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Abstract: We study the semilinear problem with the boundary reaction

—Au+u=0 inQ, u _ Af(u) on 0f,
ov

where Q C RY, N > 2, is a smooth bounded domain, f : [0, +00) — (0, +00)
is a smooth, strictly positive, convex, increasing function with superlinear at
+00, and A > 0 is a parameter. It is known that there exists an extremal
parameter A* > 0 such that a classical minimal solution exists for A < \*,
and there is no solution for A > A*. Moreover there is a unique weak solution
u* corresponding to the parameter A = A\*. In this paper, we continue to
study the spectral properties of u* and show a phenomenon of continuum
spectrum for the corresponding linearized eigenvalue problem.
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1 Introduction

In this paper, we consider the boundary value problem with the boundary
reaction:

0
—Au+u=0 1inQ, a—u:)\f(u) on 0f2 (1.1)
v
where A > 0 and Q C R, N > 2 is a smooth bounded domain. Throughout
the paper, we assume

f:10,+00) — (0,400) is smooth, convex, increasing, f(0) >0,  (1.2)
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and superlinear at +o00 in the sense that

lim () = +o00. (1.3)

t—+oco

Then maximum principle implies that solutions are positive on €.
It is known that there exists an extremal parameter A\* € (0, 0o) such that

(i) for every A € (0,A%), (1.1), has a positive, classical, minimal solution
uy € C%(Q) which is strictly stable in the sense that

/(\V(p|2 + @B dr > A f(uy)p?ds, (1.4)
Q o0

for every ¢ € C1(Q2), ¢ # 0,

(ii) for A = A\*, the pointwise limit

u*(x) = /1\1&1 ux(x), x €, (1.5)

becomes a weak solution of (1.1)yx,
(iii) for A > \*, there exists no solution of (1.1),, even in the weak sense.

Here, we call a function u = (u1,us) € L*(Q) x LY(09) a weak solution to
(1.1)y if f(ug) € L*(092) and

/Q(—AC + Quydx = /BQ()\f(ug)C — %ug)dsz (1.6)

holds for any ¢ € C?(2). The statement (ii) says, under the assumption
(1.3), u* = (u*|q,u*|sq) is a weak solution in the sense above. If a weak
solution u to (1.1) in the sense above satisfies v € W14(Q), then u; = ulq
and us = ulgn where ulpg € Wlf%’q(éQ) C L%@Q) is the usual trace
of W4 function u on 9. For the facts (ii), (iii), we refer the reader to [7].
In the following, we call u* the eztremal solution of (1.1). In [7], the author
obtained several properties such as regularity and uniqueness of the extremal
solution u*. This paper is a sequel to [7]. For a well-studied problem

—Au=Af(u) inQ, u=0 ondQ



where f satisfies (1.2), (1.3), see [1], [2], [3], [4], [5], [6], and the references
therein.

For A € (0,\*), we denote by p(Af'(uy)) the first eigenvalue of the
following eigenvalue problem

—Ap+¢=0 inQQ, g—f:)\f’(m)go—l—/up on 0f).

By the variational characterization, we have

\V4 2 2 dr — PN 2d .
O ) = e Ae (Ve dr oo AP ().
pEC! ()20 Joq ©2dss

Note that g (Af'(uy)) > 0 since the minimal solution u, is strictly stable,
and decreases as A T A*. Denote

1 =1 ! . 1.
p = lim (A (ua)) (1.7)
If u* is classical, it must hold that uf = 0 by considering (iii) above. However
if u* = (u*q,u*aq) & L®(Q) x L*(0NQ), it could be happen that uf is
positive. In [7], we proved that even when pj > 0, there exists a nonnegative
weak solution of
P 2 BNy
—-Ap+p=0 inf, a——/\f(u)goJr/w on 0N (1.8)
v
for 4 = 0. This is a phenomenon of the existence of (L'-) zero eigenvalue
for the eigenvalue problem (1.8). Main purpose of this paper is to prove the
following result, which might be seen as a phenomenon of the existence of
(L*-) continuum spectrum for the eigenvalue problem (1.8).

Theorem 1 Let i be defined by (1.7). Then for any u € [0,
a weak solution ¢ to (1.8), p € WH(Q) (1< qg< £25), ¢ >
that f'(u*)p|oq € L'(00) and

wy), there exists
0, in the sense

Jacs o= [ {00 )elon + o) ¢~ 5o elon b s

for all { € C*(Q). Here p|oq is the usual trace of ¢ € W(Q).



2 Proof of Theorem 1

In this section, we prove Theorem 1. We need the uniqueness theorem from
[7], which is an analogue of the result by Y. Martel [6].

Theorem 2 ([7] Theorem 14) Assume (1.1)x+ has a weak supersolution w =
(wy,wy) € LY(Q) x LY (09), in the sense that f(wq) € L' (0Q) and

/Q(_AC + Quidr > /BQ {)\*f(ub)@ — %U&} ds,

for any ¢ € C*(Q), ¢ > 0 on Q. Then (wi,ws) = (u*|q, u*|aq), where u* is
defined by (1.5).

The following is Lemma 17 in [7].
Lemma 3 Let {u,} C C%(Q) be a sequence of functions such that
Oy,
ov

Assume [[uy||L100) < C for some C > 0 independent of n. Then there exists
a subsequence (denoted again by u,) and u € WH4(Q) such that

>0 onofd.

—Au, +u, =0 inQ,

u, —u  weakly in W(Q), 1 < q<

N-—-1’
: N -1
un, — u  strongly in LP(052), 1§p<N 5

N-1
Moreover, for any 1 < p < 3=,

only on p such that

there exists a constant C, > 0 depending

|tn|zra0) < CpllunlLr(00)
holds true for any n € N.

Now, we prove Theorem 1.

Proof.
We follow the argument by X. Cabré and Y. Martel [3].

Step 1. For n € N, define a sequence of functions f,, as

o) = f(s) if s < n,
uls) {f(n)—f—f’(n)(s—n) if s > n,
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and consider the approximated problem

ou
ov
Denote \* = sup{\ > 0 : (2.1), admits a minimal solution € C%(Q)}, and
let u, » € C?(£2) be the classical minimal solution to (2.1)y for A < A\%. Since
fo < fag1 < f, we have upy < Uppn < uy and A< Ay < A for any
n € N. Define

—Au+u=0 in, = Afn(u) on 0. (2.1)

(A fy (unn)) = inf Jo IVl + ¢%) do — [o0 Ao (unp)¢dss

L (2.2)
pECT(Q),p20 Joq ©2dse

Note that g1 (Af)(un)) is continuous with respect to A by (2.2). Take 0 <
p < i where p is defined by (1.7). Since wuy, »: is classical (which is because
[ is asymptotic linear) and there is no classical solution of (2.1), for A > \*,
the linearized problem around (A, uy x:) must have zero eigenvalue. Thus

(X fr (g ) = 0 < < i < iy (N (i pe)),

here we have used the fact that f;, < f’ and u,, < wuy, which implies
pr(Af (wy)) < pi(Af)(unn)). By the Intermediate Value Theorem, there
exists A\, € [A*, \] such that

11 (A fr (Unn,)) = 1,
which in turn implies there exists ¢, > 0 with |, 50 Pndse = 1 such that

Opn

—Ap, +v, =0 inQ,
ov

= Mo (Unx, ) on + ppn  on 9. (2.3)

Recall also that u, ), satisfies

ouy,
—Atpr, +Upy, =0 inQ, 5 2 — A fu(tnn,)  on OS2 (2.4)
1%

We claim there exists ng € N such that
|tn,llLia0) < € for any n > n. (2.5)

Indeed, let 11 be the first eigenfunction of the Steklov type eigenvalue prob-
lem
o

—A 41 =0 inQ, 8; = ki1 on O (2.6)



with the first eigenvalue x;, which is normalized as |, o Y1ds, = 1. Multiply-
ing (2.4) by ¢ and using Jensen’s inequality for f,, we obtain

K1 %Un,xn dsy = \p fn(un,An)wldé’x
o0 o0

2 )\nfn ( wlun,)\ndsx) 2 )\*fn ( wlun,)\ndsx) .

o o0

Put a, = [5, Y1tn,ds,. Then we have

o (2) e o

1

for some n € N
'(n) > (%) for n

Assume the contrary that f,(a,) = f'(n)(a, —n) + f(n
sufficiently large. Then, since a,, > n and f(n) > (ﬂ) n,
sufficiently large by (1.2) and (1.3), we have, by (2.7),

S~ —

o= (2] otow = () 0000 =) + 7000}

1
> a, —N+n=ay,

which is a contradiction. Thus we conclude there exists ng € N such that
fulan) = f(ay) for any n > ng. Again, this and (2.7) implies a,, > (2—1> flan)
for any n > ng. Now, by the assumption f, we have C' > 0 such that
f(s) > 2;15 — C holds for any s > 0. From this and the former estimate, we

have a,, < (2—1> C' for n > ng. This implies the claim (2.5).

Step 2. By (2.5), we have ||un,|[z100) < C for some C' independent of
n. Also recall ||¢n||L1a0) = 1 for a solution ¢, of (2.3). Thus we can apply
Lemma 3, which yields the existence of w, ¢ € L}(2), ¢ > 0 a.e. such that

Upr, = W, Pn — @ weakly in WH(Q),
Up oy, — W, @n — @ strongly in LP(0Q2) and a.e. on OS2 (2.8)

for any 1 < ¢ < 5 and 1 < p < £=5. Since [, pds, = 1, we sce ¢ # 0 on
o).

In the following, we prove that A\, | A* as n — oo and w = u*. We
will show that w € W19(Q) is a weak supersolution in the sense of Theorem
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2. Then the conclusion is obtained by Theorem 2. To prove that w is a
weak supersolution, put A = inf,,cy A,,. Since A\, > \*, we have A > \*. We
observe that

0
/ (_AC + C) un,Andx = )\n fn(un,/\n)gdsx - _Cun,)\ndsx
Q o0 o0 OV

ZX fn un, n Cdsa:_
aQ (tn 30 a OV

holds for all ¢ € C%(Q2), ¢ > 0. Using the fact that u,, — w in L(Q),
L*(09) respectively and Fatou’s lemma, we have

_ 5 S
/Q( AC + ) wdz > )\/m Fw)Cds, /m % s,

* aC 2.0y
> A ., f(w){ds, — /89 %wdsx, V¢ e C*(92), ¢ > 0.

This implies also f(w) € L'(99Q) if we take ¢ = 1. Thus, we conclude that
w is a weak supersolution to (1.1)

Step 3. Let ¢,, ¢ be as in Step 2. We claim that
M fh(Unn, )on — N f'(u)p  strongly in L'(99) (2.9)

as n — oo. For the proof, we invoke Vitali’s Convergence Theorem. First,
by (2.8), we see

An o (tn o, (2))on(x) = A" f'(u*(2))p(x)  ae. x € 00

for a subsequence. Next, we prove the uniformly absolute continuous prop-
erty of the sequence {\, f) (unx,)¥n}tnen. For that purpose, let A C 92 and
e > 0 be given arbitrary. Since f, is convex, we have

o () 2 ol () + (o) (A @) 210

€ 9

a.e. x € 0%, here x4 is the characteristic function of A. By (2.3) and (2.4),
it holds that

)\n fn(un,kn)gpndszr = )\n fyll(un,)\n)un,)\n@ndsz + M/ un,AnSOndS:ﬂ
o0 o0 o0N

> M [ fu(unp ) un, Pndss. (2.11)
o0



Also easy consideration shows that

{8.() - 10} ouo < 1 (2 ) ealohate) aeonon. 212)

Thus by (2.10), (2.11) and (2.12), we have

( > Onds, + Ir (Un ) U, PndSe — Fulttnr,)ndsq
0N 99
(%21) ouds:
()‘Nﬂ%@ﬁéﬁ@%m
( ) OnXads, + f(0)

fqlm (um)\n) X_Agpndsx
aQ €

<[,
/f
- [ {
/f
Sf(ﬁLMMWAM@»+ﬂm

< (Jf< ) |A|p + £(0) (2.13)

3 |A| denotes the (N — 1) dimensional measure
of A C 09 and p -£7. In (2.13) we have used [|¢n[rra0) < C for some
C' > 0 independent of n by (2.8). Define

/(0) >
i) = ( .
= Gme
Then for any ¢ > 0, we obtain fA (Una, )onds, < 2f(0)e if A C 09
satisfies that |A| < 6( ) by (2.13). ThlS implies the uniform absolutely
continuity of the sequence {\,f/ (un,)@n}nen. Also for any e > 0, if we

take E C 0N such that [0Q \ E| < d(e) where 6(¢) is as above, we obtain
that |, 90\E A S (Unn, )pnds,; < Ce. This implies the uniform integrability of

{\ufl (unr, ) pntnen. Therefore, Vitali’s Convergence Theorem assures the
claim (2.9).
By (2.9), we pass to the limit n — oo in the weak formulation of (2.3):

[ B ute = [ Oufilinn) +u)ent = Soudse, WG € CHQ)
Q o0 v
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and conclude that ¢ is a weak solution of

9]
—Ap+¢9=0 inQ, 8_;0 = XN f(u)p+ pp on ON.

Recall ¢ € WhH(Q) forany 1 < ¢ < % The proof of Theorem 1 is finished.
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