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Abstract. We consider the following nonlinear Neumann boundary value
problem: {

−∆u+ u = a(x)|u|p−2u in Ω,
∂u
∂ν

= λb(x)|u|q−2u on ∂Ω,
(1.1)

where N ≥ 3 and Ω ⊂ RN is a bounded domain with smooth boundary.
We suppose a and b are possibly sign-changing functions in Ω and on ∂Ω
respectively. Under some additional assumptions on a and b, we show that (1.1)
has infinitely many solutions for sufficiently small λ > 0 if 1 < q < 2 < p ≤ 2∗.
When p = 2∗, we use the concentration compactness argument to ensure the
PS condition for the associated functional. We also consider a general problem
including the supercritical case and obtain the existence of infinitely many
solutions.

1. Introduction. In this paper we investigate the following nonlinear Neumann
boundary value problem:{

−∆u+ u = a(x)|u|p−2u in Ω,
∂u
∂ν = λb(x)|u|q−2u on ∂Ω,

(1.1)

where N ≥ 3, Ω ⊂ RN is a bounded domain with smooth boundary and ∂
∂ν de-

notes the outer normal derivative. We suppose a and b are possibly sign-changing
functions in Ω and on ∂Ω respectively. Main purpose of this paper is to show the
existence of infinitely many solutions for (1.1). To do that, we consider the associ-
ated functional which is defined on H1(Ω) and continuously Frechét differentiable
on that space:

F(u) =
1

2

∫
Ω

(
|∇u|2 + u2

)
dx− 1

p

∫
Ω

a(x)|u|pdx− λ

q

∫
∂Ω

b(x)|u|qdσ.

Before state our results, we put a condition on b:

(B) there exist an open set D ⊂ RN with D ∩ ∂Ω ̸= ∅ and a positive constant
δ > 0 such that b ≥ δ on D ∩ ∂Ω.

Now our first result is the following:
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Theorem 1.1. Let 1 < q < 2 < p ≤ 2∗ = 2N/(N − 2). Suppose a ∈ C(Ω),
b ∈ L∞(∂Ω) and further, b satisfies the condition (B). Then there exists Λ > 0
such that (1.1) has infinitely many solutions (uk) ⊂ H1(Ω) for every 0 < λ < Λ.
Moreover F(uk) < 0 and F(uk) → 0 as k → ∞.

Remark 1.2. In fact, it is enough to choose a ∈ L∞(Ω) if p < 2∗.

Remark 1.3. If we assume b ∈ C(∂Ω) and there exists x0 ∈ ∂Ω such that b(x0) >
0, then we also have the same conclusion as in Theorem 1.1.

In 1994, Ambrosetti, Brezis and Cerami([1]) considered the elliptic problem with
the “convex-concave” nonlinearities. They obtained a variety of results related
to the existence of (possibly multiple) solutions for the problems with Dirichlet
boundary conditions. Recently some authors have begun to consider such prob-
lems with nonlinear Neumann boundary conditions. J.Garcia-Azorero, I.Peral and
J.D.Rossi([6]) study problem (1.1) for the case a ≡ 1 and b ≡ 1. They obtain the
Ambrosetti, Brezis and Cerami type results. Among other things, they prove that
if 1 < q < 2 < p < 2∗ and λ > 0 is sufficiently small, there exist infinitely many
solutions for (1.1) with negative energies. Motivated by their result, we consider
the general case with the variable coefficients a and b. Now our first question is
“Under what conditions on a and b, can we get the existence of infinitely many
solutions for (1.1) with negative energies?” One of the answers is as in Theorem
1.1. We emphasize that a and b may change its sign. Note that in Theorem 1.1,
we also consider the critical case, i.e. p = 2∗ which is not considered in [6]. If p is
critical, a typical difficulty occurs in proving PS conditions for F because of the lack
of compactness of the embedding H1(Ω) ↪→ L2∗(Ω). We overcome this difficulty
by applying the concentration compactness lemma by Lions([9]) and get Theorem
1.1. To the end of this paragraph, we add some results related to our motivation.
In the pioneering work by H. Brezis and L. Nirenberg ([2]), they suggest that their
problem with variable coefficients becomes more delicate. Following their sugges-
tion, some results appear recently. First see [5] where the convex concave problems
with indefinite coefficients (but for Dirichlet boundary conditions) are considered.
See also [3] where a nonlinear Neumann boundary value problem with variable co-
efficients are discussed. In both works, the critical nonlinearities are treated and
the existence of (mountain pass) solutions are proved under suitable conditions on
their variable coefficients.

Next, we shall consider a more general problem:{
−∆u+ u = f(x, u) in Ω,
∂u
∂ν = λb(x)|u|q−2u on ∂Ω,

(1.2)

where f(x, u) : Ω × R 7→ R. In this case the associated functional becomes

I(u) =
1

2

∫
Ω

(
|∇u|2 + u2dx

)
−
∫
Ω

F (x, u)dx− λ

q

∫
∂Ω

b(x)|u|qdσ,

where F (x, t) =
∫ t

0
f(x, s)ds. As we shall know from the proof of Theorem 1.1, the

concave term in (1.1) is essential for the existence of infinitely many solutions with
negative energies. So we can generalize the convex term in (1.1). Now we naturally
ask that “Under what conditions on f(x, u), can we ensure the existence of infinitely
many solutions with negative energies?” Here we put two conditions for f :



EXISTENCE OF INFINITELY MANY SOLUTIONS 3

(F1) there exists σ > 0 such that f(x, t) is a Carathéodory function on Ω× [−σ, σ]
and odd in t for all x ∈ Ω if t ∈ [−σ, σ],

(F2) f(x, t) = o(|t|) as t → 0.

Here we say f : Ω × R → R is a Carathéodory function on Ω × [−σ, σ] (or in
Ω×R respectively) if for almost all x ∈ Ω, the function t 7→ f(x, t) is continuous on
[−σ, σ] (in R), and for all t ∈ [−σ, σ] (t ∈ R) the function x 7→ f(x, t) is measurable
in Ω. Using the argument in [12], we can obtain the following result for the general
problem (1.2).

Theorem 1.4. Suppose 1 < q < 2 and f satisfies the conditions (F1) and (F2).
Assume further, b ∈ L∞(∂Ω) and satisfies the condition (B). Then (1.2) has in-
finitely many solutions (uk) ⊂ H1(Ω) for every λ > 0. Moreover I(uk) < 0 ,
I(uk) → 0 and ∥uk∥L∞(Ω) → 0 as k → ∞.

Remark 1.5. Thanks to the conditions on f(x, t), F (x, t) is well-defined if |t| is
small enough. Consequently I is well-defined for functions in H1(Ω)∩L∞(Ω) whose
L∞(Ω) norms are sufficiently small.

Remark 1.6. We need no restriction for λ > 0 to be sufficiently small for the
existence.

In view of Theorem 1.4, we obtain a conclusion for (1.1) including the supercrit-
ical case:

Corollary 1.7. Let 1 < q < 2 < p < ∞. We suppose a ∈ L∞(Ω), b ∈ L∞(∂Ω)
and further, b satisfies the condition (B). Then (1.1) has infinitely many solutions
(uk) ⊂ H1(Ω) for every λ > 0. Moreover I(uk) < 0, I(uk) → 0 and ∥uk∥L∞(Ω) → 0
as k → ∞.

This paper is organized as follows: In section 2, we give the proof of Theorem
1.1 for the subcritical case, i.e. p < 2∗. We use the variational method in [6]. By
careful reading of the proof in [6] and considering the conditions on the coefficients
a and b, we can get the result. Especially see the proof of Lemma 2.2. Next, in
section 3, we give the proof of Theorem 1.1 for the critical case, i.e. p = 2∗. As
we already say, the main difficulty arises in the proof of the PS conditions for F .
We shall show the proof of L2∗(Ω) convergence for the PS sequences. This is the
key of the proof of this section, see Lemma 3.1. Lastly in section 4, we consider the
general problem (1.2) and give the proof of Theorem 1.4. Here we use the argument
in [12].

As usual, we denote H1(Ω) as the Sobolev space consisted by the all functions
which belong to L2(Ω) and its first weak derivative also belong to L2(Ω). We write

its norm as ∥ · ∥H1(Ω) =
{∫

Ω

(
|∇ · |2 + (·)2

)} 1
2 . Note also that we denote H−1(Ω)

as the dual space of H1(Ω). We write the duality in H−1(Ω) and H1(Ω) as ⟨·, ·⟩
and the norm of H−1(Ω) is ∥ · ∥H−1(Ω) = supv∈H1(Ω),∥v∥H1(Ω)≤1 |⟨·, v⟩| .

2. The subcritical case. In this section we consider the subcritical case. Let
1 < q < 2 < p < 2∗. Here we use the variational method in [6] (see also [10]).
First of all, since in general, F is not bounded from below, we perform the appro-
priate truncation for the functional F . To do that, first notice that by the Sobolev
embedding and the trace theorem,

F(u) ≥ 1

2
∥u∥2H1(Ω) −

c1
p
∥u∥pH1(Ω) −

λc2
q

∥u∥qH1(Ω) = fλ(∥u∥H1(Ω))
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where fλ(x) := 1
2x

2 − c1
p x

p − λc2
q xq. Take Λ0 > 0 so small that max[0,∞) fλ is

positive for all 0 < λ < Λ0. Choose 0 < m < x0 < x1 < M so that f(m) < 0 <
f(x0) < f(x1) < f(M) where m and M are unique local minimum and maximum
points of f respectively. Now consider a cut off function τ ∈ C1(R) defined by

τ(ξ) =

{
1 if 0 ≤ ξ < x0,

0 if ξ > x1,

0 ≤ τ(ξ) ≤ 1 if x0 ≤ ξ ≤ x1,

and define the C1 functional on H1(Ω):

Φ(u) = τ(∥u∥H1(Ω)).

Finally we define the truncated functional:

F̃(u) =
1

2

∫
Ω

(
|∇u|2 + u2

)
dx− 1

p

∫
Ω

a(x)Φ(u)|u|pdx− λ

q

∫
∂Ω

b(x)|u|qdσ.

We can easily check that F̃ is well-defined and continuously Fréchet differentiable
on H1(Ω). Notice also that F̃ = F on some neighborhood of u satisfying F̃(u) < 0.

In addition observe that F̃(u) is even in u and F̃(0) = 0.
Now we can get the following lemma

Lemma 2.1. F̃ is bounded from below and satisfies the (PS)c condition if c < 0.

Proof. Let us first show that F̃ is bounded from below. In fact, by the definition
of Φ(u), if ∥u∥H1(Ω) < x1, 0 ≤ Φ(u) ≤ 1 and if ∥u∥H1(Ω) > x1, Φ(u) = 0. So
Φ(u)∥u∥pH1(Ω) ≤ xp

1. Hence by the Sobolev embedding and the trace theorem,

F̃(u) ≥ 1

2
∥u∥2H1(Ω) −

c1
p
Φ(u)∥u∥pH1(Ω) −

λc2
q

∥u∥qH1(Ω)

≥ 1

2
∥u∥2H1(Ω) −

c1x
p
1

p
− λc2

q
∥u∥qH1(Ω).

Since q < 2, F̃ is bounded from below.
We next prove that F̃ satisfies the (PS)c condition if c < 0. To do that, let (uj)

be a (PS)c sequence for F̃ at level c < 0. By the property of F̃ , F̃(uj) = F(uj) for
large j since c < 0. Therefore (uj) is also a (PS)c sequence for F , i.e., F(uj) → c
and F ′(uj) → 0 in H−1(Ω). Now we claim that (uj) is bounded in H1(Ω). Actually

c+ 1 ≥ F(uj)−
1

p
⟨F ′(uj), uj⟩+

1

p
⟨F ′(uj), uj⟩

≥
(
1

2
− 1

p

)
∥uj∥pH1(Ω) − λ

(
1

q
− 1

p

)
b∞∥uj∥qH1(Ω) − ∥u∥H1(Ω)

for large j, where b∞ := ∥b∥L∞(∂Ω). Since 1 < q < 2 < p, (uj) is bounded in

H1(Ω). Therefore we can assume there exists u ∈ H1(Ω) such that uj ⇀ u weakly
in H1(Ω). Moreover noting that p < 2∗ and q < 2, by the Rellich Theorem, we can
also assume

uj → u in Lp(Ω),

uj → u in Lq(∂Ω).
(2.1)

Then we obtain

|uj |p−2uj → |u|p−2u in H−1(Ω),

|uj |q−2uj → |u|q−2u in H−1(Ω).
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By Lax-Milgram Theorem (or Lemma 2.1 in [6]), we conclude

uj → u in H1(Ω).

This completes the proof.

The condition (B) on the indefinite function b in Theorem 1.1 is essential for the
following lemma:

Lemma 2.2. Suppose a ∈ L∞(Ω), b ∈ L∞(∂Ω) and further, b satisfies the condi-
tion (B). Then for every n ∈ N, there exist an n-dimensional subspace En ⊂ H1(Ω),
and positive constants ρ > 0 and ε > 0 such that

F̃(u) ≤ −ε

for all u ∈ En with ∥u∥H1(Ω) = ρ.

Proof. From the condition (B) on b ∈ L∞(∂Ω), for every n ∈ N, we can construct
an n-dimensional subspace En in {u ∈ C∞(Ω) | u ≡ 0 on ∂Ω \ D} such that if
u ∈ En, then u ≡ 0 on ∂Ω if and only if u = 0. If we take a nonzero function
u ∈ En with ∥u∥H1(Ω) = ρ, by the Sobolev embedding, we get

F̃(u) =
1

2

∫
Ω

(
|∇u|2 + u2

)
dx− 1

p

∫
Ω

a(x)Φ(u)|u|pdx− λ

q

∫
∂Ω∩D

b(x)|u|qdσ

≤ 1

2
ρ2 +

a∞c3
p

ρp − λδ

q

∫
∂Ω

|u|qdσ,

where a∞ := ∥a∥L∞(Ω). Since En is finite dimensional, the norms ∥ · ∥H1(Ω) and
∥ · ∥Lq(∂Ω) are equivalent. So we obtain

F̃(u) ≤ 1

2
ρ2 +

a∞c3
p

ρp − λδc4
q

ρq.

Since q < 2 < p, there exist ρ > 0 and ε > 0 such that

F̃(u) ≤ −ε

for all u ∈ En with ∥u∥H1(Ω) = ρ.

Now we introduce a topological tool, the “genus”([8],[4], see also [10]). we give
the following definition according to [10]:

Consider the class

Σ = {A ⊂ H1(Ω) \ {0} | A is closed, A = −A}.

Then we define the genus, γ : Σ → {0} ∪ N ∪ {∞} so that

γ(A) = min{k ∈ N | there exists an odd map ϕ ∈ C(A,Rk \ {0})},

or if there exists no such a minimum, γ(A) = ∞. In addition we define γ(∅) = 0.
Consequently we get the following properties of the genus([10]). Let A,B ∈ Σ then

1. Normalization: If x ̸= 0, γ({x} ∪ {−x}) = 1.
2. Mapping property: If there exists an odd map f ∈ C(A,B) then γ(A) ≤ γ(B).
3. Monotonicity property: If A ⊂ B, γ(A) ≤ γ(B).
4. Subadditivity: γ(A ∪B) ≤ γ(A) + γ(B).
5. Continuity property: If A is compact, then γ(A) < ∞ and there exists d > 0

such that Nd = {u ∈ H1(Ω) | dist(u,A) ≤ d} ∈ Σ and γ(Nd) = γ(A).

Here we prove the following lemma.
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Lemma 2.3. Let n ∈ N. Assume there exist an n-dimensional subspace En ⊂
H1(Ω) and positive constants ρ > 0 and ε > 0 such that F̃(u) ≤ −ε for all u ∈ En

with ∥u∥H1(Ω) = ρ. Then

γ(F̃−ε) ≥ n.

where F̃c = {u ∈ H1(Ω) | F̃(u) ≤ c}.

Proof. We define Sρ,n = {u ∈ En | ∥u∥H1(Ω) = ρ}. From the assumption, we have

Sρ,n ⊂ F̃−ε. From the monotonicity of the genus, we conclude that

γ(F̃−ε) ≥ γ(Sρ,n) = n.

Finally we prove the main theorem of this section.

Theorem 2.4. Let

Σ = {A ⊂ H1(Ω) \ {0} | A is closed, A = −A},
Σk = {A ∈ Σ | γ(A) ≥ k},

and put

ck = inf
A∈Σk

sup
u∈A

F̃(u),

then ck is a negative critical value of F . Moreover if c := ck = ck+1 = · · · = ck+r

γ(Kc) ≥ r + 1

where Kc = {u ∈ H1(Ω) | F̃ = c, F̃ ′(u) = 0}.

Proof. We first prove that ck is negative. From Lemma 2.2 and 2.3, there exists
ε > 0 such that γ(F̃−ε) ≥ k. Since F̃ is even and continuous, F̃−ε ∈ Σk. Hence
ck ≤ −ε < 0. In addition from lemma 2.1, ck > −∞.

To complete the proof, let us assume that c := ck = ck+1 = · · · = ck+r. As F̃ is

C1, Kc is closed. Since F̃(u) is even in u, Kc is symmetric. In addition as F̃ (0) = 0
and c < 0, 0 ̸∈ Kc. Hence Kc ∈ Σ. Now we assume γ(Kc) ≤ r to the contrary. As

F̃ satisfies (PS)c condition, Kc is compact. Hence from the continuity of the genus,
there exists d > 0 such that Nd(Kc) ∈ Σk and γ(Nd(Kc)) ≤ r where Nd(Kc) =
{u ∈ H1(Ω) | dist(u,Kc) ≤ d}. Now we use the deformation theorem([10]). From
that, there exists an odd homeomorphism η(1, ·) : H1(Ω) → H1(Ω) such that

η(1, F̃c+ ε
2 \Nd(Kc)) ⊂ F̃c− ε

2 .

By the definition of ck+r, there exists A ∈ Σk such that A ⊂ F̃c+ ε
2 . So we have

η(1, A \Nd(Kc)) ⊂ F̃c− ε
2 . (2.2)

On the other hand, from the subadditivity of the genus,

γ(A \Nd(Kc)) ≥ γ(A)− γ(Nd(Kc))

≥ k.

Noting that η(1, ·) is an odd homeomorphism, we have η(1, A \Nd(Kc)) ∈ Σ. More-
over considering the mapping property of the genus, we get

γ(η(1, A \Nd(Kc))) ≥ γ(A \Nd(Kc))

≥ k.
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Then η(1, A \Nd(Kc)) ∈ Σk and we conclude that

sup
u∈η(1,A\Nd(Kc))

F̃(u) ≥ c = ck,

which contradicts (2.2). Therefore we have γ(Kc) ≥ r + 1. Hence, for every k ∈ N,
Kck ̸= ∅. Let uk be a critical point of F̃ with F̃(uk) = ck. Since ck < 0, F̃ = F on
some neighborhood of uk. Consequently uk is a critical point of F . This finishes
the proof.

Now we can prove the following corollary using Theorem 2.4 and the deformation
theorem. The argument is similar to the above one. Hence we leave it for readers.

Corollary 2.5. Let ck be as defined in Theorem 2.4. Then ck → 0.

We give the proof of Theorem 1.1 for the subcritical case.

Proof of Theorem 1.1 for the subcritical case. We suppose a ∈ L∞(Ω), b ∈ L∞(∂Ω)
and further, b satisfies the condition (B). Choose Λ = Λ0 and take 0 < λ < Λ as
in the first paragraph of this section. Then by Theorem 2.4, we have the negative
critical values c1, c2, · · · of F . In addition from Corollary 2.5 , ck → 0 as k → ∞.
Hence we conclude that the set {ck | k ∈ N} has infinitely many distinct elements.
This completes the proof.

3. The critical case. In this section we prove Theorem 1.1 for the critical case,
i.e. p = 2∗. Let 1 < q < 2 and consider the functional:

F(u) =
1

2

∫
Ω

(
|∇u|2 + u2

)
dx− 1

2∗

∫
Ω

a(x)|u|2
∗
dx− λ

q

∫
∂Ω

b(x)|u|qdσ.

The organization of the proof is same with that for the subcritical case if once
we ensure the strong L2∗(Ω) convergence for PS sequences. We begin with the
following lemma.

Lemma 3.1. Assume a ∈ C(Ω) and b ∈ L∞(∂Ω). Let c < 0 and (uj) ⊂ H1(Ω) be
a (PS)c sequence for F . Then there exists Λ1 > 0 such that for every 0 < λ < Λ1,
(uj) strongly converges in L2∗(Ω) up to subsequences.

Proof. By the same argument in the proof of Lemma 2.1, we ensure that (uj) is
bounded in H1(Ω). Hence we can assume there exists u ∈ H1(Ω) such that uj ⇀ u
weakly in H1(Ω). Further, by the Rellich Theorem, we can also assume that

uj → u in L2(Ω),

uj → u in Lq(∂Ω),

uj → u a.e. on Ω.

(3.1)

We now apply the concentration compactness lemma by Lions [9], see also [11]. By
the result, we can assume there exist some at most countable set J , distinct points
(xk)k∈J ⊂ Ω and positive constants (νk)k∈J , (µk)k∈J such that

|∇uj |2 ⇀ dµ ≥ |∇u|2 +
∑
k∈J

µkδxk
,

|uj |2
∗
⇀ dν = |u|2

∗
+
∑
k∈J

νkδxk

(3.2)
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in the measure sense, where δx denotes the Dirac measure with mass 1 concentrated
at x ∈ RN . In addition by the result in [6] (Lemma 7.3),

µk ≥ Sν
2
2∗
k if xk ∈ Ω,

µk ≥ S

2
2
N

ν
2
2∗
k if xk ∈ ∂Ω,

(3.3)

where

S = inf
u∈H1

0 (Ω)\{0}

∫
Ω
|∇u|2dx(∫

Ω
|u|2∗dx

) 2
2∗

.

We show there exists Λ1 > 0 such that J = ∅ for all 0 < λ < Λ1 if c < 0. To
do that, assume c < 0 and take 0 < λ < Λ1 where Λ1 > 0 is determined later.
Now we suppose J ̸= ∅ to the contrary. Fix k ∈ J and introduce a cut off function
ϕ ∈ C∞(RN ) such that

ϕ(x) =

{
1 if x ∈ B(xk, ε),

0 if x ∈ B(xk, 2ε)
c,

|∇ϕ| ≤ 2

ε
.

Since (uj) is bounded in H1(Ω), ujϕ is also bounded in H1(Ω). In addition, as
F ′(uj) → 0 in H−1(Ω), we have

⟨F ′(uj), ujϕ⟩ → 0.

Hence recalling (3.2) and noting a ∈ C(Ω), we get

0 = lim
j→∞

⟨F ′(uj), ujϕ⟩

= lim
j→∞

{∫
Ω

∇uj · ∇(ujϕ)dx+

∫
Ω

u2
jϕdx−

∫
Ω

a(x)|uj |2
∗
ϕdx− λ

∫
∂Ω

b(x)|uj |qϕdσ
}

= lim
j→∞

∫
Ω

(∇uj · ∇ϕ)uj +

∫
Ω

ϕdµ+

∫
Ω

u2ϕdx−
∫
Ω

a(x)ϕdν − λ

∫
∂Ω

b(x)|u|qϕdσ

(3.4)

where the third term and the fifth term in the last inequality are obtained by (3.1)
and Vitali’s convergence theorem. Here,

0 ≤ lim
j→∞

∣∣∣∣∫
Ω

(∇uj · ∇ϕ)uj

∣∣∣∣
≤ lim

j→∞

(∫
Ω∩B(xk,2ε)

|∇uj |2dx

) 1
2
(∫

Ω∩B(xk,2ε)

u2|∇ϕ|2dx

) 1
2

≤ C1

(∫
Ω∩B(xk,2ε)

|u|2
∗
dx

) 1
2∗
(∫

Ω∩B(xk,2ε)

|∇ϕ|N
) 1

N

≤ C2

(∫
Ω∩B(xk,2ε)

|u|2
∗
dx

) 1
2∗

→ 0 as ε → 0,

where for the second inequality we use the Schwartz inequality and (3.1), for the
third inequality we use the fact that (uj) is bounded inH1(Ω) and Hölder inequality,
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and for the forth inequality we use the fact that |∇ϕ| ≤ 2/ε. Taking ε → 0 for (3.4),
we obtain

µk − a(xk)νk ≤ 0. (3.5)

Since µk and νk are positive, we can assume a(xk) > 0. Considering (3.3) and (3.5)
together, we have

νk ≥ 1

2

(
S

a(xk)

)N
2

.

So using this inequality and (3.2) again,

c = lim
j→∞

{
F(uj)−

1

2
⟨F ′(uj), uj⟩

}
= lim

j→∞

{
1

N

∫
Ω

a(x)|uj |2
∗
dx− λ

(
1

q
− 1

2

)∫
∂Ω

b(x)|uj |qdσ
}

≥ 1

N

∫
Ω

a(x)|u|2
∗
dx+

a(xk)

2

(
S

a(xk)

)N
2

− λ

(
1

q
− 1

2

)∫
∂Ω

b(x)|u|qdσ,

(3.6)

where last inequality is obtained by the assumption a(xk) > 0. Now since u is a
critical point of F , we have ⟨F ′(u), u⟩/N = 0 and then

1

N

∫
Ω

a(x)|u|2
∗
dx =

1

N
∥u∥2H1(Ω) −

1

N

∫
∂Ω

b(x)|u|qdσ.

Substituting this equality into (3.6), noting 1 < q < 2 < q∗ = 2(N − 1)/(N − 2)
and using the trace theorem, we have

c ≥ a(xk)

2

(
S

a(xk)

)N
2

+
1

N
∥u∥2H1(Ω) − λ

(
1

q
+

1

N
− 1

2

)
C3∥u∥qH1(Ω).

If we consider

g(x) =
1

N
x2 − λ

(
1

q
+

1

N
− 1

2

)
C3x

q

for x > 0, we have

g(x) ≥ −λ
2

2−q

{
C3

(
1

q
+

1

N
− 1

2

)} 2
2−q
(
qN

2

) q
2−q (

1− q

2

)
=: −λ

2
2−q K.

Hence noting N
2 − 1 > 0 and above inequality, we get

c ≥
maxx∈Ω a(x)

2

(
S

maxx∈Ω a(x)

)N
2

− λ
2

2−q K

Now we can take Λ1 > 0 so small that the right-hand side of the above inequality
is greater than 0 for all 0 < λ < Λ1. This leads us to the contradiction since c < 0.
Note that we can choose Λ1 > 0 so that it does not depend on our choice of k ∈ N.
Hence we conclude J = ∅ for all 0 < λ < Λ1 if c < 0. Consequently by (3.2) again,
we have ∫

Ω

|uj |2
∗
dx →

∫
Ω

|u|2
∗
dx.

Using the Vitali’s convergence theorem, we conclude that

uj → u in L2∗(Ω).

This completes the proof.
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This lemma enable us to ensure (PS)c conditions for F . Now we can prove
Theorem 1.1 for the critical case by the same argument in section 2.

Proof of Theorem 1.1 for the critical case. We suppose a ∈ C(Ω), b ∈ L∞(∂Ω)
and further, b satisfies the condition (B). As we already say, the organization of
the proof for the critical case is same with that for the subcritical case. So we give
only a comment for the choice of Λ > 0. To perform the appropriate truncation
for the functional F , we first choose Λ0 > 0 by the same argument with that in
section 2. Next we take Λ1 > 0 from Lemma 3.1. Then it is enough to select
Λ = min{Λ0,Λ1}.

4. A general case. In this section, we consider a general case, i.e. problem (1.2).
Here we note the associated functional:

I(u) =
1

2

∫
Ω

(
|∇u|2 + u2dx

)
−
∫
Ω

F (x, u)dx−
∫
∂Ω

b(x)|u|qdσ,

where F (x, t) =
∫ t

0
f(x, s)ds. Let 1 < q < 2 as previous sections. Using the

argument in [12], we shall prove Theorem 1.4. A similar result for a Dirichlet
boundary value problem is found in [7]. To the beginning we put some properties

for a modified function f̃(x, u):

(F̃1) |F̃ (x, u)| ≤ 1
4u

2 where F̃ (x, t) =
∫ t

0
f̃(x, s)ds,

(F̃2) there exists 0 < θ < (2− q)/2 such that f̃(x, u)u− qF̃ (u) ≤ θu2,

(F̃3) there exists 0 < a < σ
2 such that f̃(x, u) = f(x, u) if |u| < a.

Now we construct the modified function.

Lemma 4.1. Let f : Ω × R 7→ R satisfy the conditions (F1) and (F2) i.e.

(F1) there exists σ > 0 such that f(x, t) is a Carathéodory function on Ω × [−σ, σ]
and odd in t for all x ∈ Ω if t ∈ [−σ, σ],

(F2) f(x, t) = o(|t|) as t → 0.

Then there exists a Carathéodory function f̃(x, t) in Ω × R which is odd in t and

satisfies the conditions (F̃1), (F̃2) and (F̃3).

Proof. For fixed 0 < θ < (2 − q)/2, take 0 < ε < θ
14 . From (F2) there exists

0 < a < σ
2 such that |f(x, u)u| ≤ εu2 and |F (x, u)| ≤ εu2 if |u| ≤ 2a. Now define

a cut off function ρ ∈ C1(R) such that ρ(t) = 1 if |t| ≤ a, ρ(t) = 0 if |t| > 2a and
0 ≤ ρ ≤ 1 otherwise. Further, we can assume |ρ′(t)| ≤ 2/a. Firstly, we define

F̃ (x, u) = ρ(u)F (x, u) + (1− ρ(u))F∞(u)

where F∞(u) = βu2 for some 0 < β < 1
16θ. Then we have

|F̃ (x, u)| ≤ 1

4
u2. (4.1)

Indeed, if |u| ≤ 2a, we get

|F̃ (x, u)| ≤ |F (x, u)|+ F∞(x, u)

≤ (ε+ β)u2

≤ 1

4
u2,
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and if |u| > 2a, we obtain

|F̃ (x, u)| ≤ F∞(x, u)

≤ 1

4
u2.

Next we put

f̃(x, u) =
∂F̃

∂u
(x, u).

Then we get

f̃(x, u) = ρ′(u)F (x, u) + ρ(u)f(x, u)− ρ′(u)F∞(u) + (1− ρ(u))F ′
∞(u).

By (F1), clearly f̃(x, u) is a Carathéodory function in Ω × R, odd in u and

f(x, u) = f̃(x, u) if |u| < a. (4.2)

In addition, we put

f̃(x, u)u− qF̃ (x, u) = (ρ′(u)u− qρ(u))F (x, u) + ρ(u)f(x, u)u

− (ρ′(u)u+ q(1− ρ(u)))F∞(u) + (1− ρ(u))F ′
∞(u)u.

Here we claim

f̃(x, u)− qF̃ (x, u) ≤ θu2. (4.3)

In fact, if |u| ≤ 2a we have

f̃(x, u)− qF̃ (x, u) ≤ (7ε+ 8β)u2,

≤ θu2,

and if |u| > 2a we get

f̃(x, u)− qF̃ (x, u) ≤ 4βu2,

≤ θu2.

(4.1), (4.2) and (4.3) conclude the proof.

From now on, let f̃(x, u) be the one constructed in Lemma 4.1. We consider the
modified problem: {

−∆u+ u = f̃(x, u) in Ω,
∂u
∂ν = λb(x)|u|q−2u on ∂Ω,

(4.4)

and the associated functional:

Ĩ(u) =
1

2

∫
Ω

(
|∇u|2 + u2

)
dx−

∫
Ω

F̃ (x, u)dx− λ

∫
∂Ω

b(x)|u|qdσ,

where F̃ (x, t) =
∫ t

0
f̃(x, s)ds. Noting the condition (F̃1), we can easily check that

Ĩ is well-defined on H1(Ω) and continuously Frechét differentiable on that space.
Next, we show an important property of the modified functional.

Lemma 4.2. < Ĩ ′(u, u) >= 0 and Ĩ(u) = 0 if and only if u = 0.

Proof. Suppose < Ĩ ′(u), u >= 0 and Ĩ(u) = 0. Then we have

0 =< Ĩ ′(u), u >

=

∫
Ω

(
|∇u|2 + u2

)
dx− λ

∫
∂Ω

b(x)|u|qdσ −
∫
Ω

f̃(x, u)udx,
(4.5)
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and

0 = qI(u)

=
q

2

∫
Ω

(
|∇u|2 + u2

)
dx− λ

∫
∂Ω

b(x)|u|qdσ − q

∫
Ω

f̃(x, u)udx.
(4.6)

Substituting (4.6) from (4.5) and noting the condition (F̃2), we get(
2− q

2

)
∥u∥2H1(Ω) =

∫
Ω

(
f̃(x, u)− qF̃ (x, u)

)
dx

≤ θ∥u∥2H1(Ω).

Hence u = 0.

Considering the oddness of f̃(x, u) and the condition (F̃1) on f̃(x, u), we can

check the following properties of Ĩ:

1. Ĩ(u) is even in u,

2. Ĩ(0) = 0,

3. Ĩ is bounded from below,
4. Ĩ satisfies (PS)c conditions for c ≤ 0,
5. for every n ∈ N, there exist an n-dimensional subspace En ⊂ H1(Ω) and

positive constants ρ > 0 and ε > 0 such that Ĩ(u) ≤ −ε for all u ∈ En with
∥u∥H1(Ω) = ρ.

Most part of the proof is analogous to the one in section 2. So we leave it to
readers. The above properties of Ĩ are enough to get the existence of infinitely
many solutions {uk} ⊂ H1(Ω) for (1.2) with Ĩ(uk) < 0 and Ĩ(uk) → 0 as k → ∞
as in section 2. Finally we come to the proof of Theorem 1.4.

The proof of Theorem 1.4. First assume b ∈ L∞(∂Ω) and satisfies the condition

(B). Since Ĩ(uk) → 0 and Ĩ ′(uk) = 0, the sequence of solutions {uk} is (PS)0
sequence for Ĩ. Then by the (PS)0 condition for Ĩ, we can assume uk converges
to some function u ∈ H1(Ω). We claim u = 0. In fact, from the continuity of

Ĩ, Ĩ(u) = 0. Hence by Lemma 4.2, u = 0. Considering a priori estimate for
the weak solutions for (4.4) (see [6] and references therein), we get for all β ≥ 1,
uk ∈ W 1,β(Ω) and uk → 0 in W 1,β(Ω). Consequently, by the Morrey inequality,
we get ∥uk∥L∞(Ω) ≤ a for large k ∈ N. Hence for each large k ∈ N, recalling the

condition (F̃3), we conclude that uk is a weak solution of (1.1). This completes the
proof.
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