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Abstract. A complex projective tower or simply a CP -tower is an iterated complex projective

fibrations starting from a point. In this paper, we classify certain class of 8-dimensional CP -
towers up to diffeomorphism. As a consequence, we show that cohomological rigidity is not
satisfied by the collection of 8-dimensional CP -towers, i.e., there is a two distinct 8-dimensional
CP -towers which have the same cohomology rings.
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1. Introduction

Let M be a collection of diffeomorphism classes of smooth manifolds and H∗M be the iso-
morphism classes of cohomology rings of manifolds in M. Let H∗ : M → H∗M be the map
defined by M ∈ M 7→ H∗(M ;Z). In general, H∗ is not bijective. However, if we restrict the class
of manifolds then this map sometimes becomes a bijection; e.g., if M is a collection of oriented
2-dimensional manifolds then it is well-known that the map H∗ is bijective. We say such collection
M is cohomologically rigid or M satisfies cohomological rigidity. The problem asking whether the
map H∗ : M → H∗M is bijective or not is called a cohomological rigidity problem. In this paper,
we study the cohomological rigidity problem for complex projective towers (or simply a CP -tower)
introduced in [KuSu].

A CP -tower of height m is a sequence of complex projective fibrations

Cm
πm // Cm−1

πm−1 // · · · π2 // C1
π1 // C0 = {a point}(1.1)

where Ci = P (ξi−1) is the projectivization of a complex vector bundle ξi−1 over Ci−1. We call each
Ci the ith stage of the tower. If we forget the tower structure, then we call Ci an (i-stage) CP -
manifolds. In [KuSu], we show that the diffeomorphism types of 6-dimensional CP -manifolds are
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determined by their cohomology rings, i.e., the collection of 6-dimensional CP -manifolds CPM6

is cohomologically rigid. This is the generalization of the fact that the collection GBM6 of 6-
dimensional generalized Bott manifolds is cohomologically rigid in [CMS11]. On the other hand,
it is known that the collection GBM2n

2 of 2n-dimensional 2-stage generalized Bott manifolds is
also cohomologically rigid. The purpose of this paper is to show that the collection CPM8

2 of
8-dimensional 2-stage CP -manifolds is not cohomologically rigid.

To state our main theorem, let us recall the theorem proved by Atiyah and Rees in [AtRe, (2.8)
Theorem]. Let VECT 2(CP 3) be the collection of vector bundle isomorphism classes of complex
2-dimensional vector bundles over CP 3.

Theorem 1.1 (Atiyah-Rees). There exists a bijective map ϕ : VECT 2(CP 3) → Z2 ⊕ Z ⊕ Z
such that ϕ(ξ) = (α(ξ), c1(ξ), c2(ξ)), where c1(ξ) and c2(ξ) are the first and the second Chern
classes of ξ, and α(ξ) is a mod 2 element which is 0 when c1(ξ) is odd.

By Theorem 1.1, any element in VECT 2(CP 3) can be denoted by η(α,c1,c2), where (α, c1, c2) ∈
Z2⊕Z⊕Z such that α ≡ 0 (mod 2) when c1 ≡ 1 (mod 2). On the other hand, it can be seen easily
that P (η(α,c1,c2)) is diffeomorphic to P (η(0,1,c2−(c21−1)/4)) if c1 ≡ 1 mod 2, and is diffeomorphic to

P (η(α,0,c2−c21/4)
) if c1 ≡ 0 mod 2, see Lemma 3.2.

Let N(u) := P (η(0,1,u)), and let N := {N(u) | u ∈ Z}. Similarly, let Mα(u) := P (η(α,0,u)),
and let M := {Mα(u) | α ∈ {0, 1}, u ∈ Z}. We now state the main result of the paper (see
Theorem 4.2 for (1) and see Theorem 5.2 for more precise statement of (2)).

Theorem 1.2. For the classes M and N , we have the following.

(1) The class N is cohomologically rigid. In fact, the following are equivalent:
(a) N(u) is diffeomorphic to N(u′);
(b) u = u′;
(c) H∗(N(u);Z) ∼= H∗(N(u′);Z) as graded rings.

(2) The class M is not cohomologically rigid. In fact, H∗(M0(u);Z) ∼= H∗(M1(u);Z) as

graded rings for all u, but if u(u+1)
12 ∈ Z then M0(u) is not diffeomorphic, actually not

homotopic, to M1(u).

The second part of the theorem is proved in Proposition 5.4 by showing that π6(M0(u)) ̸∼=
π6(M1(u)) when

u(u+1)
12 ∈ Z.

The organization of this paper is as follows. In Section 2, as examples of CP -towers, we
explain when flag manifolds admit the structure of CP -tower. In Section 3, we recall some basic
facts from [KuSu]. In Section 4, we show that N satisfies the cohomological rigidity. In Section
5, we compute the 6-dimensional homotopy group of the elements in some class of M and show
that M does not satisfies the cohomological rigidity.

2. Flag manifolds of type A and C

The CP -towers contain many interesting classes of manifolds. In the previous paper [KuSu],
we introduce that generalized Bott manifolds or the Milnor surface admits the structure of CP -
towers. We first introduce the other two examples of CP -towers. Let CPM2n

m be the collection of
2n-dimensional m-stage CP -manifolds up to diffeomorphism.

Example 2.1. The flag manifold F l(Cn+1) = {{0} ⊂ V1 ⊂ · · · ⊂ Vn ⊂ Cn+1}, called type A,
is well-known to be diffeomorphic to the homogeneous space U(n + 1)/Tn+1(∼= SU(n + 1)/Tn).
We will show that the flag manifold U(n+1)/Tn+1 is a CP -tower with height n. Recall that if M
is a smooth manifold with free K action and H is a subgroup of K, then we have a diffeomorphism
M/H ∼= M ×K (K/H). Also recall that CPn ∼= U(n+ 1)/(T 1 × U(n)). By using these facts, it is
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easy to check that there is the following CP -tower structure of height n in U(n+ 1)/Tn+1:

U(n+ 1)×(T 1×U(n)) (U(n)×(T 1×U(n−1)) (U(n− 1)×(T 1×U(n−2)) · · · (U(3)×(T 1×U(2)) CP 1) · · · )
↓
...
↓

U(n+ 1)×(T 1×U(n)) (U(n)×(T 1×U(n−1)) CPn−2)
↓

U(n+ 1)×(T 1×U(n)) CPn−1

↓
CPn,

where the U(k) action on CP k−1 in each stage is induced from the usual U(k) action on Ck.

Hence, the flag manifold U(n+ 1)/Tn+1 of type A is an element of CPMn2+n
n .

Example 2.2. The flag manifold of type C is defined by the homogeneous space Sp(n)/Tn. We
claim that Sp(n)/Tn is a CP -tower with height n. It is well known that Sp(n)/(T 1×Sp(n−1)) ∼=
S4n−1/T 1 ∼= CP 2n−1, because Sp(n)/Sp(n − 1) ∼= S4n−1. By using this fact and the method
similar to that demonstrated in Example 2.1, it is easy to check that there is the following CP -
tower structure of height n in Sp(n)/Tn:

Sp(n)×(T 1×Sp(n−1)) (Sp(n− 1)×(T 1×Sp(n−2)) · · · (Sp(2)×(T 1×Sp(1)) CP 1) · · · )
↓
...
↓

Sp(n)×(T 1×Sp(n−1)) (Sp(n− 1)×(T 1×Sp(n−2)) CP 2n−5)
↓

Sp(n)×(T 1×Sp(n−1)) CP 2n−3

↓
CP 2n−1,

where the Sp(k)-action on CP 2k−1 in each stage is induced from the Sp(k)-action on C2k(∼= Hk)
induced by the following representation to U(2k):

A+Bj −→
(

A −B
B A

)
.

Here A, B ∈ M(k;C) satisfy AA + BB = Ik and BA − AB = O. Hence, the flag manifold

Sp(n)/Tn of type C is an element of CPM2n2

n .

Remark 2.3. As is well-known, both of the flag manifolds U(n + 1)/Tn+1 and Sp(n)/Tn

with n ≥ 2 do not admit the structure of a toric manifold (see e.g. [BuPa]). On the other hand,
U(2)/T 2 ∼= Sp(1)/T 1 ∼= CP 1 is a toric manifold.

Moreover, by computing the generators of flag manifolds of other types (Bn (n ≥ 3), Dn

(n ≥ 4), G2, F4, E6, E7, E8), they do not admit the structure of CP -towers, see [Bo] (or [FIM]
for classical types). Namely, we have the following proposition:

Proposition 2.4. Let M be a flag manifold denoted by G/T , where G is a compact simple
Lie group and T is its maximal torus. If M admits the structure of a CP -tower, then G must be
a compact Lie group of type A or C.

The following problem also naturally arises (also see Remark 5.5).

Problem 2.5. Let H∗ : CPM → H∗CPM be the map defined by taking the cohomology
rings. Classify diffeomorphism types of all manifolds in the class (H∗)−1(H∗(U(n + 1)/Tn+1))
and (H∗)−1(H∗(Sp(n)/Tn)).
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3. Some preliminaries

In this section, we recall some basic facts.

3.1. Preliminaries from [KuSu]. We first recall some basic facts from [KuSu, Section 2].
Let ξ be an n-dimensional complex vector bundle over a topological space X, and let P (ξ)

denote its projectivization. Then, the following formula holds (see [KuSu]):

H∗(P (ξ);Z) ∼= H∗(X;Z)[x]/⟨xn+1 +
n∑

i=1

(−1)ici(π
∗ξ)xn+1−i⟩(3.1)

where π∗ξ is the pull-back of ξ along π : P (ξ) → X and ci(π
∗ξ) is the ith Chern class of π∗ξ. Here

x can be viewed as the first Chern class of the canonical line bundle over P (ξ), i.e., the complex
1-dimensional sub-bundle γξ in π∗ξ → P (ξ) such that the restriction γξ|π−1(a) is the canonical line

bundle over π−1(a) ∼= CPn−1 for all a ∈ X. Therefore deg x = 2. Since it is well-known that the
induced homomorphism π∗ : H∗(X;Z) → H∗(P (ξ);Z) is injective, we often abuse the notation
ci(π

∗ξ) by ci(ξ). The formula (3.1) is called the Borel-Hirzebruch formula.
In order to prove the main theorem, we often use the following two lemmas.

Lemma 3.1. Let γ be any line bundle over M , and let P (ξ) be the projectivization of a complex
vector bundle ξ over M . Then, P (ξ) is diffeomorphic to P (ξ ⊗ γ).

Lemma 3.2. Let γ be a complex line bundle, and let ξ be a 2-dimensional complex vector
bundle over a manifold M . Then the Chern classes of the tensor product ξ ⊗ γ are as follows.

c1(ξ ⊗ γ) = c1(ξ) + 2c1(γ);

c2(ξ ⊗ γ) = c1(γ)
2 + c1(γ)c1(ξ) + c2(ξ).

3.2. Atiyah-Rees’s theorem. By Theorem 1.1, all of the complex 2-plane bundles over CP 3

can be denoted by η(α,c1,c2) for some (α, c1, c2) ∈ Z2×Z×Z. Using Lemma 3.1, its projectivization

P (η(α,c1,c2)) is diffeomorphic to P (η(α,c1,c2) ⊗ γ) for any line bundle γ over CP 3. Moreover, by
Lemma 3.2 and the proof of Theorem 1.1 in [AtRe], we also have

η(α,c1,c2) ⊗ γ ≡ η(α,c1+2c1(γ),c1(γ)2+c1(γ)c1+c2).

Therefore, we may assume c1 ∈ {0, 1}. Consequently, in order to classify all P (η(α,c1,c2)) up to
diffeomorphisms, it is enough to classify the following:

M0(u) = P (η(0,0,u));

M1(u) = P (η(1,0,u));

N(u) = P (η(0,1,u)),

where u ∈ Z. We denote the class of M0(u), M1(u) up to diffeomorphism by M and that of
N(u) by N . Then, both classes M and N are the subclasses of CPM8

2 consisting of 8-dimensional
2-stage CP -manifolds.

3.3. Intersection of two classes M and N are empty. Finally, in this section, we prove
M∩N = ∅ by comparing their cohomology rings. Namely, we prove the following lemma:

Lemma 3.3. Two cohomology rings H∗(Mα(u)) and H∗(N(u′)) are not isomorphic for any
u, u′ ∈ Z.

Proof. By the Borel-Hirzebruch formula (3.1), we have ring isomorphisms

H∗(Mα(u)) ∼= Z[X,Y ]/⟨X4, uX2 + Y 2⟩, and

H∗(N(u′)) ∼= Z[x, y]/⟨x4, u′x2 + xy + y2⟩.

Assume that there is an isomorphism map f : H∗(Mα(u)) → H∗(N(u′)). Then we may put

f(X) = ax+ by, and

f(Y ) = cx+ dy,
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for some a, b, c, d ∈ Z such that ad− bc = ϵ = ±1. By taking the inverse of f , we also have

f−1(x) = dϵX − bϵY, and

f−1(y) = −cϵX + aϵY.

From the ring structures of H∗(Mα(u)) and H∗(N(u′)), we have f(uX2 + Y 2) = 0 and
f−1(y2 + xy + u′x2) = 0. Therefore we have the following equations:

u(a2 − u′b2) + (c2 − u′d2) = 0;(3.2)

u(2ab− b2) + (2cd− d2) = 0;(3.3)

c2 − a2u− cd+ abu+ u′d2 − b2uu′ = 0;(3.4)

−2ac+ cb+ ad− 2bdu′ = 0.(3.5)

Because f−1(x4) = (dX − bY )4 = 0, we also have

bd(d2 − ub2) = 0.

Therefore bd = 0, or otherwise d2 = ub2. We first assume bd = 0. Then, there are two cases: b = 0
and d = 0. If b = 0, then |a| = |d| = 1. However, by using (3.3), we have 2cd = 1. This gives a
contradiction. If d = 0, then |b| = |c| = 1. By using (3.5), we have c(−2a+ b) = 0, i.e., b = 2a by

|c| = 1. However, this contradicts to |b| = 1. Hence, bd ̸= 0 and d2 = ub2, i.e., |d| =
√

|u||b|. In
this case, because ad− bc = ϵ = ±1, we have |b| = 1 and d2 = u. Let b = ϵ′ = ±1 and d =

√
uϵ′′,

where ϵ′′ = ±1. Then, it follows from ad − bc = ϵ that c = −ϵϵ′ + a
√
uϵ′′ϵ′. Therefore, by using

(3.2), we have the following equation:

u(a2 − u′b2) + (c2 − u′d2)

= u(a2 − u′) + (−ϵϵ′ + a
√
uϵ′′ϵ′)2 − u′u

= 2ua2 − 2uu′ + 1− 2a
√
uϵϵ′′ = 0.

However, this gives the equation 1 = 2(−ua2 + uu′ + a
√
uϵϵ′′), which is a contradiction. Hence,

H∗(Mα(u)) ̸∼= H∗(N(u′)) for all u, u′ ∈ Z. �

Hence, we have the following corollary:

Corollary 3.4. There are no intersections between two classes M and N .

4. Cohomological rigidity of N

In this section, we shall prove the cohomological rigidity of the class N . To show that, it is
enough to prove the following lemma.

Lemma 4.1. The following two statements are equivalent.

(1) H∗(N(u)) ∼= H∗(N(u′))
(2) u = u′ ∈ Z

Proof. Because (2) ⇒ (1) is trivial, it is enough to show (1) ⇒ (2). Assume there is an
isomorphism f : H∗(N(u)) ∼= H∗(N(u′)) where

H∗(N(u)) ∼= Z[X,Y ]/⟨X4, uX2 + xy + Y 2⟩;
H∗(N(u′)) ∼= Z[x, y]/⟨x4, u′x2 + xy + y2⟩.

Again, we use the same representation for f as in the proof of Lemma 3.3. Because f(Y 2 +
XY + uX2) = 0 and f−1(y2 + xy + u′x2) = 0, we have that

c2 − d2u′ = −ua2 + b2uu′ − ac+ bdu′;(4.1)

2cd− d2 = −2abu+ b2u− ad− bc+ bd;(4.2)

c2 − a2u = −u′d2 + b2uu′ + cd− bau;(4.3)

−2ac− a2 = 2bdu′ + b2u′ − ad− bc− ab.(4.4)

Because f(X4) = 0 and f−1(x4) = 0, there are the following two cases:

(1) b = 0;
5



(2) b ̸= 0 and 4a3−6a2b+4ab2(1−u′)+b3(2u′−1) = −4d3−6d2b−4db2(1−u)+b3(2u−1) = 0.

If b = 0, then |a| = |d| = 1. Therefore, by (4.2), 2c = d − a, i.e., c = 0 if d = a or c = −a if
d = −a. Because c2 − u′ = −u− ac by (4.1), we have that u = u′.

Assume b ̸= 0. By the equation 4a3 − 6a2b+4ab2(1− u′) + b3(2u′ − 1) = 0, we have b is even.
Substituting a = A + b

2 for some A ∈ Z to this equation (i.e., Tschirnhaus’s transformation), we
have the following equation:

4(A+
b

2
)3 − 6(A+

b

2
)2b+ 4(A+

b

2
)b2(1− u′) + b3(2u′ − 1)

= 4(A3 + 3A2 b

2
+ 3A

b2

4
+

b3

8
)− 6(A2 +Ab+

b2

4
)b+ 4(Ab2 +

b3

2
)(1− u′) + b3(2u′ − 1)

= 4A3 + 6A2b+ 3Ab2 +
b3

2
− 6A2b− 6Ab2 − 3b3

2
+ 4Ab2 + 2b3 − 4Ab2u′ − 2b3u′ + 2b3u′ − b3

= 4A3 +Ab2 − 4Ab2u′

= A(4A2 + b2 − b2u′) = 0

Therefore, there are the two cases: A = 0 or A ̸= 0. We first assume A ̸= 0. Then, by using the
equation 4A2 + b2 − b2u′ = 0, we have u′ ≥ 1. Now, there is the following commutative diagram:

H2(N(u)) = ZX ⊕ ZY X //

f

��

ZX2 ⊕ ZXY = H4(N(u))

f

��
H2(N(u′)) = Zx⊕ Zy

ax+by // Zx2 ⊕ Zxy = H4(N(u′))

Because X and f are isomorphisms, so is ax+ by in the diagram. Using the indicated generators
as bases, the determinant of the map f ◦X : H2(N(u)) → H4(N(u′)) is equal to the determinant
of the map (ax+ by) ◦ f : H2(N(u)) → H4(N(u′)), which is equal to

a2 − ab+ b2u′ = ϵ1 = ±1.(4.5)

Because a ∈ Z, the discriminant of this equation satisfies

b2 − 4(b2u′ − ϵ1) = b2(1− 4u′) + 4ϵ1 ≥ 0

Because u′ ≥ 1, we have that

0 < b2 ≤ 4ϵ1
4u′ − 1

< 1.

This gives a contradiction to b ∈ Z. Therefore, we have A = 0, i.e., a = b
2 . Because ad − bc =

ϵ(= ±1), we also have that a = ϵ′ = ±1, b = 2ϵ′ and d − 2c = ϵϵ′. Hence, by (4.5), we have
−1 + 4u′ = ϵ1, i.e., u

′ = 0 and ϵ1 = −1. By applying a similar method to the one used to derive
(4.5) for f−1(x), we have

d2 + db+ b2u = ϵ2 = ±1.(4.6)

Substituting (4.5) and (4.6) to (4.3) and (4.4), we have

c2 = uϵ1 − u′d2 + cd = −u+ cd;

−2ac = ϵ1 + 2bdu′ − ad− bc = −1− (d+ 2c)ϵ′.

By using the second equation above, we also have d = −ϵ′; therefore, by d − 2c = ϵϵ′, we have

c = −ϵ′−ϵϵ′

2 = 0 or −ϵ′. If c = 0, then u = 0 by the first equation above; if c = −ϵ′ then we also
have u = 0 by d = −ϵ′ and the first equation above. This implies that u = u′ = 0 for the case
b ̸= 0.

This establishes the statement. �

Therefore, by Theorem 1.1 and Lemma 4.1, we have the following theorem.

Theorem 4.2. The following three statements are equivalent.
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(1) Two spaces N(u) and N(u′) are diffeomorphic.
(2) Two cohomology rings H∗(N(u)) and H∗(N(u′)) are isomorphic.
(3) u = u′ ∈ Z.

In particular, the class N is cohomologically rigid.

This establishes Theorem 1.2 (1).

5. Cohomological non-rigidity of CPM8
2

In this section, we prove that M is not cohomologically rigid. We first show the following fact
about the cohomology rings of elements in M.

Lemma 5.1. The following two statements are equivalent.

(1) H∗(Mα(u)) ∼= H∗(Mα′(u′)) where α, α′ ∈ {0, 1}.
(2) u = u′ ∈ Z

Proof. Because (2) ⇒ (1) is trivial, it is enough to show (1) ⇒ (2). Assume there is an
isomorphism f : H∗(Mα(u)) ∼= H∗(Mα′(u′)) where

H∗(Mα(u)) ∼= Z[X,Y ]/⟨X4, uX2 + Y 2⟩;
H∗(Mα′(u′)) ∼= Z[x, y]/⟨x4, u′x2 + y2⟩.

Wemay use the same representation for f as in the proof of Lemma 3.3. Note that f(uX2+Y 2) = 0
and f−1(u′x2 + y2) = 0. By using the representation of f , we have the following equations:

ua2 − uu′b2 + c2 − u′d2 = 0;(5.1)

uab+ cd = 0;(5.2)

u′d2 − uu′b2 + c2 − a2u = 0;(5.3)

u′bd+ ac = 0.(5.4)

By (5.1) and (5.3), we have

c2 = b2uu′;(5.5)

ua2 = u′d2.(5.6)

Because X4 = 0, we also have that

ab(a2 − b2u′) = 0.

We first assume ab ̸= 0. Then

a2 = b2u′

by this equation. Together with (5.5) and (5.6), we have that

c2b2 = b4uu′ = b2a2u = b2d2u′ = a2d2.

This implies that

(ad− bc)(ad+ bc) = ϵ(ad+ bc) = 0.

Hence, ad = −bc. However this gives a contradiction because ad − bc = 2ad = ϵ = ±1. Con-
sequently, we have ab = 0. Since ad − bc = ϵ, if a = 0 then |b| = |c| = 1; therefore, we have
u = u′ = ±1 by (5.5); if b = 0 then |a| = |d| = 1; therefore, we have u = u′ by (5.6). This
establishes the statement. �

Lemma 5.1 says that cohomology rings of M are not affected by α ∈ Z2. On the other hand,
the goal of this section is to prove the following theorem, i.e., some topological types of M are
affected by α ∈ Z2.

Theorem 5.2. Assume u(u+ 1)/12 ∈ Z. The following three statements are equivalent.

(1) Two spaces Mα(u) and Mβ(u
′) are diffeomorphic.

(2) (α, u) = (β, u′) ∈ Z2 × Z.
(3) Two spaces Mα(u) and Mβ(u

′) are homotopy equivalent.
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In order to prove Theorem 5.2, we first compute the 6-dimensional homotopy group of Mα(u)
in Proposition 5.4. Now Mα(u) can be defined by the following pull-back diagram:

Mα(u)

��

// EU(2)×U(2) CP 1

��
CP 3

µα,u // BU(2)

Let p : S7 → CP 3 be the canonical S1-fibration and P (ξα,u) be the pull-back of Mα(u) along
p. Namely, we have the following diagram:

P (ξα,u)

��

// Mα(u)

��

// EU(2)×U(2) CP 1

��
S7

p // CP 3
µα,u //µα,u // BU(2)

(5.7)

Then, we have the following lemma.

Lemma 5.3. For ∗ ≥ 3, π∗(P (ξα,u)) ∼= π∗(Mα(u)).

Proof. Because P (ξα,u) is the pull-back of Mα(u), the homotopy exact sequences of P (ξα,u)
and Mα(u) satisfy the following commutative diagram:

π∗+1(S
7) //

��

π∗(CP 1) //

��

π∗(P (ξα,u)) //

��

π∗(S
7) //

��

π∗−1(CP 1)

��
π∗+1(CP 3) // π∗(CP 1) // π∗(Mα(u)) // π∗(CP 3) // π∗−1(CP 1)

From the homotopy exact sequence of the fibration S1 → S7 → CP 3, we have π∗(S
7) ∼= π∗(CP 3)

for ∗ ≥ 3. Therefore, by using the 5 lemma, we have the statement. �

Now we may prove the following proposition.

Proposition 5.4. Assume u(u+ 1)/12 ∈ Z. The following two isomorphisms hold.

(1) π6(P (ξα,u)) ∼= π6(Mα(u)) ∼= Z12 if α ≡ u(u+ 1)/12 (mod 2)
(2) π6(P (ξβ,u)) ∼= π6(Mβ(u)) ∼= Z6 if β ̸≡ u(u+ 1)/12 (mod 2)

Proof. We first claim the 1st statement. If u(u+ 1)/12 ∈ Z and α ≡ u(u+ 1)/12 (mod 2),
then it follows from [AtRe] that ξα,u is induced from the rank 2 complex vector bundle over CP 4.
Namely, there is the following commutative diagram:

ξα,u

��

// η(α,0,u)

��

// µ̃α,u

��

// EU(2)×U(2) C2

��
S7

p // CP 3 //// CP 4 // BU(2)

(5.8)

On the other hand, we have that π7(CP 4) ∼= π7(S
9) = {0}, by using the homotopy exact sequence

for the fibration S1 → S9 → CP 4. This implies that ξα,u is the trivial C2-bundle over S7.
Therefore,

P (ξα,u) = S7 × CP 1

when u(u+ 1)/12 ∈ Z and α ≡ u(u+ 1)/12 (mod 2). Hence, we also have that

π6(Mα(u)) ∼= π6(S
7 × CP 1) ∼= π6(CP 1) ∼= Z12.

Next we claim the 2nd statement. Let µα,u : CP 3 → BU(2) be a continuous map which
induces the above η(α,0,u), and β be the element in Z2 which is not equal to α. Let x ∈ CP 3

and s = µα,u(x) ∈ BU(2) be base points. Take a disk neighborhood around x ∈ CP 3 and pinch
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its boundary to a point, i.e., the boundary of D6 ⊂ CP 3 pinches to a point, then we obtain the
surjective map

ρ : CP 3 → CP 3 ∨ S6,

where CP 3 ∨ S6 may be regarded as the wedge sum with respect to the base points x ∈ CP 3 and
y ∈ S6. Due to theorem of Atiyah-Rees [AtRe], we have η(β,0,u) ̸≡ η(α,0,u). This implies that the
vector bundle η(β,0,u) is induced from the following continuous map:

µβ,u : CP 3 ρ // CP 3 ∨ S6
να // BU(2)(5.9)

where να = µα,u ∨ κ for the generator κ ∈ π6(BU(2), s) ∼= Z2.
1 Hence, we have the following

commutative diagram.

P (ξβ,u)

��

// Mβ(u)

��

// EU(2)×U(2) CP 1

��
S7

p //

&&LLLLLLLLLLL CP 3

ρ

��

µβ,u //µβ,u // BU(2)

CP 3 ∨ S6

να

66mmmmmmmmmmmmm

(5.10)

From the CP 1-fibrations CP 1 → P (ξβ,u) → S7 and CP 1 → EU(2) ×U(2) CP 1 ∼= BT 2 → BU(2)
in the above diagram (5.10), there is the following commutative diagram.

π7(S
7) ∼= Z //

��

π6(CP 1) //

∼=
��

π6(P (ξβ,u)) //

��

π6(S
7) = {0}

��
π7(BU(2)) ∼= Z12

∼= // π6(CP 1) // π6(BT 2) = {0} // π6(BU(2)) ∼= Z2

This diagram shows that the following exact sequence:

Z ∼= π7(S
7) → π7(BU(2))(∼= Z12) → π6(P (ξβ,u)) → {0}.(5.11)

In this diagram, the left homomorphism is induced from µ̃ := µβ,u ◦p : S7 → BU(2), say µ̃# : Z →
Z12. We claim µ̃#(1) = [6]12 ∈ Z12. Because the diagram (5.10) is commutative, we may regard
that µ̃ := µβ,u◦p : S7 → BU(2) can be defined by passing through the map να : CP 3∨S6 → BU(2),
i.e., µ̃ = να ◦ ρ ◦ p. Because να = µα,u ∨ κ, we also have

µ̃ = (µα,u ∨ κ) ◦ ρ ◦ p = (µα,u ◦ ρ ◦ p) ∨ (κ ◦ ρ ◦ p).
By the argument when we proved the 1st statement, we see that µα,u ◦ ρ ◦ p induces the trivial
bundle over S7, i.e., µα,u ◦ ρ ◦ p is homotopic to the trivial map. This also implies that there is
the following decomposition up to homotopy:

µ̃ : S7 p−→ CP 3 ρ−→ CP 3 ∨ S6 π−→ S6 κ−→ BU(2),

where π is the collapsing map of CP 3 to a point. Therefore, we have the following decomposition
for the induced map

µ̃# : π7(S
7)

Ψ#−→ π7(S
6) ∼= Z2

κ#−→ π7(BU(2)) ∼= Z12,

where the 1st map is induced from the surjective map Ψ = π ◦ ρ ◦ p. Because Ψ is non trivial
map, Ψ#(1) = [1]2 (the generator of π7(S

6) ∼= Z2). Moreover, because κ ∈ π6(BU(2)) ∼= Z2 is the
generator, i.e., non-trivial map, we have κ#([1]2) = [6]12 ∈ Z12. This shows that µ̃#(1) = [6]12;
therefore, µ̃#(π7(S

7)) = {[0]12, [6]12} ⊂ Z12.
Consequently, by the exact sequence (5.11), we have that

π6(P (ξβ,u)) ∼= π7(BU(2))/µ̃#(π7(S
7)) ∼= Z12/{[0]12, [6]12} ∼= Z6.

By Lemma 5.3, we have the statement. �

1This construction induces the free π6(BU(2)) ∼= π5(U(2)) ∼= Z2 action on K̃Sp(CP 3) ∼= Z2 ⊕Z (see [AtRe]).
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Remark 5.5. For example, the relation u(u+ 1)/12 ∈ Z is true for the case when u = 0 and
u = 3. In these cases, by using Proposition 5.4, we have

π6(Mα(0)) ∼=
{

Z12 for α ≡ 0
Z6 for α ≡ 1

and

π6(Mα(3)) ∼=
{

Z6 for α ≡ 0
Z12 for α ≡ 1

On the other hand, the case when u = 1 does not satisfy the relation u(u + 1)/12 ∈ Z. It
follows from the cohomology ring of the flag manifold of type C (see e.g. [Bo] or [FIM]) that the
flag manifold Sp(2)/T 2 is one of this case, i.e., M0(1) or M1(1). However, by using the homotopy
exact sequence for the fibration T 2 → Sp(2) → Sp(2)/T 2 and the computation in [MiTo], we
have that

π6(Sp(2)/T
2) ∼= π6(Sp(2)) = 0.

Therefore, Proposition 5.4 is not true for the case when u(u+ 1)/12 ̸∈ Z.

Let us prove Theorem 5.2

Proof of Theorem 5.2. By using Theorem 1.1, (2) ⇒ (1) is trivial. The statement (1) ⇒
(3) is also trivial. We claim (3) ⇒ (2). AssumeMα(u) andMβ(u

′) are homotopy equivalent. Then,
H∗(Mα(u)) ∼= H∗(Mβ(u

′)). Therefore, it follows from Lemma 5.1 that u = u′. Moreover, in this
case, π6(Mα(u)) ∼= π6(Mβ(u)). If α ̸≡ β mod 2, then this gives a contradiction to Proposition 5.2.
Hence, α ≡ β mod 2. We have (3) ⇒ (2). This establishes Theorem 5.2. �

In summary, by Lemma 5.1 and Theorem 5.2, we have the following corollary:

Corollary 5.6. The set of 8-dimensional CP -manifolds does not satisfy the cohomological
rigidity.

This establishes Theorem 1.2 (2).
Note that if we restrict the class of 8-dimensional CP -manifolds to the 8-dimensional gen-

eralized Bott manifolds with height 2, then cohomological rigidity holds by [CMS10]. On the
other hand, the following question seems to be natural to ask for the class of CP -manifolds CPM
instead of the cohomological rigidity problem.

Problem 5.7. Is the class of CP -manifolds CPM (up to diffeomorphism) determined by
their homotopy types? More precisely, are M1,M2 ∈ CPM diffeomorphic if they have the same
homotopy types?

Acknowledgments

The first author would like to give heartful thanks to Prof. Nigel Ray whose comments and
helps to stay in University of Manchester were innumerably valuable. He also would like to thank
to Prof. Yael Karshon in University of Toronto for giving him an excellent circumstances to do
research.

References

[AtRe] M.F. Atiyah and E. Rees, Vector bundles on projective 3-space, Invent. Math. 35 (1976), 131–153.
[Bo] A. Borel, Sur la cohomologie des espaces fibres principaux et des espaces homogenes de groupes de Lie com-

pacts, Ann. of Math., 57 (1953) 115–207.
[BuPa] V.M. Buchstaber and T.E. Panov, Torus Actions and Their Applications in Topology and Combinatorics,

University Lecture, 24, Amer. Math. Soc., Providence, R.I., 2002.
[Ch] S. Choi, Classification of Bott manifolds up to dimension eight, arXiv:1112.2321.
[ChKu] S. Choi and S. Kuroki, Topological classification of torus manifolds which have codimension one extended

actions, Alg. Geom. Top., 11, (2011), 2655–2679.

[CMS10] S. Choi, M. Masuda, D.Y. Suh, Topological classification of generalized Bott manifolds, Trans. Amer.
Math. Soc. 362 (2) (2010) 1097–1112.

[CMS11] S. Choi, M. Masuda, D.Y. Suh, Rigidity Problems in toric topology, a survey, Proc. of the Steklov Inst.
of Math., 275, (2011), 177-190; arXiv:1102.1359.

10



[FIM] Y. Fukukawa, H. Ishida, M. Masuda The cohomology ring of the GKM graph of a flag manifold of classical
type, arXiv:1104.1832.

[KuSu] S. Kuroki and D. Y. Suh, Complex projective towers and their cohomological rigidity up to dimension six,
preprint.

[Ma10] M. Masuda, Cohomological non-rigidity of generalized real Bott manifolds of height 2, Tr. Mat. Inst.
Steklova 268 (2010), Differentsialnye Uravneniya i Topologiya. I, 252–257.

[MaSu] M. Masuda, D.Y. Suh, Classification problems of toric manifolds via topology, Proc. of Toric Topology,
Contemp. Math., 460 (2008), 273–286.

[MiSt] J.W. Milnor, J.D. Stasheff, Characteristic classes, Princeton Univ. Press, 1974.
[MiTo] M. Mimura, H. Toda, Homotopy groups of SU(3), SU(4) and Sp(2), J. Math. Kyoto Univ. 3 (1963/1964),

217–250.

Osaka City University Advanced Mathematical Institute (OCAMI), Osaka, Japan and Department
of Mathematics, University of Toronto, Toronto, Canada

E-mail address: kuroki@scisv.sci.osaka-cu.ac.jp/shintaro.kuroki@utoronto.ca

School of Mathematical Science, Korea Advanced Institute of Science and Technology, Daejeon,
Korea

E-mail address: dysuh@math.kaist.ac.kr

11


