A MEAN VALUE PROPERTY FOR POLYCALORIC FUNCTIONS
MEGUMI SANO

AsstracT. In this paper we prove a mean value property for polycaloric
functions in one space dimensional case. The proof given here is a slight
modification of that of the recent paper by Da Lio and Rodino [3] and
seems more straightfoward.

1. INTRODUCTION

There are many papers that deal with a mean value property for polyhar-
monic functions (see [1, 2, 4, 6, 7] etc.). Especially, in 2011, G. Lysik ([7])
gave a simple and elegant proof of the following mean value property for
polyharmonic functions and its inverse. Lmate N and letU be a domain
in RN, If ue C?™(U) andA™u = 0, then for any balBg(x) c U it holds

m

AXu(X)
dy= ) ——~ RX
IBROX)| Jere ui)dy kZ:(; 445 + 1)k!

where @)y =a(a+1)---(a+ k-1)fork e N.

The main subject of this paper concerns the heat version of the result
(1.1). First, we fix some terminologies. Let ¢ RN be an open set and
Ur = U x (0, T] denote a parabolic cylinder. We say that a function
defined onU+ is caloric if uis a solution of the linear heat equatiah ¢
AJU(x,t) = 0, (x,t) € Ur, whereA, = Z{ilj—;. Also, in this paperu
is calledpolycaloricif u is a solution of the eduatiorﬁ,(— A)Mu(x, t) =
0, (x,t) € Ut for somem € N. For fixedx € RN,t € R, andr > 0, let

(1.1)

E(x,t;r):{(y,s)eRNxR S<t,O(x-y,t—19) > riN}

denote a heat ball with a top point €), where

#ex i (xe RNt >0)
o) ={ @ P\ :

0 (xeRN,t<0)
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is the fundamental solution of the heat equation. Note that a heat ball is
symmetric abouy;-axis ( = 1,--- ,N) and

E(0,0;1)= {(y, 9 eRVXR| - 4—1ﬂ < s<0,]yl < v2Nslog (—47rs)}.

It is well known that caloric functions possess the mean value property.
Namely, ifuis caloric onUr, then for each heat bali(x, t;r) c Ut it holds

1 X =y
(1.2) u(x, t) Y ffE(X’t;r) u(y, s) - S)Zdyds
(see [5]: p.p 53-54 Theorem 3, or [10]). There is also an inverse mean value
property of caloric functions under certain conditions ([9]).

Heat version of the result (1.1) is also known. Namely, in 2006, F. Da
Lio and L. Rodino [3] proved the following asymptotic expansion formula
for the heat integral mean (1.2) as a power series with respect to the radius
of the heat ball:

Letu e C*(RN*1) and , t) € RN*1, then it holds

1 X — y?
1.3 —ff u(y, s dyds
(13) 4N JJexn v )(t—52 Y
M

= u(x, t) + Z r&XHuu(x, t) + O(rz'\’”z) asr — 0,
o1

whereHy is given by

N k-1
(1.4) Hill = Bin (at - mAX) @ — AU
and )
N 1 N \2*1/1
— (_1\_ " -
m“_(l)MQk+m(%+N) (M)'

One of the key ideas in [3] is to introduce thetdrential operatoHy
which is thek-th power of diferent heat operators whosedtdsion codi-
cients depending on the iteration numkgthough the exact meaning Hi
is less clear. Eventually, after some calculations we realize that

k-1 I k—=1-1
_ kK-1\(_2 \( N vy
Hku—ﬁk,N;( | )(2k+N)(2k+N) (- A @)

so the formula (1.3) can be considered as the generalization of (1.1) to
the polycaloric case.

In this paper, we prove the formula (1.3) in [3] by another method, when
the space dimensioN = 1. We do not need to introduce the weighted
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powerHy and, in the author’s opinion, the method seems more straightfor-
ward.

In the following, we setX,t) = (0,0) to simplify the description. Let
u:RNxR — R be a smooth functioru(need not be a caloric or polycaloric
function). Sete(r) = E(0,0,r) and put

1 X _ 2 WP
(1.5) ¢(r) = — u(x, t) —-dxdt= u(ry, r°s)=—-dyds
r E(r) t E(1) S

In the following, we will carry out the Maclaurin expansion @ffr) with
respect ta € R. By the argument in [5], we deduce

oB(r) = —4Nr ff (2 - AX) u(ry, r2s)y(ry, r’s)dyds
) \Ot

Iyi?

N
wherey(y, S) = 5 log (—4rs) + s

+ Nlogr. Moreover, we get

#@(r) = —-4N ffE(l) (% - Ax) u(ry, r2s) [(N + Ly(ry, r?s) — N] dyds

by integration by parts. Therefore we obtain
90 =0,
2NZ+2
¢P0)= — (ﬁ _
a(N +2)z+2 ot
N%+l

—N,andf ry,r’s)dyds= ——.
2n(N + 2)2*! E1) wry. res)dy 2n(N + 2)2+?
However, it seems flicult to calculatep™(0) by integration by parts

whenn > 3, since
59(r) = M

AX) u(0, 0),

N

sincelE(1) =

f (0r — AU(ry, r?s) [N — (N + 2)u(ry, rzs)] dyd%
EQ)

+2r

f (0t — A [deu(ry. r?s) — Au(ry, rPu(ry. r’s)| s dyd%.
E(L)

Therefore we calculat@™(0) by the diferent method.

Theorem 1. LetN=1,ue C®(Ut), r > 0and Me N. Then we have
M ok k-1

o(r) = 4u(0.0) + rk—l > @~ 32)<(@)'u(0.0) x Ciye + O M) ast — O,
k=1 7 1=0

—1) _

(-1)*4 3(k| 1)(2k)|_
(4m)k(2k + 1)<+ 2
Theorem 1 is the formula (1.3) in one space dimensional case.

where Gy =
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2. PROOF OF THE THEOREM 1

In this section, we prove Theorem 1. Sét) = u(x,t) = u(ry, r?s) for
(v, s) € RN x R. By differentiatings(r) directly, we have

2
(2.1) #™(0) = f \/(”)(O)Mdyds
E(D) &
In the following, we use standard notations of multi-indicesyfer (yy, - - -
,¥n) € RN and a multi-indexa = (a1,---,an) € NN, we writey* =

Yt Yy andlel = @1 + --- + an. Next lemma concerns the evaluation
of Vi(0) and is valid for general dimensidhe N.

Lemma 2 ( V(0) ). For k € Ny, we obtain

(2.2) v®1(0) = 0,
k
(2.3) v#0) = > > (@2P(3)u(0,0) x Asi(y, 9
j=0 |Bl=k-]
where (24
J
Auds:9) = Gt S
Proof. Sincev(r) is aC* function ofr, for all M > 1 we have
2M+1\ (n) (0)
(2.4) v(r) = Z e O(r?M+2) asr — 0.
n=0 ’

On the other hand, sincgr) is a composed function ai(x,t) and x =
ry,t = r?s, we have
2M+1 m
N NG 2M+2
0=, (0 =+ o+ 95 ) 0.0+ 0
2M+1
- Z > ﬁ(ry)a(r 9)1(826})u(0, 0) + O(r2V+2)
a1 anN
m=0 " lal+j=m
(2.5)

2M+1

_ Z Z Jy = (aaaj)u(o O)Xr|a|+21 +O(r2M+2)

m=0 |al|+j= m

By comparing the cdécients ofr" in the both expressions of (2.4) and
(2.5), we obtain

V() 'S
= = sz,-:na!_i! (8;0})u(0, 0).
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Thus,

#(0) = f E(l)v(”)(O)lyl dyds

_ n! @ ql J|y|2
= > == (3:0)u(0,0) x y‘”s ~dyds.
4 o]l
le|+2j=n
SinceE(1) is symmetric aboug-axis( = 1,--- , N), ffE(l)y"sj%dydsvan-
ishes when at least ong of @ = (ay,--- ,ay) IS odd (i.e. whem is odd

becausér| + 2] = n). This proves (2.2). Next, we consider the case 28
for somes € NY) and letn = 2k (k € N). Then we obtain

V0= Y @F0)u0,0)x L g

281+2)=2k @Bt
: 2 j (2K)! s
= ; wgk;j(@x)ﬁ (01)'u(0, 0) x 28)'] lygg

which implies (2.3).

Lemma 3 (Factorization) Let N= 1. Then
K

(2.6) V®(0) = > (3 - 93(8)'u(0,0) x Bi(y, 9
=0
where
|
@7 B9 = (-1 Z‘)( )¢ A9

forO<I<k.
Proof. By the assumptiolN = 1 and (2.3), it is enough to prove that

k k
(2.8) Y ()I@)u(0,0)x Acjx = Y (3 — 8)(3)'u(0,0) x By
j=0 1=0

We prove (2.8) by comparing the diieients of (2)<1(8;)'u(0, 0) in both
sides.
Since
k
Z(at — 09K1(8)'u(0, 0)B
1=0
= (B — 0)*U(0, 0)Boy + (0 — %) (8)U(0, 0)Byx + - - - + (81)“u(0, 0)B,
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the codficient of ©2)%1(4;)'u(0, 0) on the right hand side of (2.8) is given
by
i k k-1 k-2
(_1)k J[( k—J )BO,k+( k_J )Bl,k+( k—J )BZ,k+"'
k—j+1 K-
St LS PyLH

j
i k-1
— (—1)]
=(-1) |Z(;( K= | )Bl,k~
Inserting the definition 0B, in (2.7) into this expression, we assure that
the codficient of (2)<J(0,)'u(0, 0) on the right hand side of (2.8) is given
by

j |
@9 U i( P (SR O () PP
1=0

m=0
Since

ZJ:( E:lj )(—1)k+lzll( k—:n+m )Ak—l+m,k

1=0 m=0
(1K )ear(§ )
} (-1 [( ko 1 )Ak—lk+( I; )Ak,k]
_12 (-1)<? [( k62 )Ak—z,k+( kl 1 )Ak—l,k+( ; )Ak,k]
ES e (T NRTIN
codficients ofA_jx forall0 <i < j—1in(2.9) is given by
j—i . .
(-1 (1) ZO(—l)”( " )( <! )
j—i . . .
- (—1)‘-12(—1)”( o )( ! )=o,
n=0

p
where the last equality comes froE(—l)”( E ) =(-1+1)f=0.

n=0
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Then we prove that
(2.10)

St e B (£ e

1=0 m=0

Therefore, by (2.9) and (2.10), the ¢heient of (2)<1(a,)'u(0,0) on the
right hand side of (2.8) ig_;k. We have thus proved Lemma 3. O

From (2.1) and (2.6), we deduce

k
(211)  ¢®(0)= > (3 - )"(3)'u(0,0) x f f Bi(y, 9)dyds
1=0

E(1)

Note that, on the right hand side of (2.11), the heat operator §2) acts
onu except for = k.

Lemma 4. We put

o y?
Cik= H Bik(y, ) dyds
E(1) S

Then we get

2.12) (2K)!(~1)4 ( k-1

= 2k)'
Y K@k + i | )( )
for0<|<k-1andC = 0.

Proof. We prove Lemma 4 by simple calculations. First, by the definition
of Bl,k in (27)

[ k=1+m (2K)! . _
— (1 \k+l k—2l+2mJd-m
Buc=(=1) ;( m )(2k—2|+2m)!(|—m)!y2 s
for 0 < | < k, we have
|
R K-+l k—l+m (Zk)! k—21+2m+2 J-m-
Cie=(=1) ;}( m )(2k—2|+2m)!(|—m)!fE(1)y2 i dyds
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Direct calculation shows that

s=0
k—2|+2m+2§—m—2d dS: f Sl—m—2f k—2|+2m+2d dS
~f‘E(1)yz y s=-1/4n yi< \/Zslog (—47rs)y2 Y

2
~ (2k-2l +2m+3)

1\ —mok—l+m+ 3 00
- (D)2 i - f theteme3 exp(— (k + }) t)dt
(k=1+m+ 3)(4r)<z Jo 2

_ ()T k - |+ m+ 3)
(Am)k V(2K + 1)ktrme3

0
f d-m2(25]og (—4r9)) ™ ds
-1/4n

wherel(-) is the Gamma function. Thus, we get

. (—1)X(2K)!4%'8 (=1 (k =1+ m)4TC(k - |+ m+ )
Cuxe = () V(2K + 15 (k— 1)1 ;) mi(2k — 2| + 2m)!(I - m)!(2k + 1)™

K@M (K)o, g |\ 2k=2+2m+1
 KI(4m)k(2K + 1)k—'+2( l )mz;)( 2 (m) (2k+ 1)

where the last equality comes from the fE¢s + 1) = sI'(S).
Since we have the following equation

|
(2K + 1) Z(—l)’“( ! ) x _(22;: f;,?f :
m:OI | -1 |
= (2k + 1)2( " )(—1)”‘(2k + 1) 22(—1)"‘( o )(I —m)(2k+ 1)
m=0 m=0

-1

= (2k+ 1)(2)' - 21(2k + 1)2(_1)m( -1 )(2k+ 1y
m=0

= 2(k — (2K (2k + 1)

Therefore we obtai€,, = 0 and (2.12). O

From all Lemmas, we obtain

k-1

$@(0) = > (0 - )(@)'u©,0)x Cix (k=12,..)),
1=0

which proves Theorem 1.
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3. A MEAN VALUE PROPERTY FOR POLYCALORIC FUNCTIONS

In this section, first we recall the well-known regularity property of (poly-
) caloric functions.

Proposition 5 (caloric function is smooth)if u : Ur — R is caloric, then
ue COO(UT)

Proof. See [5]: p.p 59-61 Theorem 8. O

Proposition 6 (polycaloric function is smooth)fu : Ut — Ris polycaloric,
then ue C*(Ur).

Proof. Assume that there exista € N such that ¢, — Ay)™u = 0 in Ur.
Then we find caloric functionsg, us, - - - , Uyn1 : U — R such that

(3.1) u(x, t) = Up(X, t) + tuy (X, t) + - - - + t™ U 1(X, 1)

holds true, by proposition 1 in [8]. Indeed, for= 1,2,---,m, we may
choose

k .
Un-j(X, 1) = (m- 1 i 2 Z = t) — A)™ *Ry(x, 1).

Thereforeug, U, - - - , Un_1 are caloric and satisfy the equation (3.1). By
proposition 5 and (3.1), we obtaine C*(Ur). O

By proposition 5 and proposition 6, we obtain several corollaries which
are proved by Da Lio and Rodino [3] as follows. We do not need the ad-
ditional assumption thatl is smooth, after assuming thatis caloric or
polycaloric.

corollary 7 (A mean value property for analytic functions. [3] Proposition
2.2). Let N=1and ue C*(Ut). Assume thaf; — A )u(x, t) is an analytic
function in Ur. Theng(r) given in (1.5) is an analytic function ofe R in

a neighborhood of = 0, and it holds

x - y)?
ffE(xt ;) U(y, S) (t )2 dyds

) k-1
= u(xt) + Z - Z(at 923 u(x t) x Cix
k=1 k!
) (—1)k4 ( k-1 ) .
YT G = i @r 1 (2

Remark8. If uis caloric onUy, thenu € C*(Ut) and @; — A)u(x,t) is
obviously analytic inJ+ and for each heat bai(x, t; r) c Ut the following
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W2 e
f*[E(xt ") 1o S) (t-9? dyds= u(x1).

corollary 9 (A mean value property for polycaloric functiond)et N = 1
and (d; — Ayu(x,t) be an analytic function in . If u is polycaloric on
Ur (i.e(0s — 6§)mu(y, s) =0, (y,9 € Ur, me N), then for each heat ball
E(x,t;r) c Ut the following equality holds:

-y)?
ffmm w095 (=92 vas

m-1 o k-1

=u(xt) + Z rk—' Z((?t — 0% (8)'u(x, t) x Ci

equation holds:

2k

0 k-1
r
* Z ki D (0= 32)0)'uc 1) x Cig,
=m I=k—m+1

. (-1)4 ( k-1 ) .
Were = ks 1 (&

Proof. This is a direct consequence of Theorem 1 and Proposition 61

corollary 10 ([3]Corollary 2.1) Let N = 1. Suppose that there existn 0
and n > 1 such that

(0 — 2)(0)™u = 0and(d, — 02)™u = 0in Ur.
Then for all r> O we have

2
(3.2) —ffE(X”) u(y, s) = y))2 dyds

M 2kkl

= u(x 1) + Z . Z(at 32)(@)'u( 1) x Cig

with M = n; + np — 1(when n = 0 or n, = 1 the sum in the right-hand side
of (3.2) does not appear).

Proof. Note that we geti € C*(U7), sinceu is polycaloric inUt. See the
proof of corollary 2.1 in [3]. O

We finally give a mean value property for the higher order heat equation
ou + (-1)™"A™u = 0 (m € N) for general dimension. In the proof, we use
proposition 2.2 and a result in the proof of proposition 2.1 in [3].

Proposition 11 (A mean value property for the higher order heat equation)
Let ue C*(Ut) and (d; — A u(x, t) be an analytic function in iJ. Assume
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that u is a solution of the higher order heat equatin + (-1)"A™u = 0.
Then for each heat ball &, t;r) c Ut the following equality holds:

X =y 2%
(3.3) ffE(m) u(y, s) )zdyds u(xt) + Zr Hyu(x, t),

where H is glven by
h

N MK+(1—m, -
plzN § (- 1)“( )(N 2h)(2k N) AM=my (m s odd)
HkUZ h=0

k
’% Z( ](N ; 2h)( 2kN N) ATKA-Mhy (- ever)

h=0
1 N (21
h _ ( ) = .
WHeTe N = S TN 2K+ N (477)

Proof. Let p € N. Note thatu satisfies
p AP™u,  (m: odd)
o{u=
(-=1)PAPMu, (m: even)

sinceuis a smooth solution of the higher order heat equatjam(—1)"AMu =
0. On the other hand, (3.3) holds by proposition 2.2 in [3], and according to
aresultin [3] (p,268, line 2 and 9 is given by

(35)  Hu="2xN Z( 1)% h( E )(N + 2h)(2kT N)h A"@)*"u.

(3.4)

Finally, combining (3.4) and (3.5), we get the proposition 11. O
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