (P1(y), P2(y)) for y = (y1, y2), where

0
£ = () = — (), 5 = Baly) = o+ V().

and put D = ®(B}). Note that D, N IQ = (OB} N {(y1,0)}). Since
D®(0) = Id, we obtain there exists ¥ = ®~! in a neighborhood of 0. Finally,
define m; € HY(Q) as ry(z) = my(¥(z)) for x € UN Q. Then, Lemma A.1
in [9] implies the estimates

- 1
972y = V1], + OC),
[70lF 25y < (14 O@)lull 3
HmlH%PH(aDLmaQ) > ||mlHiwl(aB‘L"m{(yho)})‘

The last inequality comes from that, if we put I = {(y1,0) | — L < y;

L} C OB} and J = ®(I) C 09, then ds, = \/1+ (¢'(x1))?dx, and J
{(z1,22) | 21 = y1, 22 = P(y1)}. Thus

/J () P ds, = / () P /T (@ (g0) P > / ().

By testing C’If with 7, again we obtain limsup,,_, pC’If < 2re. U

I IA

Corollary 5 Let u, be a least energy solution to (E,). Then we have

lim p/ ugﬂdsx =2me, lim p/ (|Vup|2 + ui) dx = 2re.
o9 p=eo Jo

p—00



Proof. Since u, satisfies

/ (IVup* + u2) da :/ ubds,
0 0

and )
Vu,|? + u?) dz =3
pCp = pfﬂ { p|1 ) = (p/ ug“dsx) P,
(faQ P+ dsx) p+1 N
the results follow from Lemma 4. [

3. Proof of Theorem 1.

The uniform estimate of ||u| o (s0) from below holds true for any solution
u of (E,), as in [10].

Lemma 6 There exists Cy > 0 independent of p such that
[ul| <o) > C1
holds true for any solution u to (E,).

Proof. Let A\; > 0 be the first eigenvalue of the eigenvalue problem

—Ap+¢=0 in Q,
a“o—)\cp on 052

and let ¢q be the corresponding eigenfunction. It is known that A; is simple,
isolated, and 7 can be chosen positive on Q. (see, [12]). Then by integration
by parts, we have

0— /Q ((—Au+ 1) g1 — (A + 1) u} dz — /89 (Eu _ 5@01) ds,

:/ pru(Ay — uP~")ds,.
o0

Since p1u > 0 on 0F2, this implies Hu||Loc(m > A H



Lemma 7 Let u, be a least energy solution to (E,). Then it holds

limsup [|u || (a0) < Ve.

p—0o0

Proof. We follow the argument of [11], which in turn originates from [§],
and use Moser’s iteration procedure. Let u be a solution to (E,). For s > 1,
multiplying u**~! € H*(Q) to the equation of (E,) and integrating, we get

25 — 1
( i 5 ) /|V(u5)|2d:v+/u28dx:/ w1,
S Q Q 0

Since 258—51 <1 for s > 1, we have

2s — 1 s .
() Il < [ s, )

Also by Lemma 3 applied to u® € H*(€2), we have

1/v
(/ u”sdsx) < DVV%HUSHHl(Q)
oN

for any v > 2. Thus by (3.1), we see

1/v _ 52 1/2 1/2
(/ u”sdsx) < D,vz ( ) (/ u25_1+pdsx) .
o0 25 —1 o0

Since f)f ( 5 ) < (4 for some C; > 0 independent of s > 1 and v > 2, we

2s—1
obtain
2/v
</ u”sdsx) < Clys/ w2, (3.2)
00 00

Once the iteration scheme (3.2) is obtained, the rest of the argument is
exactly the same as one in [11]. Indeed, by Lemma 3, we have

1/v L
(/ uydsx) < (2me) 2 (1 + o(1)v?||ull 1 (@, (3.3)
o

here o(1) — 0 as v — oo. Now, we fix a > 0 and ¢ > 0 which will be
chosen small later and put v = (14 «)(p+ 1) > 2 in (3.3). By Corollary 5,



p'2(2me) "2 ||uyll ) — 1 as p — oo for a least energy solution u,. Thus
by (3.3), we see there exists py > 1 such that

/ upds, < (1+a + )2 = M,
o0
for p > po. Define {s;};—012.. and {M;};—¢12.. such that

p—1+2s9=vr,
p_1+28j+1:V8j7 (]':()7]_,27-..)7

and

My=(1+a+e)"?

Mj+1 = (OlVSij)V/2 s (j = 0, ]_, 2, e )
We easily see that sq = @ > 0, s; is increasing in j, s; — 400 as j — 00,
and actually,

v\J p—1

= (= — h = > 0.
Sj (2) (so —x)+x where z 5

At this moment, we can follow exactly the same argument in [11] to obtain
the estimates

1
J

' <exp(m(a, p,e)),

[l L7251 00y < M
where m(a, p, €) is a constant depending on «, p and ¢, satisfying

+ o

lim m(a,p,e) = log(1 4+ a+¢).

p—00 a
Letting j — oo, p — oo first, we get
lim sup || || (o) < (14 a + )5,

p—00

and then letting o« — 40, ¢ — 40, we obtain
lim sup [[up|| £ (a0) < Ve
p—00

as desired. U]

By Theorem 1 and Holder’s inequality, we also obtain
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Corollary 8 There exists Cy,Cy > 0 such that

(& Sp/ ubds, < Cy
RY)

holds.

4. Proof of Theorem 2.

In this section, we prove Theorem 2. First, we recall an L' estimate from
[6], which is a variant of the one by Brezis and Merle [2].

Lemma 9 Let u be a solution to

—Au+u=0 n €,
%:h on 0S)

with h € LY(09Q), where  is a smooth bounded domain in R?. For any € €

(0,7), there ezists a constant C' > 0 depending only on £ and 2, independent
of w and h, such that

/6 e (M) ds, < C (4.1)

1Al o0
holds true.

Also we need an elliptic L' estimate by Brezis and Strauss [3] for weak
solutions with the L' Neumann data.

Lemma 10 Let u be a weak solution of

—Au+u=f in €2,
%:g on OS2

with f € LY(Q) and g € L'(0), where Q is a smooth bounded domain in

RY, N > 2. Then we have u € WH(Q) for all 1 < ¢ < &5 and

lullwra@) < Cq (1 fler@ + l9llzi00))

holds.
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For the proof, see [3]:Lemma 23.

Now, following [10], [11], we define the notion of d-regular points. Put
U, = Up, for any subsequence of u,. Since u, satisfies
upn
————ds, =1,
a0 faQ Uﬁndé’x
we can select a subsequence p, — oo (without changing the notation) and a
Radon measure p > 0 on 02 such that
ubn «
o T, "

weakly in the sense of Radon measures on 012, i.e.,

fn‘P dsy — 2 d/JJ
oN o0

for all ¢ € C(09). As in [11], we define

1
Ly = —=limsup (p/ updsm) : (4.2)
2v/e  pooo o0 "
By Corollary 5 and Holder’s inequality, we have
Lo S W\/E.

For some § > 0 fixed, we call a point xg € 0Q a d-reqular point if there is a
function ¢ € C(092), 0 < ¢ < 1 with ¢ = 1 in a neighborhood of zy such

that
/ dp < — -
ol STy 26

holds. Define S = {zy € 99 | ¢ is not a d-regular point for any § > 0.}.
Then,

p({wo}) > 7 i 55 (4.3)

for all g € S and for any 0 > 0.

Here, following the argument in [11], we prove a key lemma in the proof
of Theorem 2.
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Lemma 11 Let xy € 092 be a §-reqular point for some 6 > 0. Then v, =
T s bounded in L*°(Bg,(xo) N ) for some Ry > 0.

Joq un

Proof. Let zy € 00 be a d-regular point. Then by definition, there exists
R > 0 such that

Jnds, <
90N Bxr(z0) Ly+06
holds for all n large. Put a, = XBu(wo)fn and by = (1 — XBu(wy))fn Where
X Bg(zo) denotes the characteristic function of Bg(xg). Split v, = v, + Vay,
where vy, V9, is a solution to

—Avip, +v1, =0 in €, —Avgy + 12, =0 in Q,
% = an on aQu % - bn on @Q

respectively. By the maximum principle, we have vy, vy, > 0. Since b, = 0
on Bg(zy), elliptic estimates imply that

[v2nll Lo (B (@o)n0) < CllvanllL1(Baene) < C,

where we used the fact [|va,|[210) = [[Avanllzr@) = [|bnllL190) < C for the
last inequality. Thus we have to consider vy, only.
Claim: For any x € 052, we have

fo(z) <exp((Lo + 0/2)v,(x)) (4.4)
for n large.
Indeed, put
_ lunllze e
(S un" dss) o

Then by Lemma 7 and Corollary 8, we have

lim sup o, < Ve.

n—oo

Since the function s — 105;5

Un ()

is monotone increasing if 0 < s < e, and

< «a, for any x € 0L2, we observe that for fixed ¢ > 0,

(faQ up” ds”c)l/pn
log — @ ___
g(fanugndsf)l/pn < log av, < 1
= < +e
ﬁ o S aye
Soq ubdsz "
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holds for large n. Thus
un () Prtin (1) 1
fa(x) = exp (pn log - ) < exp ( +e
n /” n 1/ n
(fa(z unds ) ' (Joq un"dsq) A\2Ve
1-1/pn 1
=exp | povn(x / ufl"dsx) (— + 5)
( )( o0 2¢/e
1
< exp ((lim suppn/ ufl"dsx> vp (@ (— + 26))
n—o0 20 () 2\/e

= exp ((2%/5 + 25> 2\/ELovn(:c)> = exp ((Lo + 4ev/eLy) vn(2)) .

Thus if we choose € > 0 so small, we have the claim (4.4).
By this claim and the fact that vy, is uniformly bounded in B/, (x0), for

sufficiently small §y > 0 so that (1 + 50)%0;%2 < 1, we have

/ fi”odsx < / exp (14 do)(Lo + 0/2)v,(x)) ds,
BR/Q(xo)ﬂaﬂ BR/Q(:E())I"I&Q

< C'/ exp ((1+d0)(Lo + 0/2)v1n(x)) ds,
BR/Q(xo)ﬂaQ

L 2
< C/ exp (71’(1 + 50)L5/v1n(x)) ds,
Bra(0)n00 Lo +9

= C'/ exp (m(1 — go)vin(x)) ds,,
BR/Q(I())I"I@Q

where 1 —gg = (1 + 60)L£:fg2. Thus by Lemma 9, we have

/ fiHoogs, < C
BR/Q(IO)QBQ

for some C' > 0 independent of n. This fact and elliptic estimates imply that

limsup [|vp| e @nBg 4 (20)) < C,

n—oo
which proves Lemma. U
Now, we estimate the cardinality of the set S. By Theorem 1, we have

Junllmon o G
faﬂ up'ds; faQ up" ds,

U () — 00
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for a sequence x,, € 92 such that u,(z,) = ||tn||L=(@00). Thus by Lemma 11,
we see o = lim, ., x, € S and £S5 > 1. On the other hand, by (4.3) we
have

1= hm anHLl aq) = pu(09) > 1S,

T
Lo + 20
which leads to

Lo +26 26 2
ot SVet e L6d+
T

Thus we have £S5 = 1 if § > 0 is chosen small.
Let S = {zo} for some point xy € 9. By Lemma 11, we can conclude
casily that f, = d,, in the sense of Radon measures on 02

fupds, — p(z5), asn — oo
o0

for any ¢ € C(0%), since v, is locally uniformly bounded on 92\ {zy} and
frn — 0 uniformly on any compact sets of Q2 \ {zo}.

Now, by the L! estimate in Lemma 10, we have v,, is uniformly bounded
in W9(Q) for any 1 < ¢ < 2. Thus, by choosing a subsequence, we have a
function G such that v, — G weakly in W9(Q) for any 1 < ¢ < 2, v, — G
strongly in L'Y(2) and L'(09) respectively for any 1 < t < oco. The last
convergence follows by the compact embedding W4(Q2) — L(Q) for any
1 <t < 5L-. Thus by taking the limit in the equation

/eﬂw+wwm: nw%—/fww%x
Q o0 0 ov

for any ¢ € C1(£2), we obtain

/( Ay + )Gdr + —@Gdsx_ o(0),
Q a0 ov

which implies G is the solution of (1.4) with y = .

Finally, we prove the statement (3) of Theorem 2. We borrow the idea of
(6] and derive Pohozaev-type identities in balls around the peak point. We
may assume xo = 0 without loss of generality. As in [6], we use a conformal
diffeomorphism ¥ : H N Bg, — 2 N B, which flattens the boundary 0f2,
where H = {(y1,y2) | y2 > 0} denotes the upper half space and Ry > 0 is a
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radius sufficiently small. We may choose V¥ is at least C*, up to OH N Bp,,

U(0) =0 and DY(0) = Id. Set t,(y) = u,(V(y)) for y = (y1,y2) € HN Bg,.
Then by the conformality of ¥, u, satisfies

—At, +b(y)t, =0 in H N Bg,, (4.5)
% = h(y)abr on OH N Bg,, '
where 7 is the unit outer normal vector to O(H N Bg,), b and h are defined
b(y) = [detDU(y)|,  hly) = [DY(y)e]

with e = (0,—1). Note that v(y) = v(¥(y)) for y € OH N Bg,. Note also
that, by using a clever idea of [6], we can modify ¥ to prescribe the number

- gl(f?;z =0 (38_;1) O

Let D C RY be a bounded domain and recall the Pohozaev identity for the
equation —Au = f(y,u),y € D:

v [ Fdy - (Y52) [ watas [ - 9w
- /aD(y — 0, V) F(y, u)ds, + /aD(y — Yo, V) <@) ds,

ov

1 2

— = | (y—wo,v)|Vul“ds,
2 Jop

for any yo € RY, where u is a smooth solution. Applying this to (4.5) for

N =2, D=HnNBgfor0 <R < Ry, fly,t,) = —bly)i, and F(y,u,) =
M52 we obtain

—

/HmB byt (y)dy + / (4 = o, Vb(y)) 572 (y)dy
I _

O(HNBR)

1 I
w3 [ - Vinlas,
O(HNBR)

EA

16



where and from now on, 7 will be used again to denote the unit normal to
O(H N Bg). Differentiating with respect to yo, we have, in turn,

onu
Vi, — ) ds
/z9(HﬁBR) ) < ov ) !

1 N 2\ ~ 1 N
5 [ (P s, -5 [ V@
A(HNBR) HNBgr

Since v = (I, %) = (0,—1) on OH N Bg, the first component of the above
vector equation reads

(@b s, + [ @n) (22 ) ds,  (46)
/mmBR /HmaBR ( ov )

1 i o 1 N
= 5/ (IVan|* + b(y)ar) mrds, — 5/ by ()i, (y)dy.
HNOBRr

HNBRr
where (), denotes the derivative with respect to y1. Let 7, = [, ubrds,.
From the fact that f,(y) = @' % §, in the sense of Radon measures on

Tn
OH N Bg, Corollary 8 and ||t,|| 2 @mns,) = O(1) uniformly in n, we see

Labrtty) 1 Fuly)iin (y)

gn(y) =3 =
Y2 pp+1 (Pn + 1)7n

satisfies that supp(g,) — {0} and faHmBR Gnds, = O(1) as n — oo. Thus, by
choosing a subsequence, we have the convergence

nly) = )

T2 p,t1 — Codo

in the sense of Radon measures on 9HNBg, where Cy = lim,,_, [, OHA B Gnds,
(up to a subsequence). By using this fact, we have

1

— (Un )y, R(y) iy (y)dsy

Yn JOHNBR
h ~p,+1 JI=R ~pp+1

:{ (?QJ) b } _/ o (9) b (y)gdsy
Yo Pnt1ll, - r  Jonnsg (pn + L)ym

— 00— C()hyl (0) = —C()Oé
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as n — oo. Thus after dividing (4.6) by 72 and then letting n — oo, we
obtain

- oG
— Coox + /H . Gy, () (5) ds, (4.7)
NOBRr
1 . e 1 )
- 5/ <|VG|2 + b(y)G2> 1ds, — 5/ by, (y)G?(y)dy,
HNOBR HNBgr

where G(y) = G(¥(y),0) is a limit function of 7, (y) = v, (¥(y)) = ﬂ’;—iy) At
this point, we have the same formula as the equation (117) in [6], thus we
obtain the result. Indeed, decompose G(x,0) = s(z) + w(z) where
1 -1
S(SL’) = _1Og’$‘ ) ’lU(LU) :H(Q?,O),
7r

and put 5(y) = s(¥(y)), w(y) = H(¥(y),0) so that G = 5 + . Then after
some computation using the fact that @ satisfies

—Aw + b(y)w = —b(y)5(y) in H N Bg,

we have from (4.7) that

- C()Oé + / (gl’)gyl + §1~/U~)y1 + §y112)l~,) dSy
HNOBRr

1 1
- / (§|V§|2+V§-Vﬁ]) ds, + / (§§2+§w) b(y)inds,
HNOBR HNOBRr

1 -
- / by, (y) <§§2 + 5w> ds, + / Wiy, ds,
OHNBR OHNBR

- /H b))y (48)

By Lemma 9.3 in [6], we know estimates

. - 3o - .
}1%111%) §58y,ds, = o 11%111%) S5y, ds,; = —10,,(0),

—V JHNOBR a —V JHNOBR

1 2~ o : - o 1

lim — |V3|*hds, = —, lim Vs - Vards, = —=wy,(0)
E—02 JuroBy, 4" R=0 Jyropg 2
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and other terms in (4.8) go to 0 as R — 0. Thus we take the limit in (4.8)
as R — 0 to obtain the relation

3a a 1

—~Coa + 1= =10, (0) = 1=

47

- §wy1 (O) )

which leads to . )

Since o € R can be chosen arbitrary, we conclude that Cy = % and 10y, (0) =
0. This last equation means the desired conclusion of Theorem 2 (3). U
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