COUNTING GENERALIZED DYCK PATHS

YUKIKO FUKUKAWA

AsstracT. The Catalan number has a lot of interpretations and one of
them is the number of Dyck paths. A Dyck path is a lattice path from
(0,0) to (n,n) which is below the diagonal ling = x. One way to
generalize the definition of Dyck path is to change the end point of Dyck
path, i.e. we define (generalized) Dyck path to be a lattice path from
(0,0) to (m, n) € N2 which is below the diagonal ling= 2x, and denote

by C(m, n) the number of Dyck paths from (0) to (m, n). In this paper,

we give a formula to calculat&(m, n) for arbitrarymandn.

1. INTRODUCTION

1 (2n). L
The Catalan numbez,, = 1l 5 is one of the most fascinating num-

bers, and it is known that the Catalan number has more than 200 interpre-
tations. (See [2].) For example, the number of ways to dissect a convex
(n+2)-gon into triangles, that of binary trees witi+{ 1) leaves, and that of
standard tableaux on the young diagraymj areC,. Moreover, one of the
most famous interpretations of the Catalan number is the number of Dyck
paths from (00) to (n, n). A sequence of lattice points i#?

P= {(XO, yO)’ (Xl’ yl)’ T (Xk» Yk)}
is a lattice path if and only iP satisfies the followings forany= 1,2, -- - , k:

(%, ¥i) = (Xi—1, Yiea + 1) or (-1 + L, yi—1).

If a lattice pathP = {(0, 0), (X1, Y1), - - - , (N, n)} lies in the domairy < x, Pis
called a Dyck path. There a@‘) lattice paths from () to (n, n), andC,
of them are Dyck paths.
It is known that the Catalan numbers satisfy the recurrence relation that
n-1

(1.1) Co=1 and C,= Zcicn_l_i.
i=0
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This recurrence relation also has many interpretations. Hereatfter, if a lattice
path P from (0,0) to (m,n) € N? lies in the domairy < £x, we callP a

Dyck path, and we denote the number of Dyck paths fron@)@ (m, n)

by C(m,n). We have a natural question: how many Dyck paths fror)0

to (m, n) are there for any positive integensandn? The followings are
answers to this question for special valuesndndn. N. Fuss ([1]) found

1 ((k + 1)n)

(1.2) Clkn.n) = kn+1\ n

C(kn, n) also has the following recurrence relation:

k+1

(13) Cknm= > | [ctkn.m).

(2,2, ,Nke1) =1

where the sum is taken over all sequences of non-negative integgrs (- - , Nk.1)
such thaty¥! n; = n— 1. C(kn,n) also appears in various counting prob-
lems, like the Catalan number. For instance, the number of ways to dissect
a convex kn+ 2)-gon into k + 2)-gons isC(kn, n). Actually, N. Fuss gave

the formula (1.2) ofC(kn, n) by counting the number of ways to dissect a
convex kn+ 2)-gon into K + 2)-gons in [1]. P. Duchon [4] also gave a
formula counting the number of Dyck path from Q) to (2, 3¢), namely

(1.4) C(2¢,30) = ,2501 ﬁ(ﬁ: :r il)(5£ T 2i)'

In this paper, we count(m, n) for any positive integersn andn. Let
Amn) = ﬁ(”;m) For anymandn, C(m, n) is given by the following theo-
rem.

Theorem 1.1.1 Let d = gcd(m, n), then

d
15) cmn) = 3 [ (34 min)

a i=1
where the sun} , is taken over all sequences of non-negative integets a
(&g, @, - - -) such thaty;; ia; = d. Whergcd(m, n) = 1, (1.5)reduces to the
following:

(1.6) cmn) = — (m;”).

When the author almost finished writing this paper, she found a paper [5] which proves
Theorem 1.1. But our proof is fierent from that in [5].
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In fact, we prove (1.6) first and then (1.5). Actually, a sequence of non-
negative integera = (a3, &, - - - ) in (1.5) characterizes the “form” of a Dyck
path, and it is interesting th&(m, n) is given by using these sequences. We
will see this in the last section. The descriptionG{im, n) in Theorem 1.1
is completely diferent from that o€C(kn, n) in (1.2) and that o€(2¢, 3¢) in
(1.4), and we could not deduce (1.2) and (1.4) from (1.5) by direct compu-
tation. (However we will see that (1.2) is a corollary of Theorem 1.5.)

The paper is organized as follows. In Section 2 we will treat the case
gcd(m, n) = 1 and prove (1.6). In Section 3 we state a recurrence relation
generalizing (1.1) and see that Theorem 1.1 follows from the recurrence
relation. The recurrence relation follows from three lemmas and we prove
them in Section 4.

Acknowledgment. The author thanks Professor Mikiya Masuda for help-
ful conversations and advice, and also thanks Professor Akihiro Munemasa
for some useful information on the reference.

2. THE pESCRIPTION OoF C(m, n) wHEN gcd(m, n) = 1.

We begin with some notations about a lattice path. We can regard any
lattice pathP from (0, 0) to (m, n) as a sequence afl Xs andn ys. For ex-
ample, the lattice path from (0) to (5 3) in Figure 1 isxyxxyxyx Hereafter

X

Ficure 1
we will treat a lattice path from (@) to (m, n) as a sequence ai Xs andn
y's. The number of lattice paths from,@) to (m.n) is ("").

Definition 2.1. Two lattice paths P= uiU; -« - Upnyn @nd Q = ViVo - - - Vinpn
from (0, 0) to (m, n) are equivalent if and only if there is sorfie< i < m+n
suchthati - - - UpnUs - - - Ui = ViV2 - - - Ve, @nd we denote the equivalence
class of P agP].

For any lattice patf = u U, - - - um,y itS equivalence class is given by
[P] = {Ps:= Usi1Uss2 - - - Ul -~ Us | S=1,2,--- ,m+n}.

For example, whel? = xyxxy the elements inH] are the following five
lattice paths:

P1 = yxxy% P, = xxyxy Pz = Xyxy% Ps=yxyxx P= Ps= Xyxxy
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We definethe period of P, denoted by peR), to be the smallest number
(1 <r <m+n)suchthaP = P,.

Lemma 2.2. For a lattice path P fron{0, 0) to (m, n),

#[P] = perP) = (m+n)/q,
where q is a divisor afjicd(m, n). In particular[P] = m+nif gcd(m, n) = 1.

Proof. Since the lemma clearly holds if p& = m + n, we assume that
perP) <m+n,and letm+n=perP)g+r (0<qg, 0<r < perP)).

Assume that is zero. TherP is a sequence arrangeg, - - - Upere)
times and peR) = (m+n)/q. Ifthe number ok (resp.y) in {uy, Uy, - - -, Uper)}
isb (resp. perP) — b), then we haven = bg, n = (per(P) — b)g. Thus,qis
a common divisor omandn.

Assume that is not zero. LeP be a sequence arrangRahfinitely many
times and we treat its indexes as consecutive numbers, namely

IS = U1 - UninUmin+1 - - u2(m+n)UZ(m+n)+1 e u3(m+n) e
whereu; = Umypsi- There are positive integeies and b which satisfy
perP)a— (m+ n)b = d, whered = gcd(perP), m+ n). Therefore, we get
the following equation:

Ui = UirperP)a = Ui+d+m+nb = Ui+d,

and this equation meas= Py. Sincer is not zerod < per(P). So itis a
contradiction to the minimality of pel). |

Lemma 2.3. For any lattice path P fronf0, 0) to (m, n), [P] has at least one
Dyck path, and ifycd(n,n) = 1, [P] has a unique Dyck path.

Proof. We may assume that > n, becaus€(m, n) = C(n, m). We define a
functionr for any pair of positive numbersandt, and any lattice patk:

r(st, Q) = t(the number ok in Q) — s(the number of/ in Q)

Let sub(P) be a subsequence Bf= u; - - - Un.n given byuuz---uj, (I =
1,2,---,n), whereu; is thei™ y in P from the left. Since the Dyck path is a
lattice path which is below the diagonal lige= = x, the definition of Dyck
path can be described in terms of the functias follows:

r(m,n, su(P)) > 0 forany 1<i<n.

Suppose that a lattice pakhfrom (0, 0) to (m, n) is not a Dyck path and
let k be the positive integer such that the functigm, n, -) takes the mini-
mum value orsuly(P)C thenPy is a Dyck path. To prove this, we should
confirm thatr(m, n, sul(Py)) > O (for anyi), but we can see this easily. See
Figure 2. This is the figure of a part of lattice pa&land the line with the
slope2 which is overP and touche® at only lattice points. For any lattice
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path P, there is a unique such line. To obseRgfor any P is same as to
observe some subsequence with lengtik n of P. Choose two common

P P

Ficure 2. (M, n) = (5,3)

points such that the fierence ofx-coordinates isn, and regard those two
points as (00) and (m,n) from the left, that lattice path is a Dyck path.
Therefore any lattice path has at least one Dyck path in their equivalence
class.k is one ofx-coordinates of common points Bfand the line. When
gcd(m, n) = 1, the diference ofx-coordinates of two adjacent lattice points
on that line ism, so the Dyck path inf] is unique, as desired. O

Theorem 2.4.1f gcd(m, n) = 1, then

C(m,n) = 1 (m;n)'

Proof. We can choose some lattice paiisP?,--- , P! from (0, 0) to (m, n)
such that the set of all lattice paths from@)to (m, n) can be written as the
following:

(2.1) {All lattice paths from (00) to (m, n)} = [P L [P u--- U [P

Lemma 2.3 says that eacR'T has a unique Dyck path if gca(n) = 1, so
t = C(m,n). Comparing the number of elements in both side of (2.1),
(™) = PP e

(m+ n)t (- Lemma 2.2)
(m+ nN)C(m, n).

Therefore we have

1 m+n
C(m’n):m+n( n )

and Theorem 2.4 is proven. O
It is easy to show that (1.2) is given as a corollary of Theorem 2.4.

Corollary 2.5.

Ckn,n) = %(

- (k + 1)n).

n
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Proof. Note thatC(n, kn) = C(n, kn+1) holds. In fact, since gckf+1,n) =
1, the lattice points in the domaifx,y) | y < k%lx, y>kx 0<x<n}
are on the ling/ = kxor (n,kn+ 1). Namely, all Dyck paths from (@) to
(n, kn+ 1) are made by connecting the lattice path frank() to (n, kn+ 1)
with a lattice path from () to (n, kn). Therefore, we have

Cknn) = C(nkn) =C(n kn+1)= m((“ 13” * 1)
1 ((k+1Dn
kn+ 1( n )
and this is (1.2). O

3. THE DEScrRIPTION OF C(M, N) FOR ANY POSITIVE INTEGERS IM AND N.

In this section, we describe the formula®@fm, n) for any positive inte-
gersmandn. Let Agypy = =2 (m;”) then the following Proposition holds.

m+n

Proposition 3.1. Let d = gcd(m, n), then
d . . .
[ d-i_ d-i
(3.1) C(m.n) = Z GAGm Gl m —=n).
1=
The proof of the proposition will be given later.

This recurrence relation (3.1) is a generalization of the recurrence rela-
tion (1.1). In fact, wherm = n, d = nand (3.1) reduces to

n

i
Ch= Z HA(i,i)Cn—i-

i=1

Here a part of the right hand side\; ) Cn-i + 2 A_i11n-i+1)Ci1, is equal
to 2C,_iCi_1, since
n-i+1

i
HA(i,i)Cn—i L An-ir1n-i+1)Ciz1
) il(Zi) n—i+1 1 (2(n—i+1))
n—i

i-1

n2i\ i n 2n-i+)\ n-i+1
B i}(Z(i—l))Zi(Zi—l)C L1 (2(n—i))2(n—i+1)(21—2i+1)
~ o2nili-1 i o onn-i+1\ n—i n—i+1
_ (2|n1+2n 2I+1)Cn—iCi—1
= 2C,iCi_1.

So, (3.1) is a generalization of (1.1).

C

i-1
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Definition 3.2. For a sequence of non-negative integers-da;, a,, - - - ),
we defind|al| by
lall = ) ia.
i=1

The recurrence relation (3.1) leads to the main theorem.
Theorem 3.3.Let d = gcd(m, n), then
1
— A
(3.2) c(mn) = E][T(aﬁhmm)
ajllall=d i=1

Example 3.4.Let m= n, then we have

n

1 .
com= 3 [[5740)
allal=n i=1 a:

by (3.2). For instance, in the case of# 3, the sequences of hon-negative
integers a= (a;, ap, - - - ) with ||al| = 3 are the following three sequences.

(3a0’o5”')a (1a1’050a"')’ (0’O5la0505”')-

Thus,
3

> T {a)

allall=3 i=1

1 3
= 3wy

1 1 1 1 1 1
A A T ey

_1,3,20
~ 6 2 6 7

C(3,3)

As this example shows, each facfcﬂ’:1 (—;, A?“i m,in)) in the sum is not nec-
: d''sd
essarily an integer.

For simplicity, we rewrite Proposition 3.1 and Theorem 3.3.

Proposition 3.5(Proposition 3.1)Let p and g be two positive integers with
gcd(p, g) = 1. We denote the number of Dyck paths fr@y0) to (dp, do)
(namely, Gdp, dq)) by Cy. Likewise, we abbreviatedqq as Ai. Then, we

have
d .
— i~
Ca= § G/NCo-i-
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Theorem 3.6(Theorem 3.3)Under the same assumption of Propsition 3.5,

we have ;
Ca= ), l_[(%,o\a)

allal=d i=1

In the rest of this section, we show that Theorem 3.6 follows from Propo-
sition 3.5, state three lemmas and prove Proposition 3.5 using them. For
that we need some notations.

Definition 3.7. For a sequence of non-negative integers &a;, a, - - ,),
| a|, £(a) and h(a) are defined by

- : |al!
al= a, ¢t@=#i|la=+0}), and a) = —
||; (a) = #li | & # O} @) = F= o
respectively.
|
If |lall = d < o0, h(a) = lda L g Hereafter we always assuraesatisfies
i=1 &’

{(a) < co.

Definition 3.8. For two sequences of non-negative integees @, ay, - - - )
and c= (Cy, Cp, - - - ), We define
cxaec>g foranyi=12---
c>aeoc>a and ¢#a forsome i=1,2,---.
Moreover, for0 < j <| c|, let B. be
Bl:=f{ala<c/ al=[c|-j}
Definition 3.9. Suppose that p and q are a pair of positive integers with
gcd(p,g) = 1, and d is any positive integer. Let(®p, dqg) be the number
of Dyck paths from(0, 0) to (dp, dg) which is strictly below the diagonal

y = gx except a(0,0) and(dp, dg), and X0, 0) = 1. For any sequence of
non-negative integers a witlal| < co, we set

D2, = ]_[ D(ip, iq)®.
i=1
If p and g are clear from the context, we abbreviatg,[as " and abbre-

viate Aapdq as A as before.

Lemma 3.10.

(3.3) Cy = Z h(a) D2.

ajllall=d
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Lemma 3.11.
(3.4) A= ) —h(a)Da
allall= d

Lemma 3.12. For any sequence of non-negative integers ¢ci,Cp, - - )
and any jwithO < j <| c| -1, the following holds.

> 12 dntehie - &) = L)
aeB’

We will give the proofs of these lemmas in the next section. Here we
assume that Lemma 3.10, Lemma 3.11, and Lemma 3.12 are correct and
give the proof of Proposition 3.5.

Proof of Proposition 3.5Now we fix the pair of positive integens andq
with gcd(p, g) = 1. Substituting (3.3) and (3.4) for the right hand side of
Proposition 3.5, we have

i~ 1< .

.,
_ %Z[Z D mh(a)h(lo)Da+b]
llall=i [|bl|=d—i

(3.5) -1 ( 1 h@n(e —a))DC
d||C||=d | l

where the last equality in (3.5) is given by substituting a+b. Calculating
the factor in the right hand side of (3.5):

-1

Mh(a)h( c-a) = ), Mh(a)h(c a)
as<c | | j=0 j |
aeB;
S l||
—h
Y (©)
= IICIIh(C)-
The second equality above follows from Lemma 3.12, thus we have
d -
= llall
> AC = 5 Z—h(a)h(c 3)|D
i=1 Icl|=d
= > h(D*

clicll=d
= Cy
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by Lemma 3.10. Therefore Proposition 3.5 is proven. O
Theorem 3.6 follows from Proposition 3.5.

Proof of Theorem 3.6Fix the pair of positive integengandqg with gcd(p, q)
1. We prove Theorem 3.6 by induction dn Whend = 1, since (n,n) =
1-p,1-9),C(mn)= C, = A follows Theorem 2.4 thus Theorem 3.6
holds. Assume that Theorem 3.6 holds for less than or equittb. Then
we have

d .
Cq = ZIAiéd—i

2 1)

allall=d-i j=1

I
al -
>

(3.6)

by Propsition 3.5 and the induction assumption.
Claim 3.13. The following equation holds for d variableg, X, - - - , X4:

(3.7) Zd:i'(zdlaij.?j] Zﬂan

i=1 llall=d-i j=1 llall=d =1
Proof of the claim.For any sequence of non- negative integers

b:(bl,bz,-~~ bd,oo )

we shall observe the ciigients of¢ x% - - |n the left hand side of (3.7).
(1) If || b ||= d, the term which contaln . bd in the left hand side
of (3.7) is

9\ 1
(3:8) Z '[(b =R HXTJ)

i= j#i

where we understa “=0if b =0, and (3.8) is equal to

)I

dibidlb d 15 1

> 5 Tes s] (5 m)(Taet) - [Tare

i=1 i=1 J

(2) We shaII show that any monomial in the left hand side of (3.7) is of
the form x1 x2 xg“ with [|b]] = d. Any monomial in the left hand side
of (3.7) is of the formx; H‘j’;il x?" with a such thatjal] = d —i. Setb =
@, - ,a.1,a + 1, a+1, --). Then||bj=1i+Ja =i+d-i=dand

x 15 %" = XX - . X% with || b ||1= d O
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By substitutingx; = A for the left hand side of (3.7), we have

d . d-i d
| 1 ai 1 b;
Za’*[ 2 _ﬂa’*ij): 2 | g
i=1 alal=d-i j=1 i bilbll=d j=1 "
Therefore, by (3.6), we have

d i d-i 1 d 1

=~ [N 1 . 1

NN IELIEp P
i=1 allall=d-i j=1 ! billbll=d j=1

and Theorem 3.6 follows. O

4. PROOFS OF THE LEMMAS

We fix the pair of positive numbersandqg with gcd(p, g) = 1 as before.

Let
m=dp, n=dq

To start with, we give the definitions @hapee = (e, &, --) andtype
a = (ag, &, - --) of the Dyck path from (0,0) to (m,n). Any Dyck pathP
touches the diagongl= = x at least one point except at, @, and coordi-
nates of intersection d? and the diagonal can be described fis,¢n) =
(kp, kq) for somek € Z. because gcdg, n) = d. Let all intersection points
of P and the diagonal be (0), (kip, ki10), (kop, k2Q), - - -, (Ksp, ksQ) from the
left. (Namely, O< k; < k; < -+ < ks = d.) Then, the shape = (€)iax
of a Dyck pathP is defined bye = k; — k;_; for any non-negative integer
whereky = 0 andk; = O (t > s). Furthermore, the typa = (g )iy Of a Dyck
pathP is defined bya; = #{g; | €; = i} for anyi > 1. We denote the type of

P by typef).

Proof of Lemma 3.10Suppose thaP is a Dyck path form (00) to (m, n)
of shapee and typea. Then

(o)

-:Zlﬁej|ej_|
= i=1

= Z ik |k — ki1 =)

i=1

= Y (ki —k1) = —ko + ks

l1all

¢M8

8

8

Qg
N

Conversely, for any sequence of non-negative integevih ||aj| = d, it is
clear that there exists some Dyck path of tygpfgom (0,0) to (m,n). The
number of Dyck paths of shajegs [[2; D peq- If the shapes of two Dyck
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paths coincide, their types also coincide; so the number of Dyck paths of

typeais
Z l_[ Deepea = Z l—[ Diiy.iq = N(@)D%,
e i=1 e i=1
where the sun}., is taken over alk with f{e; | e; = i} = & for anyi. This
proves Lemma 3.10. O

Proof of Lemma 3.11lf [ P] has more than one Dyck path, then types of
these Dyck paths coincide. L& be a Dyck path of type and period
r(# m+n). Lemma 2.2 says thatis a divisor ofm+ n, and this means that

m+n .
Ja’ = (aj,a,,---) st ai:Tai’ Vi e N.

Namely, anyg is divisible by (n+ n)/r. Let cd(a) be the set of alt such
that (m+ n)/r divides alla;, in other wordsy which can be the period of
some Dyck path with typa. For any Dyck patHP with type a and period
r, the number of lattice paths ifP] is r and that of Dyck paths inH] is
|a |=r|al| /(m+n)by Lemma 2.2. LeE(a r) be the number of Dyck
paths with typea and periodr. Counting the number of all lattice paths
from (0, 0) to (m, n), we have

#[P]
(M+n)Amn) i
a;%lz § r;r;(a) piype (P)Za;per Pt (Number of Dyck paths inR])

E(a, r) I

allall=d rirecd(a) m+n

Z m+ nE(&r)

a;lall=d rirecd(a) |2l

Z E(ar)|.

r;recd(a)

m+n
allall=d lal
We knowh(a)D? = 3. ccqq E(a, 1), thus,
m+n
(M+ ARy = h(a)D?.
ajllall=d al
Lemma 3.11 is proved. O

Proof of Lemma 3.12We begin with the following claim.
Claim 4.1.

Y e dn@he-a)= 3 3 LEina@ne -a)

acBl ceBl aeB' 1
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Proof of the claim.Recall¢(c) = #{i | ¢ # 0}. For any sequence of non-
negative integers, the elements nBl are the followingf(c) sequences:

1<vt<f(), ¢:=(0,---,0,Cq - ,Cq —1,0,-++,Cq.0,---)

wherec; is thet™ nonzero number in from the left. Then, we have

Zh(c’) = Zh(d)

ceBlL t=1
£(c)
(Icl-1)!

=1 Hf(c)(cs )/cs
¢(c)

e 1
© el TG &

t=1
|cl!

(4.1) " ey -

We note that
ac B, < ae B! 'for somec ¢ B

Therefore we have

Zzwh()h( a) = % > h(c’—a)]h(a)

c'€Bf aeB, ! acBl ceBlsto>a
a
C S5
a2
acBg beB;_

> |”a” h(c - a)h(a).

acBl

The last equation above holds by (4.1). Therefore Claim 4.1 is proved.

We go back to the proof of Lemma 3.12. We prove by inductionj.on
Lemma 3.12 clearly holds fgr= 0. We have

B%={c‘:(0,--- ,0,C, -+ ,Cq — 1,0, ,ng(c),O,"') | 1<Vt <)
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and then

PRGOS

aB1

¢(c)

2. e hene-

£(c)

lcll-s (cl-1!
=1 lel-1 (Hficl)CS!)/Cs[
Qlel-slcl ¢
dlcl-17c| @,

2(c) £(c)
- (ZCSIICII ZSICS]|C|(|CI -1) "

1
= (ldllcl —||C||)mh(c)
el
= e |h( C).

Thus, Lemma 3.12 holds fgr= 1. Assume thaj > 2 and Lemma 3.12
holds forj — 1. By Claim 4.1, we have

la| la|
Tan@he-a = >, ), = h@h(c -2

acBl ceB} aEBi,’l
Cl
) l: c :l ")
c’eBt
I cll
= ——h(c),
|C
so Lemma 3.12 also holds for O
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