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Abstract

In this article, a existence theorem of global solutions with small initial data belonging to
L1 ∩ Lp, (n < p ≤ ∞) for a chemotaxis system are given on the whole space Rn, n ≥ 3. In
the case p = ∞, our global solution is integrable with respect to the space variable on some
time interval, and then conserves the mass for a short time, at least. The system consists of
a chemotaxis equation with a logarithmic term and an ordinary equation without diffusion
term.
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1 Introduction

This paper concerns global solutions to the system

(Eλ)


∂tu = ∆u −∇ ·

(
u
∇v

v

)
, x ∈ Rn, t > 0

∂tv = uvλ, x ∈ Rn, t > 0 and λ ∈ R
u(0, x) = a(x) ≥ 0 v(0, x) = b(x) ≥ 0, x ∈ Rn.

Here, u is the unknown cell density of the chemotactic species and v is the unknown density of
non-diffusive chemical substance, which is produced by the species. This system is a particular
case of Keller-Segel system [8] and related to the dynamics of self-reinforced random walks [14] [16],
and also used as haptotaxis and angiogenesis models. One of interesting features of the system is
the absence of diffusion term in the second equation. There are many papers which studied the
classical Keller-Segel system with diffusion term in the second equation. Levine and Sleeman [10]
investigated finite time blow-up phenomena for the system (E1) in one dimensional case. Additional
properties for the solutions of (E1) have been obtained in [12]. In smooth bounded domains in
Rn with λ ≤ 1, Rascle [15] and Yang, Chen and Liu [20] showed the existence of global solutions
for the system. Corrias, Perthame and Zaag [5], [6] studied the same topics in a general system,
which do not cover the case λ = 1. In [17], asymptotic behavior of radial symmetric solutions to
(Eλ) is studied. When λ ∈ [0, 1) and n = 1, Kang, Stevens and Velázquez proved that for some
initial data the corresponding solutions u tends to Dirac mass as t → ∞ in [7].

Through the transformation

z =
v1−λ

1 − λ
with θ =

1
1 − λ

∈ R,
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the system (Eλ) becomes

(Ẽθ)


∂tu = ∆u − θ∇ ·

(
u
∇z

z

)
, x ∈ Rn, t > 0

∂tz = u, x ∈ Rn, t > 0
u(0, x) = a(x) z(0, x) = c(x) = θb(x)1−λ, x ∈ Rn.

This system is invariant with respect to the scaling

(u(t, x), z(t, x)) 7→ (µα+2u(µ2t, µx), µαz(µ2t, µx))

for all α ∈ R. In this article, we give a global existence theorem of solutions to the system (Ẽθ)
with the special initial data c ≡ 1, which corresponds to the case λ < 1 in (Eλ), in the sense of
mild solutions, more precisely, we construct solutions to the integral equations;

(I.E.)


u(t) = et∆a − θB[u](t), where B[u](t) =

∫ t

0

e(t−τ)∆∇
(

u(τ)
∇z(τ)
z(τ)

)
dτ

z(t) = 1 +
∫ t

0

u(τ)dτ.

As a consequence of the absence of diffusion term in the second equation, the regularity of z and
∇z with respect to space variable is not better than that of 1 and ∇u respectively. For the initial
data c ≡ −1 that corresponds to another case λ > 1 in (Eλ), the same results as in below hold.
D. Li, K. Li and Zhao [11] treated with the case λ = 1 in which the system is changed to a
hyperbolic-parabolic system through the transform V = −∇v

v , and constructed local and global
solutions in Sobolev spaces with positive smoothness. Very recently, Ahn and Kang [1] proved the
local existence of solutions to (Eλ) with λ > 0, and the non-existence of self-similar solutions.

Our main result reads as follows

Theorem 1.1 (Small data global existence). Let n ≥ 3, n/(n − 1) < q < n < r < p ≤ ∞ and
θ ∈ R. There exists δ = δ(n, p, q, r, |θ|) > 0 such that if ‖a‖L1∩Lp ≤ δ, then there exists a global
solution u ∈ L1(0,∞;L∞(Rn)) of (I.E.) satisfying ‖u‖X1

∞
+ ‖u‖X2

∞
+ ‖u‖X3

∞
. ‖a‖L1∩Lp where

‖u‖X1
t

=
∫ t

0

‖u(τ)‖L∞dτ,

‖u‖X2
t

= sup
τ<t

∥∥∥∥∫ τ

0

∇u(σ)dσ

∥∥∥∥
Lr

and ‖u‖X3
t

= sup
τ<t

∥∥∥∥∫ τ

0

∇u(σ)dσ

∥∥∥∥
Lq

.

Moreover, with U∞(t) =
∫ t

0

‖u(τ)‖L∞dτ and U(t, x) =
∫ t

0

u(τ, x)dτ , one has

U∞ ∈ C([0,∞)) and ∇U ∈ C([0,∞);Lr ∩ Lq). (1)

Remark 1.1. The smallness assumption on the initial data a is used to guarantee

sup
t>0

∥∥∥∥ 1
z0(t)

∥∥∥∥
L∞

. 1, where z0(t) = 1 +
∫ t

0

eτ∆adτ.

Indeed,
∫ ∞

0

‖eτ∆a‖L∞dτ ≈ ‖a‖Ḃ−2
∞,1

and L1 ∩ Lp ↪→ Ḃ−2
∞,1. We then have

|z0(t, x)| ≥ 1 −
∫ ∞

0

|eτ∆a(x)|dτ ≥ 1/2.

And, this property is preserved by the evolution of the system and sup
t>0

∥∥∥∥ 1
z(t)

∥∥∥∥
L∞

. 1.
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Because the first equation of (Ẽθ) is a divergence form, there formally holds the conservation
of mass; ∫

Rn

u(t)dx =
∫

Rn

adx (t ≥ 0). (2)

However, we do not know whether or not the global solution, constructed in Theorem 1.1, is in
L1(Rn). The following theorem ensures that the solution belongs to L1(Rn) in some time interval,
when p = ∞ in Theorem 1.1. As a consequence, we can make sure that our global solution
constructed in Theorem 1.1 fulfills the conservation of mass (2) for a short time, at least.

Theorem 1.2 (Large data local existence). Let n ≥ 1, 0 < s < 1 and θ ∈ R.
(i): There exists a small constant C = C(n, s, |θ|) ∈ (0, 1) such that for any a ∈ L∞, we can

find a local solution u ∈ L∞((0, T ) × Rn) with T =
C

‖a‖L∞
satisfying

‖u‖Y 1
T

+ ‖u‖Y 2
T

+ ‖u‖Y 3
T

+ ‖u‖Y 4
T

. ‖a‖L∞

where for t > 0
‖u‖Y 1

t
= sup

τ<t
‖u(τ)‖L∞ , ‖u‖Y 2

t
= sup

τ<t
ts/2‖u(t)‖Ḃs

∞,∞
,

‖u‖Y 3
t

= sup
τ<t

τ1/2‖∇u(τ)‖L∞ and ‖u‖Y 4
t

= sup
τ<t

τ (1+s)/2‖∇u(τ)‖Ḃs
∞,∞

.

(ii): In addition, if the initial data a also belongs to L1(Rn), then the solution u, constructed

in (i), is in C([0, T ];L1) where T =
C

‖a‖L1∩L∞
and C depending on n, s and |θ|, and fulfills

‖u‖Zt = sup
τ<t

‖u(τ)‖L1 . ‖a‖L1 .

Remark 1.2. 1. The condition on T guarantees the lower bound of 1/z. Indeed, for all t and
x

|z0(t, x)| ≥ 1 −
∫ t

0

‖eτ∆a‖L∞dτ ≥ 1 − C > 0.

2. Ahn and Kang [1] proved the local existence under the assumption a, c(= z(0)) ∈ L∞ ∩W 1,p

with p > n and certain lower bound of c = z(0).

Uniqueness of solutions in Theorem 1.2 is valid as follows;

Theorem 1.3 (Uniqueness). Let n ≥ 1, 0 < s < 1 and T ∈ (0,∞).
(i): If u and v are solutions in the class C((0, T );L∞) ∩ ∩4

j=2Y
j
T with the same initial data

a ∈ L∞, then u(t, x) = v(t, x) for all t ∈ (0, T ) and a.e. x ∈ Rn.
(ii): If u and v are solutions in the class C([0, T );L1) ∩ ∩4

j=1Y
j
T with the same initial data

a ∈ L1 ∩ L∞, then u(t, x) = v(t, x) for all t ∈ (0, T ) and a.e. x ∈ Rn.

This paper is organized as follows. In next section, we recall the definition and equivalence
norms of (homogeneous) Besov space and establish our basic estimates. Theorems 1.1 and 1.2 are
proved in Sections 3 and 4, respectively. In Section 5, the proof of Theorem 1.3 is provided.

2 Preliminaries

Throughout this paper we use the following notations. S and S ′ denote the Schwartz spaces
of rapidly decreasing smooth functions and tempered distributions, respectively. A . B means
A ≤ cB with a positive constant c. A ≈ B means A . B and B . A. C = C(a, b, c) means C
depends on a, b and c.

Let us recall the definition of Besov spaces. We fix ϕ ∈ S(Rn) satisfying supp ϕ ⊂ {1/2 ≤ |ξ| ≤

2} and
∑
j∈Z

ϕ

(
ξ

2j

)
= 1 for ξ ∈ Rn\{0}, and then ϕj(D)f = F−1

[
ϕ

( ·
2j

)
f̂(·)

]
.
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Definition 2.1. Let 0 < p, q ≤ ∞ and s ∈ R. Besov space Ḃs
p,q is defined to be the space of f ∈ S ′

modulo polynomials such that

‖f‖Ḃs
p,q

=

∑
j∈Z

2jsq‖ϕj(D)f‖q
Lp

1/q

, q < ∞,

‖f‖Ḃs
p,∞

= sup
j∈Z

2js‖ϕj(D)f‖Lp .

It is well-known that Ḃs
∞,∞ with 0 < s 6∈ N coincides with Hölder space Ċs, i.e.,

‖f‖Ḃs
∞,∞

≈ ‖f‖Ċs =
∑

|α|=[s]

sup
x 6=y

|∂αf(x) − ∂αf(y)|
|x − y|s−[s]

,

where [s] means the integer part of s, see for example [4]. Triebel [19] showed that Besov spaces
are also characterized by means of heat semigroups et∆; with a non-negative integer m > s/2

‖f‖Ḃs
p,q

≈
(∫ ∞

0

(
tm−s/2‖(−∆)met∆f‖Lp

)q dt

t

)1/q

, q < ∞,

‖f‖Ḃs
p,∞

≈ sup
t>∞

tm−s/2‖(−∆)met∆f‖Lp .

(3)

The following lemma is our basic estimate for the proof of Theorem 1.1.

Lemma 2.1 (Estimates for the non-linear term). Let n ≥ 1. For vector functions F = (f1, · · · , fn),
we have the following.

(i): For 1 ≤ p < n < q ≤ ∞,∫ ∞

0

∥∥∥∥∫ t

0

e(t−τ)∆∇ · F (τ)dτ

∥∥∥∥
L∞

dt .
∫ ∞

0

‖F (τ)‖Ḃ−1
∞,1

dτ .
∫ ∞

0

‖F (τ)‖Lp∩Lqdτ.

(ii): For all r ∈ (1,∞)∥∥∥∥∥
∫ T

0

∇
∫ t

0

e(t−τ)∆∇ · F (τ)dτdt

∥∥∥∥∥
Lr

.
∫ T

0

‖F (τ)‖Lrdτ.

Proof. (i): Changing order of integrals, we see that the right hand side is bounded by∫ ∞

0

∫ ∞

0

∥∥et∆∇ · F (τ)
∥∥

L∞ dtdτ ≈
∫ ∞

0

‖F (τ)‖Ḃ−1
∞,1

dτ

and then from the embedding Lp ∩ Lq ↪→ Ḃ−1
∞,1, the desired inequality is verified.

(ii): We also change order of integrals and have that the right hand side is bounded by∫ T

0

∥∥∥∥∥∇
∫ T−τ

0

et∆∇ · F (τ)dt

∥∥∥∥∥
Lr

dτ.

Though the boundedness of Riesz transform on Lr(Rn) and the duality, the Lr norm above is
dominated by ∣∣∣∣∣

∫
Rn

(∫ T−τ

0

et∆F (τ)dt

)
∆Gdx

∣∣∣∣∣
with some G = (g1, · · · , gn) and each gj ∈ S satisfying ‖gj‖Lr′ ≤ 1. The proof is completed as
follows; ∫ T

0

∣∣∣∣∣
∫

Rn

F (τ)
∫ T−τ

0

∂te
t∆Gdtdx

∣∣∣∣∣ dτ =
∫ T

0

∣∣∣∣∫
Rn

F (τ)
(
e(T−τ)∆G − G

)
dx

∣∣∣∣ dτ

.
∫ T

0

‖F (τ)‖Lrdτ‖G‖Lr′ .
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The following estimates for products are verified by paraproduct formula due to Bony [2] and
is applied in the proof of Theorem 1.2.

Lemma 2.2. For s > 0,

‖fg‖Ḃs
∞,∞

. ‖f‖Ḃs
∞,∞

‖g‖L∞ + ‖f‖L∞‖g‖Ḃs
∞,∞

.

Since it is not hard to prove this, we omit the proof.
Decay estimates of the heat semigroup et∆ on Besov spaces are used in the proof.

Lemma 2.3 ([9]). If β < α, it follows

‖et∆f‖Ḃβ
∞,1

. t−(α−β)/2‖f‖Ḃα
∞,∞

.

See [9] for the proof.
The following estimate is useful to control the norm Y 4

t . For the We give a proof based on a
method due to Meyer [13], which involves the real interpolation theory.

Lemma 2.4. For any α ∈ R, there holds∥∥∥∥∫ t

0

e(t−τ)∆∇f(τ)dτ

∥∥∥∥
Ḃα+1

∞,∞

. sup
τ<t

‖f(τ)‖Ḃα
∞,∞

.

Proof. We define f̃(τ) = f(τ)χ(0,t)(τ) where χI is the characteristic function of I ⊂ R, and
decompose ∫ t

0

e(t−τ)∆∇f(τ)dτ =
∫ ∞

0

eτ∆∇f̃(t − τ)dτ = IA + IIA,

where A > 0 and

IA =
∫ A

0

∇θeτ∆∇1−θf̃(t − τ)dτ, IIA =
∫ ∞

A

∇θ̃eτ∆∇1−θ̃f̃(t − τ)dτ.

Here, 0 < θ, θ̃ < 1. From Lemma 2.3, one has that

‖IA‖Ḃ
α−1/2
∞,1

.
∫ A

0

τ−3/4‖f̃(t − τ)‖Ḃα−1
∞,∞

dτ . A1/4 sup
τ<t

‖f(τ)‖Ḃα−1
∞,∞

‖IIA‖Ḃ
α+1/2
∞,1

.
∫ ∞

A

τ−5/4‖f̃(t − τ)‖Ḃα−1
∞,∞

dτ . A−1/4 sup
τ<t

‖f(τ)‖Ḃα−1
∞,∞

.

Applying the well-known property of Besov spaces, [18] or [3];

Ḃα
∞,∞ =

(
Ḃα−1/2

∞,∞ , Ḃα+1/2
∞,∞

)
1/2,∞

,

we end the proof as follows;∥∥∥∥∫ t

0

e(t−τ)∆∇f(τ)dτ

∥∥∥∥
Ḃα+1

∞,∞

. sup
λ>0

λ−1/2
(
‖IAλ

‖
Ḃ

α−1/2
∞,1

+ λ‖IIAλ
‖

Ḃ
α+1/2
∞,1

)
. sup

τ<t
‖f(τ)‖Ḃα−1

∞,∞
.
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3 Proof of Theorem 1.1

Let
‖u‖Xt = ‖u‖X1

t
+ ‖u‖X2

t
+ ‖u‖X3

t
.

The assumption on exponents ensures the following linear estimates.

Lemma 3.1 (Linear estimates).

‖e·∆a‖X∞ . ‖a‖Ḃ−2
∞,1

+ ‖a‖Ḃ−1
r,1

+ ‖a‖Ḃ−1
q,1

. ‖a‖L1∩Lp .

Proof. The first inequality follows from (3). From

‖a‖Ḃ−2
∞,1

.
∑
j≤0

2j(n−2)‖a‖L1 +
∑
j≥1

2j(n/p−2)‖a‖Lp

‖a‖Ḃ−1
l,1

.
∑
j≤0

2j(n/l′−1)‖a‖L1 +
∑
j≥1

2−j‖a‖Ll , (l = r, q) and

the interpolation inequality ‖a‖Lr∩Lq ≤ ‖a‖L1∩Lp , the second inequality is showed.

With lemmas 2.1 and 3.1, we construct solutions by successive approximation;

u0(t) = et∆a and um+1(t) = u0(t) − B[um](t)

where

zm(t) = 1 +
∫ t

0

um(τ)dτ.

We begin the proof of Theorem 1.1 with showing that {um}m is a bounded sequence in X∞.

From Lemma 3.1, ‖u0‖X∞ ≤ CX‖a‖L1∩Lp where the constant CX depends on n, p, q and r.
Taking δ so that

δ ≤ 1
4CX

, (4)

we see that sup
t>0

∥∥∥∥ 1
z0(t)

∥∥∥∥
L∞

≤ 4/3. Assuming ‖um‖X∞ ≤ 2CX‖a‖L1∩Lp , we shall check ‖um+1‖X∞ ≤

2CX‖a‖L1∩Lp . First, the assumption implies sup
t>0

∥∥∥∥ 1
zm(t)

∥∥∥∥
L∞

≤ 2. Hence, applying Lemma 2.1 one

can obtain 
‖B[um+1]‖X1

∞
. ‖um‖X1

∞

(
‖um‖X2

∞
+ ‖um‖X3

∞

)
‖B[um+1]‖X2

∞
. ‖um‖X1

∞
‖um‖X2

∞

‖B[um+1]‖X3
∞

. ‖um‖X1
∞
‖um‖X3

∞
.

Combining this with Lemma 3.1, one has

‖um+1‖X∞ ≤ CX‖a‖L1∩Lp + C∗
X |θ|‖um‖2

X∞

with the constant C∗
X depending on n, p, q and r. Then, taking small δ so that

δ ≤ 1
4CXC∗

X |θ|
(5)

we see ‖um+1‖X∞ ≤ 2CX‖a‖L1∩Lp . Therefore, {um}m is bounded in X∞. For simplicity, let
KX = sup

m∈N∪{0}
‖um‖X∞ ≤ 2CX‖a‖L1∩Lp .

To show that {um}m is also a Cauchy sequence in X∞, we divide um+1(t) − um(t) into three
parts;

um+1(t) − um(t) = θ

∫ t

0

e(t−τ)∆∇ · (Am(τ) + Bm(τ) + Cm(τ)) dτ

6



where 
Am(τ) = −um(τ) − um−1(τ)

zm−1(τ)
∇zm−1(τ)

Bm(τ) =
um(τ) (zm(τ) − zm−1(τ))

zm−1(τ)zm(τ)
∇zm−1(τ)

Cm(τ) = −um(τ)
zm(τ)

∇ (zm(τ) − zm−1(τ)) .

From Lemma 2.1, it follows

‖um+1 − um‖X1
∞

. |θ|
∫ ∞

0

‖Am(τ) + Bm(τ) + Cm(τ)‖Lq∩Lrdτ.

and 
‖Am(τ)‖Lq∩Lr . ‖um(τ) − um−1(τ)‖L∞

(
‖um−1‖X2

∞
+ ‖um−1‖X3

∞

)
‖Bm(τ)‖Lq∩Lr . ‖um(τ)‖L∞‖um − um−1‖X1

∞

(
‖um−1‖X2

∞
+ ‖um−1‖X3

∞

)
‖Cm(τ)‖Lq∩Lr . ‖um(τ)‖L∞

(
‖um − um−1‖X2

∞
+ ‖um − um−1‖X3

∞

)
,

which imply
‖um+1 − um‖X1

∞
. |θ|KX(1 + KX)‖um − um−1‖X∞ .

The similar argument yields

‖um+1 − um‖X∞ . |θ|KX (1 + KX) ‖um − um−1‖X∞ .

Since K ≤ 1/2, one obtains ‖um+1 − um‖X∞ ≤ C∗∗
X |θ|K‖um − um−1‖X∞ where the constant C∗∗

X

depends on n, p, q and r. Taking small δ so that

δ ≤ 1
4CXC∗∗

X |θ|
, (6)

we see then {um}m is a Cauchy sequence in X∞.

To end this proof, we provide a proof of the continuity of U∞ and ∇U . For t̃ > t ≥ 0, since∫ t̃

t

‖u(τ)‖L∞dτ =
∫ t̃

t

‖eτ∆a‖L∞dτ − |θ|(I + II) where

I ≤
∫ t

0

∫ t̃−σ

t−σ

∥∥∥∥eτ∆∇
(

u(σ)
∇z(σ)
z(σ)

)∥∥∥∥
L∞

dτdσ and

II ≤
∫ t̃

t

∫ t̃−σ

0

∥∥∥∥eτ∆∇
(

u(σ)
∇z(σ)
z(σ)

)∥∥∥∥
L∞

dτdσ,

Lebesgue’s dominated convergence theorem ensures

U∞ ∈ C([0,∞); L∞) and U∞(t) → 0 as t ↘ 0.

The continuity ∇U ∈ C([0,∞); L∞ ∩Lq) and the convergence ∇U(t) → 0 in L∞ ∩Lq as t ↘ 0 are
also verified by the same argument above. The proof is completed.

Remark 3.1. For any α ∈ (0, 1 − n/r),∫ ∞

0

‖u(t)‖Ḃα
∞,∞

dt . ‖a‖Ḃα−2
∞,1

+ |θ|‖u‖X1 (‖u‖X2 + ‖u‖X3)

. ‖a‖L1∩Lp + |θ|‖u‖2
X .
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4 Proof of Theorem 2

Let
‖u‖Yt = ‖u‖Y 1

t
+ ‖u‖Y 2

t
+ ‖u‖Y 3

t
+ ‖u‖Y 4

t
.

(i): We verify that {um}m is also a Cauchy sequence in YT with some T . We have ‖u0‖YT
≤

CY ‖a‖L∞ . By Lemma 2.2 and∥∥∥∥ 1
zm(t)

∥∥∥∥
Ḃs

∞,∞

≈
∥∥∥∥ 1

zm(t)

∥∥∥∥
Ċs

.
∫ t

0

‖um(τ)‖Ḃs
∞,∞

dτ, (7)

one can show that if sup
t<T

∥∥∥∥ 1
zm(t)

∥∥∥∥
L∞

. 1,



‖B[um+1]‖Y 1
T

. T‖um‖Y 1
T
‖um‖Y 3

T

‖B[um+1]‖Y 2
T

. T‖um‖Y 2
T
‖um‖Y 3

T
+ T‖um‖Y 1

T

(
T‖um‖Y 2

T
‖um‖Y 3

T
+ ‖um‖Y 4

T

)
‖B[um+1]‖Y 3

T
. T‖um‖Y 2

T
‖um‖Y 3

T
+ T‖um‖Y 1

T

(
T‖um‖Y 2

T
‖um‖Y 3

T
+ ‖um‖Y 4

T

)
‖B[um+1]‖Y 4

T
. T‖um‖Y 2

T
‖um‖Y 3

T
+ T‖um‖Y 1

T

(
T‖um‖Y 2

T
‖um‖Y 3

T
+ ‖um‖Y 4

T

)
,

which imply
‖um+1‖YT

≤ CY ‖a‖L∞ + C∗
Y |θ|T (1 + T‖um‖YT

) ‖um‖2
YT

.

Here, Lemma 2.2 and (7) have been applied for Y 2
T , and Lemma 2.4 and (7) for Y 3

T . Therefore,
taking

T ≤ 1
2CY ‖a‖L∞

and T ≤ 1
8CY C∗

Y |θ|‖a‖L∞
(8)

and assuming ‖um‖YT ≤ 2CY ‖a‖L∞ , we have ‖um+1‖YT ≤ 2CY ‖a‖L∞ . Indeed, from this assump-
tion, |zm(t, x)| ≥ 1/2. Let KY (T ) = sup

m∈{0}∪N
‖um‖YT

≤ 2CY ‖a‖L∞ .

And then, we have{
‖Am(t) + Bm(t) + Cm(t)‖L∞ . t1/2KY (t) (1 + tKY (t)) ‖um − um−1‖Yt

‖Am(t) + Bm(t) + Cm(t)‖Ḃs
∞,∞

. t(1−s)/2KY (t) (1 + tKY (t))2 ‖um − um−1‖Yt .

Here, Lemma 2.2 and∥∥∥∥ 1
zm−1(t)zm(t)

∥∥∥∥
Ḃs

∞,∞

.
∥∥∥∥ 1

zm−1(t)

∥∥∥∥
Ḃs

∞,∞

+
∥∥∥∥ 1

zm(t)

∥∥∥∥
Ḃs

∞,∞

. t1−s/2KY (t)

have been used in the second estimate. Then, we have

‖um+1 − um‖YT ≤ C∗∗
Y |θ|KY (T )T‖um − um−1‖YT .

If
T ≤ 1

10CY C∗∗
Y |θ|‖a‖L∞

, (9)

{um}m is a Cauchy sequence in YT .

(ii): We shall show {um}m is also a Cauchy sequence in C([0, T ];L1(Rn)) with some T . Let
m ∈ N ∪ {0} and we assume ‖um‖ZT

≤ 2‖a‖L1 . Of course, ‖u0‖ZT
≤ ‖a‖L1 . Because if T fulfills

(8) one has
‖um+1‖ZT

≤ ‖a‖L1 + C∗∗
Y |θ|T‖um‖ZT

‖um‖Y 3
T

(10)

with a constant C∗∗
Y depending on n only, taking

T ≤ 1
2CY C∗∗

Y |θ|‖a‖L∞
, (11)
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we then have ‖um+1‖ZT ≤ 2‖a‖L1 . Hence, we write KZ(T ) = sup
m∈N∪{0}

‖um‖ZT ≤ 2‖a‖L1 with T

fulfills (8) and (11). To show um ∈ C([0,∞);L1(Rn)) we write that for small ε > 0

um+1(t + ε) − um+1(t) = et∆
(
eε∆a − a

)
+ θ

∫ t

0

∇e(t−τ)∆
(
eε∆ − Id

)(
um(τ)

∇zm(τ)
zm(τ)

)
dτ

− θ

∫ t+ε

t

e(t+ε−τ)∆∇
(

um(τ)
∇zm(τ)
zm(τ)

)
dτ.

Combining this with Lebesgue’s dominated convergence theorem ensures that the right continuity
of um+1 in the topology of L1. On the other hand, since

um+1(t) − um+1(t − ε) = e(t−ε)∆
(
eε∆a − a

)
+ θ

∫ t−ε

0

∇e(t−ε−τ)∆
(
eε∆ − Id

)(
um(τ)

∇zm(τ)
zm(τ)

)
dτ

− θ

∫ t

t−ε

e(t−τ)∆∇
(

um(τ)
∇zm(τ)
zm(τ)

)
dτ,

we have the left continuity of um+1 from the Lebesgue’s theorem again.
Next, we observe

‖um+1 − um‖ZT
. |θ| sup

t<T

∫ t

0

(t − τ)−1/2 ‖Am(τ) + Bm(τ) + Cm(τ)‖L1 dτ

and 
‖Am(τ)‖L1 . τ1/2‖um − um−1‖ZT

‖um−1‖Y 3
T

‖Bm(τ)‖L1 . τ3/2‖um‖ZT
‖um−1‖Y 3

T
‖um − um−1‖Y 1

T

‖Cm(τ)‖L1 . τ1/2‖um‖ZT ‖um − um−1‖Y 3
T

and then for T satisfying (11) we have

‖um+1 − um‖ZT ≤ CZ |θ|KY (T )T‖um − um−1‖ZT

+ CZ |θ|KY (T )KZ(T )T 2‖um − um−1‖YT + CZ |θ|KZ(T )T‖um − um−1‖YT .

where the constant CZ depends on n only. Here, taking

T ≤ 1
10CY CZ(1 + |θ|)‖a‖L∞

and T ≤ 1
10CZ(1 + |θ|)‖a‖L1

, (12)

and combining these with (9), we see

‖um+1 − um‖YT ∩ZT
≤ 4/5‖um − um−1‖YT ∩ZT

,

which means that {um}m is a Cauchy sequence in YT ∩ ZT .

5 Proof of Theorem 1.3

We give the proof in the case (i), only. Let w(t) = u(t) − v(t). By using estimates in the proof of
Theorem 1.2, we can see that there exists small t ∈ (0, T ) so that

‖w‖Yt ≤ 1/2‖w‖Yt .

Let T ∗ = sup{t ∈ (0, T ); u(t, x) = v(t, x) a.e. x ∈ Rn} and we assume that T ∗ < T , otherwise the
proof is completed. Because u(T ∗) = v(T ∗) ∈ L∞, the above argument ensures that there exists
t∗ > 0 so that u(t.x) = v(t, x) for t ∈ [0, T ∗ + t∗] and a.e. x ∈ Rn. This contradicts the definition
of T ∗ and then we have T ∗ = T .
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ential Equations 32 (1979), no. 3, 420-453.

[16] A. Stevens, Trail following and aggregation of myxobacteria, J. of Biological system 3 (1995),
1059-1068.

10



[17] A. Stevens and J.J.L. Velázquez, Asymptotic analysis of a chemotaxis system with non-
diffusive memory, Preprint.

[18] H. Triebel, Theory of function spaces, Birkhäuser, Basel (1983).
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