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Abstract: We study the semilinear problem with the boundary reaction

−∆u+ u = 0 in Ω,
∂u

∂ν
= λf(u) on ∂Ω,

where Ω ⊂ RN , N ≥ 2, is a smooth bounded domain, f : [0,+∞) → (0,+∞)
is a smooth, strictly positive, convex, increasing function with superlinear at
+∞, and λ > 0 is a parameter. It is known that there exists an extremal
parameter λ∗ > 0 such that a classical minimal solution exists for λ < λ∗,
and there is no solution for λ > λ∗. Moreover there is a unique weak solution
u∗ corresponding to the parameter λ = λ∗. In this paper, we continue to
study the spectral properties of u∗ and show a phenomenon of continuum
spectrum for the corresponding linearized eigenvalue problem.
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1 Introduction

In this paper, we consider the boundary value problem with the boundary
reaction:

−∆u+ u = 0 in Ω,
∂u

∂ν
= λf(u) on ∂Ω (1.1)

where λ > 0 and Ω ⊂ RN , N ≥ 2 is a smooth bounded domain. Throughout
the paper, we assume

f : [0,+∞) → (0,+∞) is smooth, convex, increasing, f(0) > 0, (1.2)
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and superlinear at +∞ in the sense that

lim
t→+∞

f(t)

t
= +∞. (1.3)

Then maximum principle implies that solutions are positive on Ω.
It is known that there exists an extremal parameter λ∗ ∈ (0,∞) such that

(i) for every λ ∈ (0, λ∗), (1.1)λ has a positive, classical, minimal solution
uλ ∈ C2(Ω) which is strictly stable in the sense that∫

Ω

(|∇φ|2 + φ2)dx > λ

∫
∂Ω

f ′(uλ)φ
2dsx (1.4)

for every φ ∈ C1(Ω), φ ̸≡ 0,

(ii) for λ = λ∗, the pointwise limit

u∗(x) = lim
λ↑λ∗

uλ(x), x ∈ Ω, (1.5)

becomes a weak solution of (1.1)λ∗ ,

(iii) for λ > λ∗, there exists no solution of (1.1)λ, even in the weak sense.

Here, we call a function u = (u1, u2) ∈ L1(Ω) × L1(∂Ω) a weak solution to
(1.1)λ if f(u2) ∈ L1(∂Ω) and∫

Ω

(−∆ζ + ζ)u1dx =

∫
∂Ω

(λf(u2)ζ −
∂ζ

∂ν
u2)dsx (1.6)

holds for any ζ ∈ C2(Ω). The statement (ii) says, under the assumption
(1.3), u∗ = (u∗|Ω, u∗|∂Ω) is a weak solution in the sense above. If a weak
solution u to (1.1) in the sense above satisfies u ∈ W 1,q(Ω), then u1 = u|Ω
and u2 = u|∂Ω where u|∂Ω ∈ W 1− 1

q
,q(∂Ω) ⊂ L

(N−1)q
N−q (∂Ω) is the usual trace

of W 1,q function u on ∂Ω. For the facts (ii), (iii), we refer the reader to [7].
In the following, we call u∗ the extremal solution of (1.1). In [7], the author
obtained several properties such as regularity and uniqueness of the extremal
solution u∗. This paper is a sequel to [7]. For a well-studied problem

−∆u = λf(u) in Ω, u = 0 on ∂Ω
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where f satisfies (1.2), (1.3), see [1], [2], [3], [4], [5], [6], and the references
therein.

For λ ∈ (0, λ∗), we denote by µ1(λf
′(uλ)) the first eigenvalue of the

following eigenvalue problem

−∆φ+ φ = 0 in Ω,
∂φ

∂ν
= λf ′(uλ)φ+ µφ on ∂Ω.

By the variational characterization, we have

µ1(λf
′(uλ)) = inf

φ∈C1(Ω),φ̸≡0

∫
Ω
(|∇φ|2 + φ2) dx−

∫
∂Ω
λf ′(uλ)φ

2dsx∫
∂Ω
φ2dsx

.

Note that µ1(λf
′(uλ)) > 0 since the minimal solution uλ is strictly stable,

and decreases as λ ↑ λ∗. Denote

µ∗
1 = lim

λ↑λ∗
µ1(λf

′(uλ)). (1.7)

If u∗ is classical, it must hold that µ∗
1 = 0 by considering (iii) above. However

if u∗ = (u∗|Ω, u∗|∂Ω) ̸∈ L∞(Ω) × L∞(∂Ω), it could be happen that µ∗
1 is

positive. In [7], we proved that even when µ∗
1 > 0, there exists a nonnegative

weak solution of

−∆φ+ φ = 0 in Ω,
∂φ

∂ν
= λ∗f ′(u∗)φ+ µφ on ∂Ω (1.8)

for µ = 0. This is a phenomenon of the existence of (L1-) zero eigenvalue
for the eigenvalue problem (1.8). Main purpose of this paper is to prove the
following result, which might be seen as a phenomenon of the existence of
(L1-) continuum spectrum for the eigenvalue problem (1.8).

Theorem 1 Let µ∗
1 be defined by (1.7). Then for any µ ∈ [0, µ∗

1], there exists
a weak solution φ to (1.8), φ ∈ W 1,q(Ω) (1 ≤ q < N

N−1
), φ ≥ 0, in the sense

that f ′(u∗)φ|∂Ω ∈ L1(∂Ω) and∫
Ω

(−∆ζ + ζ)φdx =

∫
∂Ω

{
(λ∗f ′(u∗)φ|∂Ω + µφ|∂Ω) ζ −

∂ζ

∂ν
φ|∂Ω

}
dsx

for all ζ ∈ C2(Ω). Here φ|∂Ω is the usual trace of φ ∈ W 1,q(Ω).
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2 Proof of Theorem 1

In this section, we prove Theorem 1. We need the uniqueness theorem from
[7], which is an analogue of the result by Y. Martel [6].

Theorem 2 ([7] Theorem 14) Assume (1.1)λ∗ has a weak supersolution w =
(w1, w2) ∈ L1(Ω)× L1(∂Ω), in the sense that f(w2) ∈ L1(∂Ω) and∫

Ω

(−∆ζ + ζ)w1dx ≥
∫
∂Ω

{
λ∗f(w2)ζ −

∂ζ

∂ν
w2

}
dsx

for any ζ ∈ C2(Ω), ζ ≥ 0 on Ω. Then (w1, w2) = (u∗|Ω, u∗|∂Ω), where u∗ is
defined by (1.5).

The following is Lemma 17 in [7].

Lemma 3 Let {un} ⊂ C2(Ω) be a sequence of functions such that

−∆un + un = 0 in Ω,
∂un
∂ν

≥ 0 on ∂Ω.

Assume ∥un∥L1(∂Ω) ≤ C for some C > 0 independent of n. Then there exists
a subsequence (denoted again by un) and u ∈ W 1,q(Ω) such that

un ⇀ u weakly in W 1,q(Ω), 1 < q <
N

N − 1
,

un → u strongly in Lp(∂Ω), 1 ≤ p <
N − 1

N − 2
.

Moreover, for any 1 ≤ p < N−1
N−2

, there exists a constant Cp > 0 depending
only on p such that

∥un∥Lp(∂Ω) ≤ Cp∥un∥L1(∂Ω)

holds true for any n ∈ N.

Now, we prove Theorem 1.

Proof.
We follow the argument by X. Cabré and Y. Martel [3].

Step 1. For n ∈ N, define a sequence of functions fn as

fn(s) =

{
f(s) if s ≤ n,

f(n) + f ′(n)(s− n) if s > n,
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and consider the approximated problem

−∆u+ u = 0 in Ω,
∂u

∂ν
= λfn(u) on ∂Ω. (2.1)

Denote λ∗n = sup{λ > 0 : (2.1)λ admits a minimal solution ∈ C2(Ω)}, and
let un,λ ∈ C2(Ω) be the classical minimal solution to (2.1)λ for λ < λ∗n. Since
fn ≤ fn+1 ≤ f , we have un,λ ≤ un+1,λ ≤ uλ and λ∗ ≤ λ∗n+1 ≤ λ∗n for any
n ∈ N. Define

µ1(λf
′
n(un,λ)) = inf

φ∈C1(Ω),φ̸≡0

∫
Ω
(|∇φ|2 + φ2) dx−

∫
∂Ω
λf ′

n(un,λ)φ
2dsx∫

∂Ω
φ2dsx

. (2.2)

Note that µ1(λf
′
n(un,λ)) is continuous with respect to λ by (2.2). Take 0 ≤

µ ≤ µ∗
1 where µ

∗
1 is defined by (1.7). Since un,λ∗

n
is classical (which is because

fn is asymptotic linear) and there is no classical solution of (2.1)λ for λ > λ∗n,
the linearized problem around (λ∗n, un,λ∗

n
) must have zero eigenvalue. Thus

µ1(λ
∗
nf

′
n(un,λ∗

n
)) = 0 ≤ µ ≤ µ∗

1 ≤ µ1(λ
∗f ′

n(un,λ∗)),

here we have used the fact that f ′
n ≤ f ′ and un,λ ≤ uλ, which implies

µ1(λf
′(uλ)) ≤ µ1(λf

′
n(un,λ)). By the Intermediate Value Theorem, there

exists λn ∈ [λ∗, λ∗n] such that

µ1(λnf
′
n(un,λn)) = µ,

which in turn implies there exists φn > 0 with
∫
∂Ω
φndsx = 1 such that

−∆φn + φn = 0 in Ω,
∂φn

∂ν
= λnf

′
n(un,λn)φn + µφn on ∂Ω. (2.3)

Recall also that un,λn satisfies

−∆un,λn + un,λn = 0 in Ω,
∂un,λn

∂ν
= λnfn(un,λn) on ∂Ω. (2.4)

We claim there exists n0 ∈ N such that

∥un,λn∥L1(∂Ω) ≤ C for any n ≥ n0. (2.5)

Indeed, let ψ1 be the first eigenfunction of the Steklov type eigenvalue prob-
lem

−∆ψ1 + ψ1 = 0 in Ω,
∂ψ1

∂ν
= κ1ψ1 on ∂Ω (2.6)
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with the first eigenvalue κ1, which is normalized as
∫
∂Ω
ψ1dsx = 1. Multiply-

ing (2.4) by ψ1 and using Jensen’s inequality for fn, we obtain

κ1

∫
∂Ω

ψ1un,λndsx = λn

∫
∂Ω

fn(un,λn)ψ1dsx

≥ λnfn

(∫
∂Ω

ψ1un,λndsx

)
≥ λ∗fn

(∫
∂Ω

ψ1un,λndsx

)
.

Put an =
∫
∂Ω
ψ1un,λndsx. Then we have

an ≥
(
λ∗

κ1

)
fn(an). (2.7)

Assume the contrary that fn(an) = f ′(n)(an − n) + f(n) for some n ∈ N
sufficiently large. Then, since an > n and f(n) >

(
κ1

λ∗

)
n, f ′(n) >

(
κ1

λ∗

)
for n

sufficiently large by (1.2) and (1.3), we have, by (2.7),

an ≥
(
λ∗

κ1

)
fn(an) =

(
λ∗

κ1

)
{f ′(n)(an − n) + f(n)}

> an − n+ n = an,

which is a contradiction. Thus we conclude there exists n0 ∈ N such that

fn(an) = f(an) for any n ≥ n0. Again, this and (2.7) implies an ≥
(

λ∗

κ1

)
f(an)

for any n ≥ n0. Now, by the assumption f , we have C > 0 such that
f(s) ≥ 2κ1

λ∗ s−C holds for any s > 0. From this and the former estimate, we

have an ≤
(

λ∗

κ1

)
C for n ≥ n0. This implies the claim (2.5).

Step 2. By (2.5), we have ∥un,λn∥L1(∂Ω) ≤ C for some C independent of
n. Also recall ∥φn∥L1(∂Ω) = 1 for a solution φn of (2.3). Thus we can apply
Lemma 3, which yields the existence of w,φ ∈ L1(Ω), φ ≥ 0 a.e. such that

un,λn ⇀ w, φn ⇀ φ weakly in W 1,q(Ω),

un,λn → w, φn → φ strongly in Lp(∂Ω) and a.e. on ∂Ω (2.8)

for any 1 < q < N
N−1

and 1 ≤ p < N−1
N−2

. Since
∫
∂Ω
φdsx = 1, we see φ ̸≡ 0 on

∂Ω.
In the following, we prove that λn ↓ λ∗ as n → ∞ and w = u∗. We

will show that w ∈ W 1,q(Ω) is a weak supersolution in the sense of Theorem
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2. Then the conclusion is obtained by Theorem 2. To prove that w is a
weak supersolution, put λ = infn∈N λn. Since λn ≥ λ∗, we have λ ≥ λ∗. We
observe that∫

Ω

(−∆ζ + ζ)un,λndx = λn

∫
∂Ω

fn(un,λn)ζdsx −
∫
∂Ω

∂ζ

∂ν
un,λndsx

≥ λ

∫
∂Ω

fn(un,λn)ζdsx −
∫
∂Ω

∂ζ

∂ν
un,λndsx

holds for all ζ ∈ C2(Ω), ζ ≥ 0. Using the fact that un,λn → w in L1(Ω),
L1(∂Ω) respectively and Fatou’s lemma, we have∫

Ω

(−∆ζ + ζ)wdx ≥ λ

∫
∂Ω

f(w)ζdsx −
∫
∂Ω

∂ζ

∂ν
wdsx

≥ λ∗
∫
∂Ω

f(w)ζdsx −
∫
∂Ω

∂ζ

∂ν
wdsx, ∀ζ ∈ C2(Ω), ζ ≥ 0.

This implies also f(w) ∈ L1(∂Ω) if we take ζ ≡ 1. Thus, we conclude that
w is a weak supersolution to (1.1)λ∗

Step 3. Let φn, φ be as in Step 2. We claim that

λnf
′
n(un,λn)φn → λ∗f ′(u∗)φ strongly in L1(∂Ω) (2.9)

as n → ∞. For the proof, we invoke Vitali’s Convergence Theorem. First,
by (2.8), we see

λnf
′
n(un,λn(x))φn(x) → λ∗f ′(u∗(x))φ(x) a.e. x ∈ ∂Ω

for a subsequence. Next, we prove the uniformly absolute continuous prop-
erty of the sequence {λnf ′

n(un,λn)φn}n∈N. For that purpose, let A ⊂ ∂Ω and
ε > 0 be given arbitrary. Since fn is convex, we have

fn

(
χA(x)

ε

)
≥ fn(un,λn(x)) + f ′

n(un,λn(x))

(
χA(x)

ε
− un,λn(x)

)
(2.10)

a.e. x ∈ ∂Ω, here χA is the characteristic function of A. By (2.3) and (2.4),
it holds that

λn

∫
∂Ω

fn(un,λn)φndsx = λn

∫
∂Ω

f ′
n(un,λn)un,λnφndsx + µ

∫
∂Ω

un,λnφndsx

≥ λn

∫
∂Ω

f ′
n(un,λn)un,λnφndsx. (2.11)
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Also easy consideration shows that{
fn

(
χA(x)

ε

)
− f(0)

}
φn(x) ≤ f

(
1

ε

)
φn(x)χA(x) a.e. on ∂Ω. (2.12)

Thus by (2.10), (2.11) and (2.12), we have∫
∂Ω

f ′
n(un,λn)

χA

ε
φndsx ≤

∫
∂Ω

fn

(χA

ε

)
φndsx +

∫
∂Ω

f ′
n(un,λn)un,λnφndsx −

∫
∂Ω

fn(un,λn)φndsx

≤
∫
∂Ω

fn

(χA

ε

)
φndsx

=

∫
∂Ω

{
fn

(χA

ε

)
− f(0)

}
φndsx +

∫
∂Ω

f(0)φndsx

≤
∫
∂Ω

f

(
1

ε

)
φnχAdsx + f(0)

≤ f

(
1

ε

)
|A|

1
p′ ∥φn∥Lp(∂Ω) + f(0)

≤ Cf

(
1

ε

)
|A|

1
p′ + f(0) (2.13)

for any 1 ≤ p < N−1
N−2

, where |A| denotes the (N − 1) dimensional measure
of A ⊂ ∂Ω and p′ = p

p−1
. In (2.13) we have used ∥φn∥Lp(∂Ω) ≤ C for some

C > 0 independent of n by (2.8). Define

δ(ε) =

(
f(0)

f(1
ε
)C

)p′

.

Then for any ε > 0, we obtain
∫
A
f ′
n(un,λn)φndsx ≤ 2f(0)ε if A ⊂ ∂Ω

satisfies that |A| < δ(ε) by (2.13). This implies the uniform absolutely
continuity of the sequence {λnf ′

n(un,λn)φn}n∈N. Also for any ε > 0, if we
take E ⊂ ∂Ω such that |∂Ω \ E| < δ(ε) where δ(ε) is as above, we obtain
that

∫
∂Ω\E λnf

′
n(un,λn)φndsx ≤ Cε. This implies the uniform integrability of

{λnf ′
n(un,λn)φn}n∈N. Therefore, Vitali’s Convergence Theorem assures the

claim (2.9).
By (2.9), we pass to the limit n→ ∞ in the weak formulation of (2.3):∫

Ω

(−∆ζ + ζ)φndx =

∫
∂Ω

(λnf
′
n(un,λn) + µ)φnζ −

∂ζ

∂ν
φndsx, ∀ζ ∈ C2(Ω),
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and conclude that φ is a weak solution of

−∆φ+ φ = 0 in Ω,
∂φ

∂ν
= λ∗f ′(u∗)φ+ µφ on ∂Ω.

Recall φ ∈ W 1,q(Ω) for any 1 ≤ q < N
N−1

. The proof of Theorem 1 is finished.

Acknowledgement. Part of this work was supported by JSPS Grant-in-
Aid for Scientific Research (B), No. 23340038, and JSPS Grant-in-Aid for
Challenging Exploratory Research, No. 24654043.

References

[1] H. Brezis, T. Cazenave, Y. Martel and A. Ramiandrisoa: Blow up for
ut−∆u = g(u) revisited, Adv. Differential Equations. 1, 73–90, (1996),
MR1357955

[2] H. Brezis, and J. L. Vázquez: Blow-up solutions of some nonlinear
elliptic problems, Rev. Mat. Univ. Compl. Madrid, 10, 443–469, (1997),
MR1605678
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