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Abstract. We know that the Gauss image, i.e. the image of the Gauss
map of an isoparametric hypersurface in the unit standard hypersphere
Sn+1(1) ⊂ Rn+2 provides a compact minimal Lagrangian submanifold em-
bedded in the complex hyperquadric Qn(C). In this paper we shall discuss
some properties and related problems on the intersection of the Gauss im-
ages of two isoparametric hypersurfaces. This work is in progress as a joint
work with Hui Ma (Tsinghua University, Beijing).

Introduction

Let (M,ω) be a 2n-dimensional symplectic manifold with a symplectic form
ω. A smooth immersion (resp. embedding) φ : L −→M of a smooth manifold
L into a symplectic manifold M is called a Lagrangian immersion (resp. La-
grangian embedding) if φ∗ω = 0 and dimL = n.

It is well-known that any smooth manifold Nn is a Lagrangian submanifold !
The cotangent vector bundle T ∗N has the standard symplectic structure ωstd =
dθcan, where θcan is a canonical 1-form on T ∗N defined by (θcan)(x,α)(X) :=
α(π∗X) for each X ∈ T(x,α)(T

∗N). Then the smooth manifold Nn can be iden-
tified with the zero section {0} of T ∗N , which is a Lagrangian submanifold
embedded in T ∗N relative to ωstd. For each 1-form ϕ on N , ϕ(N) considered
as a submanifold embedded in T ∗N is a Lagrangian submanifold of T ∗N rel-
ative to ωstd if and only if ϕ is a closed 1-form on N . Moreover, a Lagrangian
submanifold ϕ(N) embedded in (T ∗N,ωstd) is said to be a Hamiltonian de-
formation of N when ϕ is an exact 1-form on N , that is, ϕ = df for some
f ∈ C∞(N). Now we observe that (x, 0) ∈ N ∩ df(N) if and only if (df)x = 0.
A critical point of f on N is nothing but an intersection point of Lagrangian
submanifolds N and df(N)! Moreover, we can observe that Lagrangian sub-
manifolds N and df(N) intersect transversally at (x, 0) if and only if x is a
non-degenerate critical point of f . Hence we have that Lagrangian submani-
folds N and df(N) intersect transversally if and only if f is a Morse function
on N . Suppose that N is compact. Then by Morse inequality we obtain an
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inequality on intersection numbers of Lagrangian submanifolds

♯(N ∩ ϕ(N)) ≥ SB(N ;Z2)

for each Hamiltonian deformation ϕ(N) of N with transversal N ∩ϕ(N). Here
SB(N ;Z2) = dimZ2 H

∗(N ;Z2) denotes the sum of Betti numbers of N over
Z2. By the equivalence theorem for Lagrangian submanifolds ([20]) it is well-
known that any closed Lagrangian submanifold L embedded inM has a tubular
neighborhood symplectic diffeomorphic to a neighborhood of the zero section
of the cotangent vector bundle T ∗L of L. Therefore any closed Lagrangian
submanifold L embedded in a symplectic manifold M satisfies the inequality

♯(L ∩ ϕ(L)) ≥ SB(L;Z2)

for each sufficiently small Hamiltonian deformation ϕ(L) of L with transversal
L∩ϕ(L). The famous Arnold conjecture is asking to study whether the global
version of this inequality holds or not, that is,

♯(L ∩ ϕ(L)) ≥ SB(L;Z2)

for each ϕ ∈ Hamil(M,ω) with transversal L∩ϕ(L). Here Hamil(M,ω) denotes
the set of all time-dependent Hamiltonian diffeomorphisms of M , which is a
group. It is well-known that Andreas Floer provides the breakthrough to the
Arnold conjecture.

In this paper we shall give attention to a very special and nice class of com-
pact Lagrangian submanifolds embedded in complex hyperquadrics Qn(C),
which is a rank two Hermitian symmetric space of compact type. We know
that the Gauss image, i.e. the image of the Gauss map of an isoparametric hy-
persurface in the unit standard hypersphere Sn+1(1) ⊂ Rn+2 provides a com-
pact minimal Lagrangian submanifold embedded in the complex hyperquadric
Qn(C). In this paper we shall discuss some properties and related problems
on the intersection of the Gauss images of two isoparametric hypersurfaces in
the unit standard hypersphere.

The intersection point of the Gauss images of two isoparametric hypersur-
faces will be characterized in terms of critical points of an isoparametric func-
tion restricted to another isoparametric hypersurface. Moreover, the transver-
sal property at an intersection point of two Gauss images will be shown to
be equivalent to the non-degeneracy of the critical point. Based on such fun-
damental observations and using the structure theory of isoparametric hy-
persurfaces, we shall discuss some results on the non-empty property of the
intersection and the intersection number of two Gauss images.

Further interesting problems are to determine the intersection numbers ♯(L0∩
L1) and to compute the Lagrangian intersection Floer cohomology I∗(L0, L1 :
Qn(C)) for the Gauss images of isoparametric hypersurfaces.

This work is in progress as a joint work with Associate Professor Hui Ma
(Tsinghua University, Beijing).
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1. The Gauss images of isoparametric hypersurfaces in the unit
standard hypersphere

Let Qn(C) be a complex hyperquadrics of CP n+1 defined by the homoge-

neous quadratic equation z20 + z21 + · · ·+ z2n+1 = 0. Let G̃r2(Rn+2) be the real
Grassmann manifold of all oriented 2-dimensional vector subspaces of Rn+2

and Gr2(Rn+2) the real Grassmann manifold of all 2-dimensional vector sub-
spaces of Rn+2. We denote by [W ] a 2-dimensional oriented vector subspace W
of Rn+2 and by −[W ] the same vector subspace W of Rn+2 equipped with an

orientation opposite to [W ]. The map G̃r2(Rn+2) ∋ [W ] 7−→ W ∈ Gr2(Rn+2)
is the universal covering with the deck transformation group Z2 generated by
an involutive isometry

G̃r2(Rn+2) ∋ [W ] 7−→ −[W ] ∈ G̃r2(Rn+2).

Then we have the identification

Qn(C) ∋ [a+
√
−1b]←→ [W ] = a ∧ b ∈ G̃r2(Rn+2),

where {a,b} denotes an orthonormal basis of W compatible with the orienta-
tion of [W ].

LetNn be an oriented hypersurface of the unit standard hypersphere Sn+1(1) ⊂
Rn+2. Denote by x(p) the position vector of a point p ∈ Nn and by n(p) the
unit normal vector at a point p ∈ Nn to Nn in Sn+1(1) compatible to the
orientation. The Gauss map G : Nn → Qn(C) of Nn is defined by

G : Nn ∋ p −→ [x(p) +
√
−1n(p)] = x(p) ∧ n(p) ∈ Qn(C) ∼= G̃r2(Rn+2).

Then it is known

Proposition 1.1. The Gauss map G : Nn → Qn(C) is always a Lagrangian
immersion.

Note that the hypersurfaces parallel to Nn has the same image under the
Gauss map. and a deformation of Nn in Sn+1(1) corresponds to a Hamiltonian
deformation of the Gauss map.

Palmer ([16]) gave the formula describing the mean curvature form of the
Gauss map G in terms of the principal curvatures of the original oriented
hypersurface Nn.

Suppose that Nn is an oriented hypersurface with constant principal cur-
vatures in Sn+1(1), the so-called isoparametric hypersurface. Denote by g the
number of distinct principal curvatures. The hypersurfaces parallel to Nn

form a family of oriented hypersurfaces with constant principal curvatures in
Sn+1(1), the so-called isoparametric family. The structure theory of isopara-
metric hypersurfaces and isoparametric families was established by E. Cartan
and H. F. Münzner ([10]) Let f : Sn+1(1)→ [−1, 1] be an isoparametric func-
tion on Sn+1(1) defining the isoparametric family of Nn, which is extended to
the Cartan-Münzner polynomial F : Rn+2 → R of degree g. The family of
level subsets {f−1(c) | c ∈ [−1, 1]} coincides with the family of hypersurfaces
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parallel to Nn (c ∈ (−1, 1)) and its focal manifolds (c = −1, 1). Note that

n(p) =
1

∥(gradf)p∥
(gradf)p for each p ∈ Nn.

We know that their multiplicities satisfy m1 = m3 = · · · = m2i−1 = · · · and
m2 = m4 = · · · = m2i = · · · . Thus

2n

g
must be an integer given as

2n

g
=

{
m1 +m2 if g is even,

2m1 if g is odd.

The famous result of Münzner ([11]) is that g must be 1, 2, 3, 4 or 6.
From the Palmer’s formula ([]) we see

Proposition 1.2. The Gauss map G : Nn → Qn(C) is a minimal Lagrangian
immersion.

The Lagrangian immersion G and the Gauss image G(Nn) of an isopara-
metric hypersurface have the following properties. It follows from [5], [15], [7]
that

Proposition 1.3. (1) The Gauss image G(Nn) is a compact smooth min-
imal Lagrangian submanifold embedded in Qn(C).

(2) The Gauss map G gives a covering map G : Nn → G(Nn) over the
Gauss image with the deck transformation group Zg. Note that the
Zg-action does not preserve the induced metric on Nn from Sn+1(1) if
g ≥ 3.

(3) G(Nn) is invariant under the deck transformation group Z2 of the uni-

versal covering Qn(C) = G̃r2(Rn+2)→ Gr2(Rn+2).

(4)
2n

g
is even (resp. odd) if and only if G(Nn) is orientable (resp. non-

orientable).
(5) G(Nn) is a monotone and cyclic Lagrangian submanifold in Qn(C) with

minimal Maslov number equal to
2n

g
.

Hence we see that the Lagrangian intersection Floer cohomology for the
Gauss images of isoparametric hypersurfaces is well-defined by Y. G. Oh’s
works ([12], [13], [14]).

A submanifold of a Riemannian manifold is said to be homogeneous if it is
obtained as an orbit of a connected Lie subgroup of its isometry group. In the
classification theory of isoparametric hypersurfaces, it is well-known that any
homogeneous isoparametric hypersurface in the standard sphere is obtained
as a principal orbit of the isotropy representation of a Riemannian symmetric
pair (U,K) of rank 2 (Hsiang-Lawson [4], Takagi-Takahashi [17]). By Elie Car-
tan, Dorfmeister-Nehr and R. Miyaoka ([9]), it is known that for g = 1, 2, 3, 6
isoparametric hypersurfaces are homogeneous. Non-homogeneous isoparamet-
ric hypersurfaces appear only in the case of g = 4. Non-homogeneous isopara-
metric hypersurfaces was discovered first by Ozeki-Takeuchi and generalized
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by Ferus-Karcher-Münzner. Isoparametric hypersurfaces with g = 4 were clas-
sified except for the case (m1,m2) = (7, 8) by Cecil-Q. S. Chi-Jensen [1], [2],
[3].

Note that g = 1 or 2 if and only if G(Nn) is a totally geodesic Lagrangian
submanifold of Qn(C), that is, a real form (real hyperquadric) of a complex
hyperquadric.

In the joint works of the author and Hui Ma, we have done

(1) Classification of all compact homogeneous Lagrangian submanifolds in
complex hyperquadrics ([5]).

(2) Determination of Hamiltonian stability, Hamiltonian rigidity and strict
Hamiltonian stability for the Guass images of all homogeneous isopara-
metric hypersurfaces:
(a) g = 1, 2, 3 ([5]).
(b) g = 4, (U,K) is of classical type ([7]).
(c) g = 6 and g = 4, (U,K) is of exceptional type ([8]).

2. Intersections of the Gauss images of isoparametric
hypersurfaces

Let N0 and N1 be two compact isoparametric hypersurfaces embedded in the
unit standard sphere Sn+1(1) with g0 and g1 distinct constant principal curva-
tures and their multiplicities (m0

1,m
0
2) and (m1

1,m
1
2), respectively. Let f0 and

f1 be the isoparametric functions on Sn+1(1) corresponding to N0 and N1, and
let F0 and F1 denote the Cartan-Münzner polynomials on Rn+2 corresponding
to f0 = F0|Sn+1(1) and f1 = F1|Sn+1(1), respectively.

Let x0 and x1 denote the position vectors of points of N0 and N1, and let n0

and n1 denote unit normal vector fields to N0 and N1 in Sn+1(1), respectively.
Let G0 : N0 → Qn(C) and G1 : N1 → Qn(C) be their Gauss maps. Denote by
L0 = G0(N0) and L1 = G1(N1) their Gauss images.

Lemma 2.1. Let [W ] ∈ L0 ∩ L1 be an intersection point of L0 and L1, If
p0 ∈ N0, p1 ∈ N1 and [W ] = G0(p0) = G1(p1) ∈ L0 ∩ L1, then p0 ∈ N0 is
a critical point of the function f1|N0 and p1 ∈ N1 is a critical point of the
function f0|N1.

Proof. First by the definition of the Gauss map we see that the assumption
[W ] = G0(p0) = G1(p1) ∈ L0 ∩ L1 is equivalent to the condition that [W ] =
x0(p0) ∧ n0(p0) = x1(p1) ∧ n1(p1). Thus using the properties of isoparametric
families, we have (gradf1)p0 ⊥ Tp0N0 and (gradf0)p1 ⊥ Tp1N1, where note
that (gradf1)p0 = 0 or (gradf0)p1 = 0 can happen. It implies that p0 ∈ N0

is a critical point of the function f1|N0 and p1 ∈ N1 is a critical point of the
function f0|N1 . □
Remark 1. By changing a choice of N0 (resp. N1) in its isoparametric family,
we may assume that (gradf1)p0 ̸= 0 (resp. (gradf0)p1 ̸= 0).

Conversely, we have
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Lemma 2.2. If p0 ∈ N0 is a critical point of the function f1|N0 and (gradf1)p0 ̸=
0, then G0(p0) ∈ L0∩L1. Similarly, if p1 ∈ N1 is a critical point of the function
f0|N1 and (gradf0)p1 ̸= 0, then G1(p1) ∈ L0 ∩ L1.

Proof. Since (gradf1)p0 ̸= 0, we can choose an isoparametric hypersurfaceN ′
1 =

f−1
1 (f1(p0)) through p0 in the isoparametric family of N1. Let x

′
1(p) and n′

1(p)
be the position vector of p ∈ N ′

1 and the unit normal vector to N ′
1 in Sn+1(1)

at p ∈ N ′
1, respectively. Denote by G ′1 : N ′

1 → Qn(C) the Gauss map of N ′
1.

Then we have L1 = G1(N1) = G ′1(N ′
1). Thus G0(p0) = x0(p0) ∧ n0(p0) =

x′
1(p0) ∧ n′

1(p0) = G ′1(p0) ∈ G0(N0) ∩ G ′1(N1) = L0 ∩ L1. □
Therefore we obtain a characterization of an intersection point of L0 and L1

as follows:

Theorem . The following three conditions are equivalent each other:

(1) [W ] ∈ L0 ∩ L1.
(2) There are N0 in its isoparameric famiily and p0 ∈ N0 such that L0 =
G0(N0), [W ] = G0(p0) and p0 is a critical point of f1|N0 with (gradf1)p0 ̸=
0.

(3) There are N1 in its isoparameric famiily and p1 ∈ N1 such that L1 =
G1(N1), [W ] = G1(p1) and p1 is a critical point of f0|N1 with (gradf0)p1 ̸=
0.

Moreover we observe that

G−1
0 (L0 ∩ L1) ⊂ {p ∈ N0 | p is a critical point of f1|N0} ⊂ N0

and
G−1
1 (L0 ∩ L1) ⊂ {p ∈ N1 | p is a critical point of f0|N1} ⊂ N1

have the following symmetry.

Lemma 2.3. The subset G−1
0 (L0 ∩ L1) of N0 is invariant under the group

action of Zg0 on N0. Similarly, the subset G−1
1 (L0 ∩ L1) of N1 is invariant

under the group action of Zg1.

Proof. We observe that

G−1
0 (L0 ∩ L1) =

∪
[W ]∈L0∩L1

W ∩N0 ⊂ N0.

Since ♯(W ∩ N0) = 2g0 and Zg0 acts freely and transitively on W ∩ N0, we
obtain this lemma. □
Proposition 2.1. Ln

0 ∩ Ln
1 is invariant under the Deck transformation group

Z2 of G̃r2(Rn+2)→ Gr2(Rn+2). In other words, the Deck transformation group

Z2 of G̃r2(Rn+2)→ Gr2(Rn+2) acts freely on Ln
0 ∩ Ln

1 .

Proof. Since each Li = Gi(Ni) (i = 0, 1) is invariant under the free group action
of Z2, L0 ∩ L1 = G0(N0) ∩ G1(N1) is also so. □

Therefore from these lemmas we obtain
6



Theorem . ♯(L0 ∩ L1) is even and

♯(L0 ∩ L1) ≥ 2

if it is finite.

Proof. We have only to prove that L0 ∩ L1 ̸= ∅. Set N t
0 := f−1

0 (t) for each t ∈
(−1, 1) and M±

0 := f−1
0 (±1), which are the isoparametric family and its focal

manifolds for f0. Set N t
1 := f−1

1 (t) for each t ∈ (−1, 1) and M±
1 := f−1

1 (±1),
which are the isoparametric family and its focal manifolds for f1. Assume that
L0∩L1 = ∅. By the assumption note that, for each p ∈ Sn+1(1)\ (M+

0 ∪M−
0 ∪

M+
1 ∪M−

1 ), (gradf0)p ̸= 0, (gradf1)p ̸= 0 and they are linearly independent
Because if not, then G0(p) = G1(p) ∈ L0 ∩ L1, which is a contradiction. For
each t ∈ (−1, 1), N t

0 ∩M+
1 ̸= ∅, N t

0 ∩M−
1 ̸= ∅ and the critical point set of

f1|Nt
0
coincides with (N t

0 ∩M+
1 ) ∪ (N t

0 ∩M−
1 ). Similarly, for each t ∈ (−1, 1),

N t
1 ∩M+

0 ̸= ∅, N t
1 ∩M−

0 ̸= ∅ and the critical point set of f0|Nt
1
coincides with

(N t
1∩M+

0 )∪ (N t
1∩M−

0 ). As t→ ±1, the compactness of N t
0, N

t
1, M

±
0 and M±

1

implies that M+
0 ∩M+

1 ̸= ∅, M+
0 ∩M−

1 ̸= ∅, M−
0 ∩M+

1 ̸= ∅ and M−
0 ∩M−

1 ̸= ∅.
If f0|M+

1
has a critical point p ∈ M+

1 , then p ∈ M+
0 ∪M−

0 . Because since

grad(f0|M+
1
)p = 0 we have (gradf0)p ⊥ TpM

+
1 . If (gradf0)p ̸= 0, then G0(p) ∈

L0 ∩ L1, which is a contradiction. Thus (gradf0)p = 0 and hence f0(p) = ±1,
that is, p ∈ (M+

1 ∩M+
0 ) ∪ (M+

1 ∩M−
0 ). Therefore the critical point subset of

f0|M+
1
coincides with (M+

1 ∩M+
0 )∪ (M+

1 ∩M−
0 ). In particular the level subsets

f0|M+
1
(t ∈ (−1, 1)) form a family of smooth embedded hypersurfaces of M+

1 .

The similar property for each f0|M−
1
, f1|M+

0
and f1|M−

0
also holds.

Let p ∈M−
1 ∩M−

0 . Let U be a small neighborhood of p in Sn+1(1). Choose
Na

0 in the isoparametric family of f0 for some a ∈ (−1, 1) such that Na
0 is

the boundary of a tubular neighborhood N a
0 = (∪−1<t<aN

t
0) ∪M−

0 of M−
0 in

Sn+1(1). Then for some c ∈ (−1, 1) close to −1, (N c
1 ∪ N c

1 ) ∩ U is contained
in N a

0 ∩ U , where N c
1 = (∪−1<s<cN

s
1 ) ∪M−

1 denotes a tubular neighborhood
of M−

1 in Sn+1(1). Since N t
0 collapses to M−

0 as t→ −1, there is N b
0 for some

−1 < b < a < 1 such that N b
0 ∩ U is contained in (N c

1 ∪ N c
1 ) ∩ U . Then

there is some t0 with −1 < b < t0 < a such that N t0
0 is tangent to N c

1 at a
point q. Hence G0(q) = G1(q) ∈ G0(N t0

0 ) ∩ G1(N c
1) = L0 ∩ L1 ̸= ∅. This is a

contradiction. We conclude that L0 ∩ L1 ̸= ∅. □

We recall that the differential

(dG)p : TpN → TG(p)G̃r2(Rn+2) ∼= Hom(x(p) ∧ n(p), TpN)

of the Gauss map G : N → Qn(C) ∼= G̃r2(Rn+2) at p ∈ N is given by

(2.1)

{
[(dG)p(X)]x(p) = X,

[(dG)p(X)]n(p) = −An(X)

for each X ∈ TpN .
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Let [W ] ∈ L0 ∩ L1. We may assume that [W ] = G0(p), p ∈ N0 and p ∈ N1,
and thus we have TpN0 = TpN1. We know that p ∈ N0 is a critical point of
f1|N0 and p ∈ N1 is a critical point of f0|N1 .

Lemma 2.4. Let X ∈ TpN0 = TpN1. Then the following three conditions are
equivalent each other:

(1) X ∈ Ker(Hessx(f1|N0)).
(2) A0

n(p)(X) = A1
n(p)(X).

(3) (dG0)p(X) = (dG1)p(X) ∈ T[W ]L
n
0 ∩ T[W ]L

n
1 .

Proof. First the equivalence of (2) and (3) follows from (2.1). Next we compute
the Hessian of f1|N0 at p: For each X ∈ C∞(TN0),

Hessp0(f1|N0)(X,X) =X(Xf1|N0)

=X(df1|N0(X))

=X(g(grad(f1|N0), X))

=X(g(grad(f1)− ⟨grad(f1),n0⟩n0, X))

=X(g(grad(f1), X))

=X((df1)(X))

=Hessp0(f1)(X,X) + (df1)p0(∇̃XX)

=Hessp0(f1)(X,X) + (df1)p0(∇XX +B0(X,X))

=Hessp0(f1)(X,X) + (df1)p0(B
0(X,X))

=Hessp0(f1)(X,X) + g(grad(f1), B
0(X,X))

=Hessp0(f1)(X,X) + g(A0
grad(f1)

X,X))

=− ∥gradf1∥ g(A1
nX,X) + g(A0

grad(f1)
X,X))

=− ∥gradf1∥ g(A1
nX,X) + ∥gradf1∥ g(A0

nX,X))

=∥gradf1∥ g((A0
n − A1

n)X,X)),

where ∇̃, ∇ and B0 denote the Levi-Civita connections of Sn+1(1), N0 and the
second fundamental form of N0 in Sn+1(1). Here we use that if f : M → R is
a smooth function on a Riemannian manifold M and (gradf)x ̸= 0 for x ∈M ,
then for each smooth vector field X on a neighborhood of x in f−1(f(x))) we
have the formula

(Hessf)x(X,X) =(∇M
X df)x(X) = X(Xf)(x)− (df)x(∇M

X X)

=− g(AgradfX,X) = −∥gradf∥ g(AnX,X).

Hence we obtain the formula

(2.2) Hessp0(f1|N0)(X, Y ) = ∥gradf1∥ g((A0
n − A1

n)X, Y ))

for each X, Y ∈ TpN0 = TpN1. By (2.2) we have the equivalence of (1) and
(2). □

Therefore we obtain
8



Lemma 2.5. Let [W ] ∈ L0 ∩ L1. Suppose that [W ] = G0(p0) for p0 ∈ N0 and
thus p0 is a critical point of f1|N0. Then L0 and L1 intersect transversally at
[W ] ∈ L0 ∩ L1 if and only if the critical point p0 of f1|N0 is non-degenerate.

Moreover, using those results we can show

Theorem . There are N0 and N1 in their isoparametric families such that
L0 = G0(N0), L1 = G1(N1) and the function f1|Nn

0
(resp. f0|Nn

1
) is a Morse

function on Nn
0 (resp. Nn

1 ) if and only if Ln
0 and Ln

1 intersect transversally
each other.

By the Morse inequalities we obtain

Corollary 2.1. Suppose that L0 and L1 intersect transversally each other.
Then

♯(L0 ∩ L1) =
1

g0
♯{p ∈ N0 | x is a critical point of f1|N0}

=
1

g1
♯{p ∈ N1 | x is a critical point of f0|N1}

≥2

(2.3)

Proof. By the Morse inequalities for f1|N0 and f1|N0 we have

(2.4) ♯{p ∈ N0 | x is a critical point of f1|N0} ≥ SB(N0,Z2)

and

(2.5) ♯{p ∈ N1 | x is a critical point of f0|N1} ≥ SB(N1,Z2).

Here SB(L,Z2) denotes the sum of Betti numbers of L over Z2. Since SB(N0,Z2) =
2g0 and SB(N1,Z2) = 2g1 by Münzner’s result ([11]), they become

1

g0
♯{p ∈ N0 | x is a critical point of f1|N0} ≥

2g0
g0

= 2

and
1

g1
♯{p ∈ N1 | x is a critical point of f0|N0} ≥

2g1
g1

= 2.

□

In the case when Nn
1 = Sn (g = 1), the corresponding Cartan-Münzner

polynomial F1 is given by a linear function F1(x) = ⟨x, a⟩ (∀x ∈ Rn+2) for
some a ∈ Rn+2.

Theorem . Assume that g1 = 1. Suppose that L0 and L1 intersect transver-
sally each other. Then

(2.6) ♯(L0 ∩ L1) = 2 (= SB(L1,Z2)).

Proof. Since f1 is a perfect Morse function on N0, we have

♯{p ∈ N0 | x is a critical point of f1|N0} = SB(N0,Z2).
9



By using SB(N0,Z2) = 2g0 (Münzner [10], [11]), it becomes

♯{p ∈ N0 | x is a critical point of f1|N0} = 2g0.

Hence we obtain
1

g0
♯{p ∈ N0 | x is a critical point of f1|N0} = 2

g0
g0

= 2.

□
Remark 2. In the case when g0 = 1 or 2 and g1 = 1, it coincides with the
results of H. Tasaki and M. S. Tanaka ([19], [18]). From their results we see
that if g0 = g1 = 2, then ♯(L0 ∩ L1) = 2Min{m0

1,m
0
2,m

1
1,m

1
2}+2 for transverse

L0 ∩ L1.

Problem . Determine the intersection numbers ♯(L0∩L1) for the Gauss images
of isoparametric hypersurfaces.

Problem . Compute the Lagrangian intersection Floer cohomology I∗(L0, L1 :
Qn(C)) for the Gauss images of isoparametric hypersurfaces.
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