
A MEAN VALUE PROPERTY FOR POLYCALORIC FUNCTIONS

MEGUMI SANO

Abstract. In this paper we prove a mean value property for polycaloric
functions in one space dimensional case. The proof given here is a slight
modification of that of the recent paper by Da Lio and Rodino [3] and
seems more straightfoward.

1. Introduction

There are many papers that deal with a mean value property for polyhar-
monic functions (see [1, 2, 4, 6, 7] etc.). Especially, in 2011, G. Lysik ([7])
gave a simple and elegant proof of the following mean value property for
polyharmonic functions and its inverse. Letm ∈ N and letU be a domain
in RN. If u ∈ C2m(U) and∆mu = 0, then for any ballBR(x) ⊂ U it holds

1
|BR(x)|

∫
BR(x)

u(y)dy=
m∑

k=0

∆ku(x)

4k( N
2 + 1)kk!

R2k(1.1)

where (a)k = a(a+ 1) · · · (a+ k− 1) fork ∈ N.
The main subject of this paper concerns the heat version of the result

(1.1). First, we fix some terminologies. LetU ⊂ RN be an open set and
UT = U × (0,T] denote a parabolic cylinder. We say that a functionu
defined onUT is caloric if u is a solution of the linear heat equation (∂t −
∆x)u(x, t) = 0, (x, t) ∈ UT , where∆x =

∑N
i=1

∂2

∂x2
i
. Also, in this paper,u

is calledpolycaloric if u is a solution of the equation (∂t − ∆x)mu(x, t) =
0, (x, t) ∈ UT for somem ∈ N. For fixedx ∈ RN, t ∈ R, andr > 0, let

E(x, t; r) =

{
(y, s) ∈ RN × R

∣∣∣∣ s≤ t,Φ(x− y, t − s) ≥ 1
rN

}
denote a heat ball with a top point (x, t), where

Φ(x, t) =


1

(4πt)N/2
exp

(
−|x|

2

4t

)
(x ∈ RN, t > 0)

0 (x ∈ RN, t < 0)
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is the fundamental solution of the heat equation. Note that a heat ball is
symmetric aboutyi-axis (i = 1, · · · ,N) and

E(0,0; 1)=

{
(y, s) ∈ RN × R | − 1

4π
≤ s< 0, |y| ≤

√
2Nslog (−4πs)

}
.

It is well known that caloric functions possess the mean value property.
Namely, ifu is caloric onUT , then for each heat ballE(x, t; r) ⊂ UT it holds

(1.2) u(x, t) =
1

4rN

"
E(x,t ;r)

u(y, s)
|x− y|2
(t − s)2

dyds

(see [5]: p.p 53-54 Theorem 3, or [10]). There is also an inverse mean value
property of caloric functions under certain conditions ([9]).

Heat version of the result (1.1) is also known. Namely, in 2006, F. Da
Lio and L. Rodino [3] proved the following asymptotic expansion formula
for the heat integral mean (1.2) as a power series with respect to the radius
of the heat ball:

Let u ∈ C∞(RN+1) and (x, t) ∈ RN+1, then it holds

1
4rN

"
E(x,t;r)

u(y, s)
|x− y|2
(t − s)2

dyds(1.3)

= u(x, t) +
M∑

k=1

r2kHku(x, t) +O
(
r2M+2

)
asr → 0,

whereHk is given by

(1.4) Hku = βk,N

(
∂t −

N
2k+ N

∆x

)k−1

(∂t − ∆x) u

and

βk,N = (−1)k
N
k!

1
(2k+ N)

( N
2k+ N

) N
2 +1 (

1
4π

)k

.

One of the key ideas in [3] is to introduce the differential operatorHk

which is thek-th power of different heat operators whose diffusion coeffi-
cients depending on the iteration numberk, though the exact meaning ofHk

is less clear. Eventually, after some calculations we realize that

Hku = βk,N

k−1∑
l=0

(
k− 1

l

) (
2k

2k+ N

)l ( N
2k+ N

)k−1−l

(∂t − ∆x)
k−l (∂t)

lu,

so the formula (1.3) can be considered as the generalization of (1.1) to
the polycaloric case.

In this paper, we prove the formula (1.3) in [3] by another method, when
the space dimensionN = 1. We do not need to introduce the weighted
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powerHk and, in the author’s opinion, the method seems more straightfor-
ward.

In the following, we set (x, t) = (0, 0) to simplify the description. Let
u : RN×R→ R be a smooth function (u need not be a caloric or polycaloric
function). SetE(r) = E(0,0, r) and put

(1.5) ϕ(r) =
1
rN

"
E(r)

u(x, t)
|x|2
t2

dxdt=
"

E(1)
u(ry, r2s)

|y|2
s2

dyds.

In the following, we will carry out the Maclaurin expansion ofϕ(r) with
respect tor ∈ R. By the argument in [5], we deduce

ϕ(1)(r) = −4Nr
"

E(1)

(
∂

∂t
− ∆x

)
u(ry, r2s)ψ(ry, r2s)dyds

whereψ(y, s) = −N
2

log (−4πs) +
|y|2
4s
+ N log r. Moreover, we get

ϕ(2)(r) = −4N
"

E(1)

(
∂

∂t
− ∆x

)
u(ry, r2s)

[
(N + 1)ψ(ry, r2s) − N

]
dyds

by integration by parts. Therefore we obtain

ϕ(1)(0) = 0,

ϕ(2)(0) =
2N

N
2 +2

π(N + 2)
N
2 +2

(
∂

∂t
− ∆x

)
u(0,0),

since|E(1)| = N
N
2

2π(N + 2)
N
2 +1

, and
"

E(1)
ψ(ry, r2s)dyds=

N
N
2 +1

2π(N + 2)
N
2 +2

.

However, it seems difficult to calculateϕ(n)(0) by integration by parts
whenn ≥ 3, since

ϕ(3)(r) =
4N(N + 1)

r

["
E(1)

(∂t − ∆x)u(ry, r2s)
[
N − (N + 2)ψ(ry, r2s)

]
dyds

]
+2r

["
E(1)

(∂t − ∆x)
[
∂tu(ry, r2s) − ∆xu(ry, r2s)ψ(ry, r2s)

]
s dyds

]
.

Therefore we calculateϕ(n)(0) by the different method.

Theorem 1. Let N= 1, u ∈ C∞(UT), r > 0 and M∈ N. Then we have

ϕ(r) = 4u(0, 0)+
M∑

k=1

r2k

k!

k−1∑
l=0

(∂t − ∂2
x)

k−l(∂t)
lu(0,0)×Cl,k +O(r2M+2) as r→ 0,

where Cl,k =
(−1)k4

(4π)k(2k+ 1)k+
3
2

(
k− 1

l

)
(2k)l .

Theorem 1 is the formula (1.3) in one space dimensional case.
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2. Proof of the theorem 1

In this section, we prove Theorem 1. Setv(r) = u(x, t) = u(ry, r2s) for
(y, s) ∈ RN × R. By differentiatingϕ(r) directly, we have

(2.1) ϕ(n)(0) =
"

E(1)
v(n)(0)

|y|2
s2

dyds.

In the following, we use standard notations of multi-indices; fory = (y1, · · ·
, yN) ∈ RN and a multi-indexα = (α1, · · · , αN) ∈ NN

0 , we write yα =
yα1

1 · · · y
αN
N and |α| = α1 + · · · + αN. Next lemma concerns the evaluation

of v(n)(0) and is valid for general dimensionN ∈ N.

Lemma 2 ( v(n)(0) ). For k ∈ N0, we obtain

v(2k−1)(0) = 0,(2.2)

v(2k)(0) =
k∑

j=0

∑
|β|=k− j

(∂2
x)
β(∂t)

ju(0,0)× Aβ,k(y, s)(2.3)

where

Aβ,k(y, s) =
(2k)!

(2β)! j!
y2βsj .

Proof. Sincev(r) is aC∞ function ofr, for all M ≥ 1 we have

(2.4) v(r) =
2M+1∑
n=0

v(n)(0)
n!

rn +O(r2M+2) asr → 0.

On the other hand, sincev(r) is a composed function ofu(x, t) and x =
ry, t = r2s, we have

v(r) =
2M+1∑
m=0

1
m!

(
(ry1)

∂

∂x1
+ · · · + (ryN)

∂

∂xN
+ (r2s)

∂

∂t

)m

u(0,0)+O(r2M+2)

=

2M+1∑
m=0

1
m!

∑
|α|+ j=m

m!
α1! · · ·αN! j!

(ry)α(r2s) j(∂αx∂
j
t )u(0,0)+O(r2M+2)

=

2M+1∑
m=0

∑
|α|+ j=m

yαsj

α! j!
(∂αx∂

j
t )u(0,0)× r |α|+2 j +O(r2M+2).

(2.5)

By comparing the coefficients ofrn in the both expressions of (2.4) and
(2.5), we obtain

v(n)(0)
n!

=
∑
|α|+2 j=n

yαsj

α! j!
(∂αx∂

j
t )u(0,0).
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Thus,

ϕ(n)(0) =
"

E(1)
v(n)(0)

|y|2
s2

dyds

=
∑
|α|+2 j=n

n!
α! j!

(∂αx∂
j
t )u(0,0)×

"
E(1)

yαsj |y|2
s2

dyds.

SinceE(1) is symmetric aboutyi-axis(i = 1, · · · ,N),
!

E(1)
yαsj |y|2

s2 dydsvan-
ishes when at least oneαi of α = (α1, · · · , αN) is odd (i.e. whenn is odd
because|α| + 2 j = n). This proves (2.2). Next, we consider the caseα = 2β
for someβ ∈ NN

0 and letn = 2k (k ∈ N). Then we obtain

v(2k)(0) =
∑

2|β|+2 j=2k

(∂2
x)
β(∂t)

ju(0,0)× (2k)!
(2β)! j!

y2βsj

=

k∑
j=0

∑
|β|=k− j

(∂2
x)
β(∂t)

ju(0,0)× (2k)!
(2β)! j!

y2βsj ,

which implies (2.3).
�

Lemma 3 (Factorization). Let N= 1. Then

(2.6) v(2k)(0) =
k∑

l=0

(∂t − ∂2
x)

k−l(∂t)
lu(0,0)× Bl,k(y, s)

where

(2.7) Bl,k(y, s) = (−1)k+l
l∑

m=0

(
k− l +m

m

)
× Ak−l+m,k(y, s)

for 0 ≤ l ≤ k.

Proof. By the assumptionN = 1 and (2.3), it is enough to prove that

(2.8)
k∑

j=0

(∂2
x)

k− j(∂t)
ju(0,0)× Ak− j,k =

k∑
l=0

(∂t − ∂2
x)

k−l(∂t)
lu(0,0)× Bl,k.

We prove (2.8) by comparing the coefficients of (∂2
x)

k− j(∂t) ju(0,0) in both
sides.

Since
k∑

l=0

(∂t − ∂2
x)

k−l(∂t)
lu(0,0)Bl,k

= (∂t − ∂2
x)

ku(0,0)B0,k + (∂t − ∂2
x)

k−1(∂t)u(0,0)B1,k + · · · + (∂t)
ku(0,0)Bk,k,
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the coefficient of (∂2
x)

k− j(∂t) ju(0,0) on the right hand side of (2.8) is given
by

(−1)k− j

[(
k

k− j

)
B0,k +

(
k− 1
k− j

)
B1,k +

(
k− 2
k− j

)
B2,k + · · ·

+

(
k− j + 1

k− j

)
Bj−1,k +

(
k− j
k− j

)
Bj,k

]
= (−1)k− j

j∑
l=0

(
k− l
k− j

)
Bl,k.

Inserting the definition ofBl,k in (2.7) into this expression, we assure that
the coefficient of (∂2

x)
k− j(∂t) ju(0,0) on the right hand side of (2.8) is given

by

(2.9) (−1)k− j
j∑

l=0

(
k− l
k− j

)
(−1)k+l

l∑
m=0

(
k− l +m

m

)
× Ak−l+m,k.

Since
j∑

l=0

(
k− l
k− j

)
(−1)k+l

l∑
m=0

(
k− l +m

m

)
Ak−l+m,k

=

(
k

k− j

)
(−1)k

(
k
0

)
Ak,k

+

(
k− 1
k− j

)
(−1)k+1

[(
k− 1

0

)
Ak−1,k +

(
k
1

)
Ak,k

]
+

(
k− 2
k− j

)
(−1)k+2

[(
k− 2

0

)
Ak−2,k +

(
k− 1

1

)
Ak−1,k +

(
k
2

)
Ak,k

]
+ · · ·

+

(
k− j
k− j

)
(−1)k+ j

[(
k− j

0

)
Ak− j,k + · · · +

(
k− 1
j − 1

)
Ak−1,k +

(
k
j

)
Ak,k

]
,

coefficients ofAk−i,k for all 0 ≤ i ≤ j − 1 in (2.9) is given by

(−1)k− j(−1)k+i
j−i∑

n=0

(−1)n
(

k− i − n
k− j

) (
k− i

n

)

= (−1)i− j
j−i∑

n=0

(−1)n
(

k− i
k− j

) (
j − i
n

)
= 0,

where the last equality comes from
p∑

n=0

(−1)n
(

p
n

)
= (−1+ 1)p = 0.
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Then we prove that
(2.10)

j∑
l=0

(
k− l
k− j

)
(−1)k+l

l∑
m=0

(
k− l +m

m

)
Ak−l+m,k =

(
k− j
k− j

)
(−1)k+ jAk− j,k.

Therefore, by (2.9) and (2.10), the coefficient of (∂2
x)

k− j(∂t) ju(0,0) on the
right hand side of (2.8) isAk− j,k. We have thus proved Lemma 3. �

From (2.1) and (2.6), we deduce

ϕ(2k)(0) =
k∑

l=0

(∂t − ∂2
x)

k−l(∂t)
lu(0, 0)×

"
E(1)

Bl,k(y, s)dyds(2.11)

Note that, on the right hand side of (2.11), the heat operator (∂t − ∂2
x) acts

onu except forl = k.

Lemma 4. We put

C̃l,k =

"
E(1)

Bl,k(y, s)
y2

s2
dyds.

Then we get

C̃l,k =
(2k)!(−1)k4

k!(4π)k(2k+ 1)k+
3
2

(
k− 1

l

)
(2k)l(2.12)

for 0 ≤ l ≤ k− 1 andC̃k,k = 0.

Proof. We prove Lemma 4 by simple calculations. First, by the definition
of Bl,k in (2.7)

Bl,k = (−1)k+l
l∑

m=0

(
k− l +m

m

)
(2k)!

(2k− 2l + 2m)!(l −m)!
y2k−2l+2msl−m

for 0 ≤ l ≤ k, we have

C̃l,k = (−1)k+l
l∑

m=0

(
k− l +m

m

)
(2k)!

(2k− 2l + 2m)!(l −m)!

"
E(1)

y2k−2l+2m+2sl−m−2dyds.
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Direct calculation shows that"
E(1)

y2k−2l+2m+2sl−m−2dyds=
∫ s=0

s=−1/4π
sl−m−2

∫
|y|≤
√

2slog (−4πs)
y2k−2l+2m+2dyds

=
2

(2k− 2l + 2m+ 3)

∫ 0

−1/4π
sl−m−2 {

2slog (−4πs)
}k−l+m+ 3

2 ds

=
(−1)l−m2k−l+m+ 3

2

(k− l +m+ 3
2)(4π)k+ 1

2

∫ ∞

0
tk−l+m+ 3

2 exp

(
−

(
k+

1
2

)
t

)
dt

=
(−1)l−m4k−l+m23Γ(k− l +m+ 3

2)

(4π)k
√
π(2k+ 1)k−l+m+ 5

2

whereΓ(·) is the Gamma function. Thus, we get

C̃l,k =
(−1)k(2k)!4k−l8

(4π)k
√
π(2k+ 1)k−l+ 5

2 (k− l)!

l∑
m=0

(−1)m(k− l +m)!4mΓ(k− l +m+ 3
2)

m!(2k− 2l + 2m)!(l −m)!(2k+ 1)m
.

=
(−1)k(2k)!4

k!(4π)k(2k+ 1)k−l+ 5
2

(
k
l

) l∑
m=0

(−1)m
(

l
m

)
2k− 2l + 2m+ 1

(2k+ 1)m
,

where the last equality comes from the factΓ(s+ 1) = sΓ(s).
Since we have the following equation

(2k+ 1)l
l∑

m=0

(−1)m
(

l
m

)
2k− 2l + 2m+ 1

(2k+ 1)m

= (2k+ 1)
l∑

m=0

(
l
m

)
(−1)m(2k+ 1)l−m− 2

l−1∑
m=0

(−1)m
(

l
m

)
(l −m)(2k+ 1)l−m

= (2k+ 1)(2k)l − 2l(2k+ 1)
l−1∑
m=0

(−1)m
(

l − 1
m

)
(2k+ 1)l−m−1

= 2(k− l)(2k)l−1(2k+ 1)

Therefore we obtaiñCk,k = 0 and (2.12). �

From all Lemmas, we obtain

ϕ(2k)(0) =
k−1∑
l=0

(∂t − ∂2
x)

k−l(∂t)
lu(0,0)× C̃l,k (k = 1,2, . . .),

which proves Theorem 1.
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3. A mean value property for polycaloric functions

In this section, first we recall the well-known regularity property of (poly-
) caloric functions.

Proposition 5 (caloric function is smooth). If u : UT → R is caloric, then
u ∈ C∞(UT).

Proof. See [5]: p.p 59-61 Theorem 8. �

Proposition 6(polycaloric function is smooth). If u : UT → R is polycaloric,
then u∈ C∞(UT).

Proof. Assume that there existsm ∈ N such that (∂t − ∆x)mu = 0 in UT .
Then we find caloric functionsu0, u1, · · · , um−1 : UT → R such that

u(x, t) = u0(x, t) + tu1(x, t) + · · · + tm−1um−1(x, t)(3.1)

holds true, by proposition 1 in [8]. Indeed, forj = 1,2, · · · ,m, we may
choose

um− j(x, t) =
1

(m− j)!

j−1∑
k=0

(−t)k

k!
(∂t − ∆x)

m− j+ku(x, t).

Thereforeu0,u1, · · · ,um−1 are caloric and satisfy the equation (3.1). By
proposition 5 and (3.1), we obtainu ∈ C∞(UT). �

By proposition 5 and proposition 6, we obtain several corollaries which
are proved by Da Lio and Rodino [3] as follows. We do not need the ad-
ditional assumption thatu is smooth, after assuming thatu is caloric or
polycaloric.

corollary 7 (A mean value property for analytic functions. [3] Proposition
2.2). Let N= 1 and u∈ C∞(UT). Assume that(∂t −∆x)u(x, t) is an analytic
function in UT . Thenϕ(r) given in (1.5) is an analytic function of r∈ R in
a neighborhood of r= 0, and it holds

1
4r

"
E(x,t;r)

u(y, s)
(x− y)2

(t − s)2
dyds

= u(x, t) +
∞∑

k=1

r2k

k!

k−1∑
l=0

(∂t − ∂2
x)

k−l(∂t)
lu(x, t) ×Cl,k

where Cl,k =
(−1)k4

(4π)k(2k+ 1)k+
3
2

(
k− 1

l

)
(2k)l .

Remark8. If u is caloric onUT , thenu ∈ C∞(UT) and (∂t − ∆x)u(x, t) is
obviously analytic inUT and for each heat ballE(x, t; r) ⊂ UT the following
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equation holds:

1
4r

"
E(x,t;r)

u(y, s)
(x− y)2

(t − s)2
dyds= u(x, t).

corollary 9 (A mean value property for polycaloric functions). Let N = 1
and (∂t − ∆x)u(x, t) be an analytic function in UT . If u is polycaloric on
UT (i.e.(∂s − ∂2

y)
mu(y, s) = 0, (y, s) ∈ UT , m ∈ N), then for each heat ball

E(x, t; r) ⊂ UT the following equality holds:

1
4r

"
E(x,t;r)

u(y, s)
(x− y)2

(t − s)2
dyds

= u(x, t) +
m−1∑
k=1

r2k

k!

k−1∑
l=0

(∂t − ∂2
x)

k−l(∂t)
lu(x, t) ×Cl,k

+

∞∑
k=m

r2k

k!

k−1∑
l=k−m+1

(∂t − ∂2
x)

k−l(∂t)
lu(x, t) ×Cl,k,

where Cl,k =
(−1)k4

(4π)k(2k+ 1)k+
3
2

(
k− 1

l

)
(2k)l .

Proof. This is a direct consequence of Theorem 1 and Proposition 6.�

corollary 10 ([3]Corollary 2.1). Let N= 1. Suppose that there exist n1 ≥ 0
and n2 ≥ 1 such that

(∂t − ∂2
x)(∂t)

n1u = 0and(∂t − ∂2
x)

n2u = 0 in UT .

Then for all r> 0 we have

1
4r

"
E(x,t;r)

u(y, s)
(x− y)2

(t − s)2
dyds(3.2)

= u(x, t) +
M∑

k=1

r2k

k!

k−1∑
l=0

(∂t − ∂2
x)

k−l(∂t)
lu(x, t) ×Cl,k,

with M = n1 + n2 − 1(when n1 = 0 or n2 = 1 the sum in the right-hand side
of (3.2) does not appear).

Proof. Note that we getu ∈ C∞(UT), sinceu is polycaloric inUT . See the
proof of corollary 2.1 in [3]. �

We finally give a mean value property for the higher order heat equation
∂tu + (−1)m∆mu = 0 (m ∈ N) for general dimension. In the proof, we use
proposition 2.2 and a result in the proof of proposition 2.1 in [3].

Proposition 11(A mean value property for the higher order heat equation).
Let u∈ C∞(UT) and(∂t − ∆x)u(x, t) be an analytic function in UT . Assume
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that u is a solution of the higher order heat equation∂tu+ (−1)m∆mu = 0.
Then for each heat ball E(x, t; r) ⊂ UT the following equality holds:

(3.3)
1

4rN

"
E(x,t;r)

u(y, s)
|x− y|2
(t − s)2

dyds= u(x, t) +
∞∑

k=1

r2kHku(x, t),

where Hk is given by

Hku =


ρk,N

k!

k∑
h=0

(−1)k−h

 k

h

 (N + 2h)
( N
2k+ N

)h

∆mk+(1−m)hu, (m : odd)

ρk,N

k!

k∑
h=0

 k

h

 (N + 2h)
( N
2k+ N

)h

∆mk+(1−m)hu, (m : even)

where ρk,N =
1

2k+ N

( N
2k+ N

) N
2 +1 (

1
4π

)k

.

Proof. Let p ∈ N. Note thatu satisfies

∂
p
t u =

 ∆pmu, (m : odd)

(−1)p∆pmu, (m : even)
(3.4)

sinceu is a smooth solution of the higher order heat equation∂tu+(−1)m∆mu =
0. On the other hand, (3.3) holds by proposition 2.2 in [3], and according to
a result in [3] (p,268, line 2 and 9),Hk is given by

Hku =
ρk,N

k!

k∑
h=0

(−1)k−h

(
k
h

)
(N + 2h)

( N
2k+ N

)h

∆h(∂t)
k−hu.(3.5)

Finally, combining (3.4) and (3.5), we get the proposition 11. �
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