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Abstract. We consider the biharmonic Liouville-Gel’fand prob-
lem under the Navier boundary condition in four space dimension.
Under the nondegeneracy assumption of blow up points of mul-
tiple blowing-up solutions, we prove several estimates for the lin-
earized equations and obtain some convergence result. The result
can be seen as a weaker version of the asymptotic nondegener-
acy of multi-bubble solutions, which was recently established by
Grossi-Ohtsuka-Suzuki in two-dimensional Laplacian case.

1. Introduction.

In this paper, we consider the fourth order Liouville-Gel’fand prob-
lem with the Navier boundary conditions{

∆2u = λeu in Ω,

u = ∆u = 0 on ∂Ω
(1.1)

where Ω ⊂ R4 is a smooth bounded domain, and λ > 0 is a parameter.
Let {un} be a solution sequence to (1.1) for λ = λn ↓ 0 as n → ∞.
As for the asymptotic behavior of the solution sequence {un}, several
studies have been done ([14], see [11] for the second order case and
[9] for more general polyharmonic cases), and we have the following
picture of the bubbling behavior of blowing-up solutions.

Proposition 1.1 ([14]). Let λn be a sequence of positive numbers with
λn ↓ 0. Let Σn = λn

∫
Ω

eundx where un is a solution to (1.1) for λ = λn.
Then as n →∞, there are three possibilities.

Case(1): {Σn} accumulates to 0. In this case, ‖un‖L∞(Ω) → 0.
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Case(2): {Σn} accumulates to 64π2m for some m ∈ N. In this case,
un makes m-point blow ups, i.e., there exists a set S = {p1, · · · , pm}
which consists of m-interior points such that ‖un‖L∞(ω) = O(1) for any

ω ⊂⊂ Ω \ S, {un(x)} has a limit for any x ∈ Ω \ S while un|S → +∞
as n →∞.

Case(3):{Σn} accumulates to +∞. In this case, un(x) → +∞ for
all x ∈ Ω.

Furthermore, in the Case(2), the limit function u∞(x) = limn→∞ un(x)
has the form

(1.2) u∞(x) = 64π2

m∑
i=1

G(x, pi)

where G(x, z) denotes the Green function of ∆2 under the Navier bound-
ary condition

{
∆2G(·, z) = δz in Ω,

G(·, z) = ∆G(·, z) = 0 on ∂Ω.
(1.3)

Moreover, the blow up points pi ∈ S must satisfy the following relation

(1.4)
1

2
∇R(pi) +

m∑
j=1
j 6=i

∇xG(pi, pj) = 0, (i = 1, · · · ,m)

where H(x, z) = G(x, z) − 1
8π2 log |x − z|−1 denotes the regular part of

G, and R(x) = H(x, x) is the Robin function associated to G.

Note that, if we introduce the function

F : Ωm =

m times︷ ︸︸ ︷
Ω× · · · × Ω → R ∪ {±∞},

F(ξ1, · · · , ξm) =
1

2

m∑
i=1

R(ξi) +
1

2

∑
1≤i,j≤m,

i6=j

G(ξi, ξj),(1.5)

then the relation (1.4) is just saying that a point (p1, · · · , pm) with pi ∈
S (1 ≤ i ≤ m) is a critical point of F in Ωm. The function F is called
the Hamiltonian associated to the problem (1.1). Conversely, some
existence results of the actual multiple-blowing up solutions to (1.1)
are obtained by several authors [1] [3]. In particular, if (p1, · · · , pm)
is a nondegenerate critical point of F , then there exists a blowing-up
solutions to (1.1) which blows up exactly at {p1, · · · , pm} ⊂ Ω, see
[1]. We are interested in some qualitative properties of the multiple
blowing-up solution un.
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In order to state our result in this paper, we need some definitions.
Let {un} be a sequence of solutions to (1.1) for λ = λn satisfying Case
(2) of Proposition 1.1 as n → ∞. Let S = {p1, · · · , pm} be a blow up
set of the sequence {un}. Then we have sufficiently small ρ > 0 and m
sequences {xi

n} such that for each pi ∈ S,

un(xi
n) = max

Bρ(xi
n)

un(x) →∞, xi
n → pi (i = 1, · · · ,m)

as n →∞. Also let vn be the solution to the linearized problem around
un for n ∈ N: {

∆2vn = λne
unvn in Ω,

vn = ∆vn = 0 on ∂Ω.
(1.6)

Recall that if (1.6) admits only the trivial solution vn ≡ 0, the solution
un of (1.1) is said nondegenerate. Let δi

n be the positive number so that

(δi
n)4λne

un(xi
n) ≡ 1

and define the scaled function

ṽi
n(y) = vn(δi

ny + xi
n), for y ∈ B ρ

δi
n

(0)

for i = 1, · · · ,m and n ∈ N. Now, our result reads as follows:

Theorem 1.2. Let {un} be a multiple blowing-up solution sequence to
(1.1) for λ = λn whose set of blow up points is S = {p1, · · · , pm}. If
(p1, · · · , pm) ∈ Ωm is a nondegenerate critical point of the Hamiltonian
function F , then by choosing a subsequence, we have,

(1.7) ṽi
n → 0 in C4

loc(R4) as n →∞.

The result in Theorem 1.2 strongly suggests that the sequence {un}
is asymptotically nondegenerate, that is, vn ≡ 0 for all large n ∈ N.
Unfortunately, we do not have the proof of this statement up to now,
and we remain it as a future work. In the final section of this paper,
we include some discussions and remarks on this issue. In this paper
we call the property (1.7) as local asymptotic nondegeneracy of the
multi-bubble solutions {un} to (1.1).

Asymptotic nondegeneracy results of solutions to the second order
Liouville-Gel’fand problem in two dimension can be found in the papers
by Gladiali-Grossi [4] (one blow-up point case) and Grossi-Ohtsuka-
Suzuki [6], Ohtsuka-Sato-Suzuki [12] (multiple blow-up points case).
However, our fourth order Liouville-Gel’fand problem in four dimen-
sion is quite different from the second order case in several technical
points. One of the main difficulties comes from the fact that the Kelvin
transformation for the biharmonic operator ∆2 does not preserve the
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Navier boundary conditions, and this makes our result weaker than
that for the second order case. In addition, the classification theorem
by C.S. Lin [8] to the limit equation needs more restrictive growth as-
sumption at infinity in our case. Such growth rate for a solution to the
limit equation can be proved by following the argument by Ben Ayed-
El Mehdi-Grossi [2], see Proposition 3.1. We also note that Theorem
1.2 applies to the multiple-blowing up solutions of (1.1) obtained in [1].

2. An integral identity for the Green function.

In this section, we prove an integral identity for the Green function
with the Navier boundary condition, which is useful in the later.

First we recall an elementary integration by parts formula for ∆2.
For smooth functions g, h in a smooth subdomain ω ⊂ Ω, we have∫

ω

(
(∆2g)h− g(∆2h)

)
dx = B∂ω [g, h] ,(2.1)

where

B∂ω [g, h] =

∫

∂ω

((
∂∆g

∂ν

)
h−∆g

(
∂h

∂ν

)
+

(
∂g

∂ν

)
∆h− g

(
∂∆h

∂ν

))
dsx.

Here ν = ν(x) denotes the unit outer normal at x ∈ ∂ω. We note that
B∂ω [g, h] = −B∂ω [h, g] and B∂ω [g, h] = 0 if ∆2g = ∆2h = 0 in ω.

Let G = G(x, z) denote the Green function of ∆2 under the Navier
boundary condition in (1.3). We decompose G as

G(x, z) = N(|x− z|) + H(x, z),

where N(r) = 1
8π2 log r−1 and H(x, z) is the regular part of G.

Proposition 2.1. For a, b, c ∈ Ω and r > 0 small such that Br(a) ⊂ Ω,

b, c 6∈ Br(a) if b, c 6= a, put

Iij(a, b, c) = B∂Br(a)

[
Gxi

(·, b), Gzj
(·, c)]

for 1 ≤ i, j ≤ 4, where Gxi
(x, z) = ∂G

∂xi
(x, z) etc. Then Iij does not

depend on r > 0 small and we have

(2.2)





Iij(a, b, c) = 0, if a 6= b and a 6= c

Iij(a, a, a) = −1
2
Rxixj

(a),

Iij(a, a, c) = −Gxizj
(a, c), if a 6= c

Iij(a, b, a) = −Gxixj
(a, b), if a 6= b.

Proof. First, we see that Iij(a, b, c) does not depend on the choice of
r > 0. This is because all functions in the integrand are smooth,
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biharmonic on an annular domain Br1(a) \ Br2(a) for r1 > r2 and
obviously

B∂Br1 (a) [g, h] = B∂Br2 (a) [g, h] + B∂(Br1 (a)\Br2 (a)) [g, h]

= B∂Br2 (a) [g, h]

if ∆2g = ∆2h = 0 on Br1(a) \Br2(a). Similarly we obtain Iij(a, b, c) =
0 when a 6= b and a 6= c because Gxi

(·, b) and Gzj
(·, c) are smooth

biharmonic functions on Br(a) in this case.
We note that for a smooth function h on ω, ∆2G(·, z) = δz implies

h(z) =

∫

ω

G(x, z)∆2h(x)dx + B∂ω [G(·, z), h(·)](2.3)

for z ∈ ω (the Green’s third identity for ∆2, see [7] for example).
Therefore

hxj
(x)|x=z = hzj

(z) =

∫

ω

Gzj
(x, z)∆2h(x)dx + B∂ω

[
Gzj

(·, z), h(·)] .

Oh the other hand, since ∆2Gxi
(x, z) = ∂xi

δz, we have

−hxi
(x)|x=z =

∫

ω

Gxi
(x, z)∆2h(x)dx + B∂ω [Gxi

(·, z), h(·)] .
Consequently we get

B∂Br(a)

[
h(·), Gzj

(·, a)
]

=

∫

Br(a)

Gzj
(x, a)∆2h(x)dx− hxj

(a),(2.4)

B∂Br(a) [Gxi
(·, a), h(·)] = −

∫

Br(a)

Gxi
(x, z)∆2h(x)dx− hxi

(a)(2.5)

for every smooth h. Therefore we get Iij(a, b, a) = −Gxixj
(a, b) when

a 6= b and Iij(a, a, c) = −Gxizj
(a, c) by inserting h(x) = Gxi

(·, b) to
(2.4) and h(x) = Gzj

(·, c) to (2.5), respectively.
When a = b = c, we divide Iij as follows:

Iij(a, a, a) = B∂Br(a)

[
N(|x− a|)xi

, N(|x− a|)zj

]

+ B∂Br(a)

[
N(|x− a|)xi

, Hzj
(x, a)

]
+ B∂Br(a)

[
Hxi

(x, a), Gzj
(x, a)

]
.

Here
B∂Br(a)

[
Hxi

(x, a), Gzj
(x, a)

]
= −Hxixj

(a, a)

from (2.4). On the other hand, it is easy to see that (2.5) (and (2.4)
as well) holds for N(|x− z|) instead of G(x, z). Therefore

B∂Br(a)

[
N(|x− b|)xi

, Hzj
(x, a)

]
= −Hxizj

(a, a).

Finally we get

B∂Br(a)

[
N(|x− a|)xi

, N(|x− a|)zj

]
= −B∂Br(a)

[
N(|x− a|)xi

, N(|x− a|)xj

]
= 0
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from simple calculations

N(|x− a|)xi
= − 1

8π2

νi(x)

r
,

∂N(|x− a|)xi

∂ν
=

1

8π2

νi(x)

r2
,

and

∆N(|x− a|) = − 1

4π2
r−2, ∆N(|x− a|)xi

= − 1

2π2

νi(x)

r3
,

∂∆N(|x− a|)xi

∂ν
=

3

2π2

νi(x)

r4
,

where ν(x) = x−a
|x−a| for x ∈ ∂Br(a).

3. Asymptotic behavior of solutions.

We will prove Theorem 1.2 by an argument as in [4] [6]. Since the
result is trivial if vn ≡ 0 for all n large, we assume that the existence
of nontrivial solutions vn to the linearized problem (1.6) for n ∈ N. We
may assume without loss of generality that

‖vn‖L∞(Ω) ≡ 1.

Let δi
n be the positive number such that

(3.1) (δi
n)4λne

un(xi
n) ≡ 1

for i = 1, · · · ,m and n ∈ N. By the fundamental pointwise estimate
for blowing-up solutions to (1.1) due to [10], we have that δi

n = o(1) as
n →∞; see Proposition 3.2 and Corollary 3.4 below. Using δi

n, define
the rescaled functions

ũi
n(y) = un(δi

ny + xi
n)− un(xi

n), y ∈ B ρ

δi
n

(0),(3.2)

ṽi
n(y) = vn(δi

ny + xi
n), y ∈ B ρ

δi
n

(0)(3.3)

around the local maximum xi
n of un. Note that ũi

n and ṽi
n satisfies




∆2ũi
n(y) = eũi

n(y), y ∈ B ρ

δi
n

(0),

ũi
n(y) ≤ ũi

n(0) = 0, y ∈ B ρ

δi
n

(0),

−∆ũi
n(y) > 0, y ∈ B ρ

δi
n

(0),
∫

B ρ

δi
n

(0)
eũi

n(y)dy = O(1),

(3.4)

and 



∆2ṽi
n(y) = eũi

n(y)ṽi
n(y), y ∈ B ρ

δi
n

(0),

‖ṽi
n‖

L∞
 

B ρ

δi
n

(0)

! ≤ 1,
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respectively. By the standard elliptic estimates, we have the conver-
gence (by choosing a subsequence if necessary)

(3.5) ũi
n → U, ṽi

n → V i as n →∞
in C4

loc(R4) for some U and V i. We see that U satisfies



∆2U = eU in R4,

U(0) = maxR4 U(y) = 0,∫
R4 eUdy < +∞,

(3.6)

and also V i satisfies

∆2V i = eUV i in R4.

Though the proof of this fact is now standard, we give a proof for the
reader’s convenience. Let BR (0) be the ball of radius R with center at
the origin, and let ωn be the unique solution of{

∆2ωn = eũi
n(≤ 1) in BR (0) ,

ωn = ∆ωn = 0 on ∂BR (0) .

By the maximum principle and the elliptic estimates, we have

0 < ωn ≤ C, 0 < −∆ωn ≤ C in BR (0)

where C > 0 is a constant independent of n. Also we have 0 < −∆ũi
n ≤

C in B ρ

δi
n

(0). Therefore we obtain

0 < −∆(ũi
n − ωn) ≤ C in BR (0)

for n large such that BR (0) ⊂ B ρ

δi
n

(0), since −∆(ũi
n − ωn) is harmonic

in BR (0) and −∆(ũi
n − ωn) = −∆ũi

n on ∂BR (0). Now, let φn denote
the unique solution of

−∆φn = −∆(ũi
n − ωn) > 0 in BR (0) , φn = 0 on ∂BR (0)

and set
ψn = ũi

n − ωn − φn.

The maximum principle implies that 0 < φn ≤ C in BR (0) and ψn

is a non-positive harmonic function on BR (0). Hence the Harnack
alternative implies that

(i) ψn → −∞ uniformly on every compact sets on BR (0), or
(ii) ψn is bounded in L∞loc(BR (0)) if we choose a subsequence.

However, since ψn(0) = −ωn(0) − φn(0) ≥ −2C, the case (i) cannot
happen. Thus a subsequence of ψn is bounded in L∞loc(BR (0)) and
since φn, ωn are uniformly bounded in L∞(BR (0)) as noticed before,
a subsequence of ũi

n is also bounded in L∞loc(BR (0)) for any R > 0.
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After this fact is established, the standard regularity theory assures
the convergence of ũi

n in C4
loc(R4) to some U . Passing to the limit in

(3.4) with the use of Fatou’s lemma, we see that U satisfies (3.6). The
proof for the convergence of ṽi

n is similar.
Here, we claim that

Proposition 3.1. There holds

|U(y)| = o(|y|2) as |y| → ∞.

Proof. We argue as in the proof of Theorem 1.2 in [2]. See also Lemma
2.2 in [13]. Using a result of C-S. Lin ([8]:Theorem 1.2) applied to a
solution of (3.6), we know that U can be represented by

U(y) =
1

8π2

∫

R4

log

( |z|
|y − z|

)
eU(z)dz − 4

4∑
j=1

aj(yj − y0
j )

2 + c0

= −4
4∑

j=1

aj(yj − y0
j )

2 − 4α log |y|+ c0 + O(|y|−τ )(3.7)

for some τ > 0 for |y| large, and

(3.8) ∆U(y) = − 1

4π2

∫

R4

log

(
eU(z)

|y − z|2
)

dz − 8
4∑

j=1

aj

where aj ≥ 0, c0 are constants, y0 = (y0
1, · · · , y0

4) ∈ R4, and α =
1

32π2

∫
R4 eU(y)dy. Therefore, in order to obtain the desired estimate, it

is enough to prove that aj = 0 for all j = 1, · · · , 4 in (3.7), (3.8).
Let

Gi
n(y, z) =

1

4π2
|y − z|−2+H i

n(y, z)

denote the Green function of −∆ on the expanding domain Ωi
n = Ω−xi

n

δi
n

.

Since ũi
n satisfies

{
∆2ũi

n = eũi
n in Ωi

n,

ũi
n = ∆ũi

n = 0 on ∂Ωi
n,

we have

−∆ũi
n(0) =

∫

Ωi
n

Gi
n(0, z)eũi

n(z)dz.
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Fix any R > 0. For n large, we have∫

Ωi
n\BR(0)

Gi
n(0, z)eũi

n(z)dz ≤ 1

4π2R2

∫

Ωi
n\BR(0)

eũi
n(z)dz

≤ 1

4π2R2

∫

Ω\B
δi
nR

(xi
n)

λne
un(x)dx ≤ O(1)

R2

as n →∞. On the other hand, by the estimate

0 < −H i
n(y, z) ≤ − 1

4π2
· 1

d(y, ∂Ωi
n)2

for the regular part of Gi
n and d(0, ∂Ωi

n) = O( 1
δi
n
), we have

∫

BR(0)

Gi
n(0, z)eũi

n(z)dz =
1

4π2

∫

BR(0)

eũi
n(z)

|z|2 dz +

∫

BR(0)

H i
n(0, z)eũi

n(z)dz

=
1

4π2

∫

BR(0)

eU(z)

|z|2 dz + o(1) + O((δi
n)2)

as n → ∞. Thus, letting n → ∞ first and then R → ∞, we observe
that

−∆ũi
n(0) → 1

4π2

∫

R4

eU(z)

|z|2 dz = −∆U(0)− 8
4∑

j=1

aj

where the last equality comes from (3.8). Now, since −∆ũi
n(0) →

−∆U(0) holds by the C4
loc(R4) convergence of ũi

n, we obtain that
∑4

j=1 aj =
0, which leads to aj = 0 for all 1 ≤ j ≤ 4.

By proposition 3.1, we can apply the uniqueness result of U ([8],
Theorem 1.1) to (3.6), then we have

(3.9) U(y) = −4 log

(
1 +

|y|2
8
√

6

)
.

Also by the nondegeneracy result of U ([10], Lemma 2.6.), we obtain
that V i in (3.5) is written as

lim
n→∞

ṽi
n = V i =

4∑

k=1

ai
k

yk

(8
√

6 + |y|2) + bi

(
8
√

6− |y|2
8
√

6 + |y|2

)
(3.10)

=
4∑

k=1

ai
k

(
−1

8

∂U

∂yk

)
+ bi 1

4
(y · ∇U + 4)

for some ai = (ai
1, · · · , ai

4) ∈ R4 and bi ∈ R.
Next is the strong pointwise estimate for the blowing-up solutions

obtained by Lin-Wei [10].
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Proposition 3.2. ([10], Theorem 3.1.) For a fixed ρ ∈ (0, 1), there
exists a constant C > 0 independent of i = 1, · · · ,m and n ∈ N such
that
(3.11)∣∣∣∣∣∣∣

un(x)− log
eun(xi

n)

(
1 + λ

1/2
n

8
√

6
e

1
2
eun(xi

n)|x− xi
n|2

)4

∣∣∣∣∣∣∣
≤ C for x ∈ Bρ(x

i
n)

holds true.

In terms of ũi
n, the above estimate implies

Corollary 3.3. For a fixed ρ ∈ (0, 1), there exists a constant C > 0
independent of i, n such that

|ũi
n(y)− U(y)| ≤ C for y ∈ B ρ

δi
n

(0).

From this corollary, we have

Corollary 3.4. For any i = {1, · · · ,m}, there exists a constant Ci > 0
such that, if we choose a subsequence of δi

n if necessary, we have

δi
n = Ciλ

1
4
n + o

(
λ

1
4
n

)
,(3.12)

un(xi
n) = −2 log λn + O(1)(3.13)

as n →∞.

Proof. Since un is uniformly bounded for x ∈ ∂BR (xi
n) for small R > 0,

we have ∣∣∣∣∣∣∣
log

eun(xi
n)

(
1 + λ

1/2
n

8
√

6
e

1
2
eun(xi

n)
R2

)4

∣∣∣∣∣∣∣
= O(1)

by the sup + inf estimate (3.11). Since

eun(xi
n)

(
1 + λ

1/2
n

8
√

6
e

1
2
eun(xi

n)
R2

)4 =
1(

e−
1
4
un(xi

n) + λ
1/4
n

8
√

6
(δi

n)−1R2
)4

by the relation (3.1), this implies there exist constants c, C > 0 such

that c ≤ λ
1
4
n (δi

n)−1 ≤ C. Thus we have (3.12) if we choose a subse-
quence. Also, by (3.1) and (3.12), it holds

λ2
ne

un(xi
n)

(
C4

i + o(1)
)

= 1

which implies (3.13).
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Using above lemmas, we obtain the following key proposition of our
argument. See [6] Lemma 2.1 for the second order Laplacian case.

Proposition 3.5. There exists a subsequence of {vn} and Ci > 0 (i =
1, · · · ,m) such that

vn

λ
1/4
n

→ 8π2

m∑
i=1

Cia
i ·∇zG(x, pi),

∆vn

λ
1/4
n

→ 8π2

m∑
i=1

Cia
i ·∇z∆xG(x, pi)

in C1
loc

(
Ω \⋃m

i=1 B2ρ(pi)
)

holds true. Here ai = (ai
1, · · · , ai

4) ∈ R4 is
as in (3.10).

To prove Proposition 3.5, we adopt the argument used in the proof
of [5, Proposition 6.4]. First we decompose vn as follows:

vn(x) =

∫

Ω

G(x, z)λne
un(z)vn(z)dz

=
m∑

i=1

∫

Bρ(xi
n)

G(x, z)λne
un(z)vn(z)dz +

∫

Ω\∪m
i=1Bρ(xi

n)

G(x, z)λneun(z)vn(z)dz

=:
m∑

i=1

ψi
n + ψ0

n.

Also we have ∆vn(x) =
∑m

i=1 ∆ψi
n + ∆ψ0

n, where

∆ψi
n =

∫

Bρ(xi
n)

∆xG(x, z)λneun(z)vn(z)dz (i = 1, · · · ,m),

∆ψ0
n =

∫

Ω\∪m
i=1Bρ(xi

n)

∆xG(x, z)λne
un(z)vn(z)dz.

Recall un is bounded outside of points p1, .., pm, then we derive ‖ψ0
n‖L∞(Ω) =

O(λn) and ‖∆ψ0
n‖L∞(Ω) = O(λn). Therefore we get

(3.14)
ψ0

n

λ
1/4
n

= O
(
λ3/4

n

)
= o(1) and

∆ψ0
n

λ
1/4
n

= O
(
λ3/4

n

)
= o(1)

uniformly in Ω. Here we prove

Proposition 3.6. As n →∞,

ψi
n(x) = G(x, xi

n)γi
n + 8π2ai · ∇zG(x, xi

n)δi
n + o(δi

n),

∆ψi
n(x) = ∆xG(x, xi

n)γi
n + 8π2ai · ∇z∆xG(x, xi

n)δi
n + o(δi

n)

as n →∞ holds uniformly for all x ∈ Ω\Bρ (xi
n) for each i, where

γi
n =

∫

Bρ(xi
n)

λneun(z)vn(z)dz.
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Proof. For simplicity, we shall omit i in several characters, e.g., xn as
xi

n, ψn as ψi
n, · · · . Without loss of generality, we may assume pi = 0.

We prove the formula for ψn only since the proof for ∆ψn is exactly
the same. Taking sufficiently small ε > 0 determined later, we divide
ψn into two parts:

ψn(x) =

∫

Bρ(xn)

G(x, z)λne
un(z)vn(z)dz =

∫

Bρ(xn)\Bε(xn)

+

∫

Bε(xn)

=: I1+I2

Proposition 3.2 implies

(3.15) 0 ≤ eun(z) ≤ Ceun(xn)

(
1 + λ

1
2
n

8
√

6
e

1
2
un(xn)|z − xn|2

)4 in Bρ (xn).

Then it follows that

|I1| ≤
∫

Bρ(xn)\Bε(xn)

|G(x, z)|λn
Ceun(xn)

(
1 + λ

1
2
n

8
√

6
e

1
2
un(xn)|z − xn|2

)4dz

≤ C ′δ−4
n(

1 + 1
8
√

6
ε2

δ2
n

)4

for C ′ = C supx∈Ω

∫
Ω
|G(x, z)|dz, and hence

|I1| ≤ C ′
(
δn + 1

8
√

6
ε2

δn

)4 = δn
C ′

(
δ

5
4
n + 1

8
√

6
ε2δ

− 3
4

n

)4 = o(δn)

if we choose εn = δk
n for some k satisfying 2k− 3

4
< 0, that is, 0 < k < 3

8
.

Henceforth such k is fixed.
For every x ∈ Ω\Bρ (xn) and z ∈ Bε (xn), Taylor’s theorem guaran-

tees

G(x, z) = G(x, xn) +∇zG(x, xn) · (z − xn) + s(x, η, z − xn)

with

s(x, η, z − xn) =
1

2

∑

1≤j,l≤4

Gzjzl
(x, η)(z − xn)j(z − xn)l

and η = η(n, z) ∈ Bε (xn). Since ε = δk
n → 0 as n → ∞, we have

Bε (xn) b Bρ (xn) for n À 1, and hence we can apply this formula to
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I2. Thus

I2 = G(x, xn)

∫

Bε(xn)

λne
un(z)vn(z)dz

+∇zG(x, xn) ·
∫

Bε(xn)

(z − xn)λneun(z)vn(z)dz

+

∫

Bε(xn)

s(x, η, z − xn)λneun(z)vn(z)dz

= : I2,1 + I2,2 + I2,3

Using the estimate of I1, we obtain

I2,1 = G(x, xn) {γn + o(δn)} = G(x, xn)γn + o(δn)

since x ∈ Ω\Bρ (xn). Similarly

I2,2 = ∇zG(x, xn) ·
∫

B ε
δn

(0)

δnz̃e
eun(ez)ṽn(z̃)dz̃

by (3.2), where z̃ = z−xn

δn
. Here ε/δn = δk−1

n → ∞ as n → ∞ since

k < 3
8
. Using Corollary 3.3 and (3.5), we can apply the dominated

convergence theorem to obtain∫

B ε
δn

(0)

z̃je
eun(ez)ṽn(z̃)dz̃

→
∫

R4

z̃j

{
a · ∇

(
−1

8
eU

)
+ b div

(
1

4
z̃eU

)}
dz̃ = 8π2aj

for j ∈ {1, · · · , 4}, which in turn implies

I2,2 = 8π2a · ∇zG(x, xn)δn + o(δn).

Finally we use

sup
x6∈Bρ(0), η∈Bε(0)

1≤k,l≤4

|Gzkzl
(x, η)|≤C < ∞

for some constant C independent of ε ¿ 1 to estimate

|I2,3| 5 Cλn

∫

Bε(xn)

|z − xn|2eun(z)dz ≤ Cεδn

∫

B ε
δn

(0)

|z̃|eeun(ez)dz.

Using Corollary 3.3 and (3.5) again, we assure the following conver-
gence ∫

B ε
δn

(0)

|z̃|eeun(ez)dz̃ →
∫

R4

|z̃|eU(ez)dz̃ < ∞.

Consequently we get I2,3 = o(δn) and the conclusion.
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Since B2ρ (pi) ⊃ Bρ (xi
n) for every i and n À 1, Proposition 3.6 and

Corollary 3.4 imply the following pre-asymptotic formula: As n →∞,
it holds

vn(x) =
m∑

i=1

γi
nG(x, xi

n) + 8π2λ
1
4
n

m∑
i=1

Cia
i · ∇zG(x, xi

n) + o
(
λ

1
4
n

)
,

∆vn(x) =
m∑

i=1

γi
n∆xG(x, xi

n) + 8π2λ
1
4
n

m∑
i=1

Cia
i · ∇z∆xG(x, xi

n) + o
(
λ

1
4
n

)

uniformly in x ∈ Ω\∪m
i=1B2ρ (pi) and consequently in C1

(
Ω\ ∪m

i=1 B2ρ (pi)
)

from the elliptic regularity theory.
To get the finer asymptotic formula (Proposition 3.5), we need to

show

(3.16) γi
n = o

(
λ

1
4
n

)

for some subsequence. Now we complete the proof of Proposition 3.5.

Proof of Proposition 3.5. We argue by contradiction. If (3.16) does not
hold then there exists i satisfying

lim sup
n→∞

λ
1
4
n

|γi
n|

< ∞.

We may assume i = 1 and put

ri = lim
n→∞

γi
n

γ1
n

, (i = 2, · · · ,m) and c = lim
n→∞

λ
1
4
n

γ1
n

.

Without loss of generality we may also assume

1 = r1 ≥ r2 ≥ · · · ≥ rm ≥ −1

for some subsequence. Then we get

vn(x)

γ1
n

→
m∑

i=1

riG(x, pi) + 8π2c

m∑
i=1

Cia
i · ∇zG(x, pi),(3.17)

∆vn(x)

γ1
n

→
m∑

i=1

ri∆xG(x, pi) + 8π2c

m∑
i=1

Cia
i · ∇z∆xG(x, pi)

uniformly in x ∈ Ω\ ∪m
i=1 B2ρ (pi). We take r > 2ρ satisfying

Br (pi) ⊂⊂ Ω, Br (pi) ∩Br (pj) = ∅ (i 6= j).

Since ∆(x · ∇) = (x · ∇+ 2)∆ and ∆2(x · ∇) = (x · ∇+ 4)∆2, we see

wn = (x− p) · ∇un + 4
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satisfies (1.6) except for the boundary condition where p ∈ R4 is arbi-
trary, and ∆wn = (x− p) ·∇∆un +2∆un. Thus by Proposition 1.1, we
have

wn → (x− p) · ∇
(

64π2

m∑
i=1

G(x, pi)

)
+ 4,

(3.18)

∆wn → (x− p) · ∇
(

64π2

m∑
i=1

∆xG(x, pi)

)
+ 128π2

m∑
i=1

∆xG(x, pi)

uniformly in x ∈ Ω\ ∪m
i=1 B2ρ (pi). Now, taking p = x1

n, using (3.17),
(3.18) and Green’s formula again, we get

0 = B∂Br(x1
n)

[
wn, vn/γ1

n

]

→ 64π2

m∑

k,l=1

rlB∂Br(p1) [(x− p1) · ∇G(x, pk), G(x, pl)]

+ 512π4C

m∑

k,l=1

4∑
i=1

Cla
l
iB∂Br(p1) [(x− p1) · ∇G(x, pk), Gzi

(x, pl)]

+
m∑

l=1

rlB∂Br(p1) [4, G(x, pl)] + 8π2

m∑

l=1

4∑
i=1

Cla
l
iB∂Br(p1) [4, Gzi

(x, pl)]

(3.19)

as n →∞.
On the other hand, from the identities (2.3) and (2.4), we obtain

m∑

l=1

rlB∂Br(p1) [4, G(x, pl)] = r1B∂Br(p1) [4, G(x, p1)] = −4r1,

m∑

l=1

4∑
i=1

Cla
l
iB∂Br(p1) [4, Gzi

(x, pl)] =
4∑

i=1

C1a
1
i B∂Br(p1) [4, Gzi

(x, p1)] = 0.

Also, since

(x− p1) · ∇G(x, p1) = − 1

8π2
+ (x− p1) · ∇H(x, p1),
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and (x− p1) · ∇G(x, pk) for k 6= 1 are biharmonic in Br (p1), we get
m∑

k,l=1

rlB∂Br(p1) [(x− p1) · ∇G(x, pk), G(x, pl)]

=
m∑

k=1

r1B∂Br(p1) [(x− p1) · ∇G(x, pk), G(x, p1)]

= r1B∂Br(p1) [(x− p1) · ∇G(x, p1), G(x, p1)] =
r1

8π2

and
m∑

k,l=1

4∑
i=1

Cla
l
iB∂Br(p1) [(x− p1) · ∇G(x, pk), Gzi

(x, pl)]

=
m∑

k=1

4∑
i=1

C1a
1
i B∂Br(p1) [(x− p1) · ∇G(x, pk), Gzi

(x, p1)]

= −
m∑

k=1

4∑
i=1

C1a
1
i

∂

∂xi

((x− p1) · ∇G(x, pk))|x=p1

= −C1

4∑
i=1

a1
i

(
Hxi

(p1, p1) +
m∑

k=2

Gxi
(p1, pk)

)

= −C1a
1 · ∇ξ1F(p1, · · · , pm) = 0,

since (p1, · · · , pm) is a critical point of the Hamiltonian F ; see (1.4).
Therefore, returning to (3.19), we obtain

0 = 8r1 + 0− 4r1 + 0

which leads to a desired contradiction 1 = r1 = 0. Thus we have proved
Proposition 3.5.

4. Proof of Theorem 1.2.

In this section, we prove Theorem 1.2. We just need to assure that
V i in (3.10) is identically zero. We divide the proof into two steps.

Step 1. First, we prove that all coefficients ai
k (i = 1, · · · ,m, k =

1, · · · , 4) in (3.10) must be zero. Here we will use the assumption that
(p1, · · · , pm) ∈ Ωm is a nondegenerate critical point of F .

Fix pj ∈ S and take r > 2ρ > 0 small such that Br(pj) ⊂ Ω and
Br(pj) ∩ S = pj. Differentiating the equation ∆2un = λneun with
respect to xi (i = 1, · · · , 4), we have

∆2(un)xi
= λne

un(un)xi
.
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Since vn is a solution of ∆2vn = λneunvn, Green’s formula for ∆2 (2.1)
implies that

0 =

∫

Br(pj)

(
(∆2(un)xi

)vn − (un)xi
(∆2vn)

)
dx = B∂Br(pj) [(un)xi

, vn]

From Proposition 1.1 (1.2) and elliptic estimates, we have

(un)xi
→ 64π2

m∑
i=1

Gxi
(x, pi),(4.1)

∆(un)xi
→ 64π2

m∑
i=1

∆xGxi
(x, pi)(4.2)

uniformly on every ω ⊂⊂ Ω \ S. By Proposition 3.5, (4.1) and (4.2),
we have

0 = B∂Br(pj)

[
(un)xi

, vn/λ
1/4
n

] → 512π4

m∑

k=1

m∑

l=1

4∑

i′=1

Cla
l
i′Iii′(pj, pk, pl)

(4.3)

where Iii′(a, b, c) is defined in Proposition 2.1. By Proposition 2.1, we
obtain

m∑

k=1

Iii′(pj, pk, pl) =





−1
2
Rxixi′ (pj)−

∑
1≤k≤m

k 6=j

Gxixi′ (pj, pk), (j = l),

−Gxizi′ (pj, pl), (j 6= l).

In other words,

m∑

k=1

Iii′(pj, pk, pl) = − ∂2

∂(ξj)i∂(ξl)i′
F(ξ1, · · · , ξm)

∣∣∣
(ξ1,··· ,ξm)=(p1,··· ,pm)

for any i, i′ ∈ {1, 2, 3, 4}, where F is the Hamiltonian function in (1.5).
Note that Cl > 0 in (4.3). Also by our assumption, (HessF)(p1, · · · , pm)
is invertible. Thus we obtain all al

i′ = 0 for any l = 1, · · · ,m and
i′ = 1, · · · , 4 from (4.3).

Step 2. Next, we prove bi = 0 for all i = 1, · · · ,m. Fix i ∈ {1, · · · ,m}
and choose r > 0 small such that Br(x

i
n) ⊂⊂ Ω. By Green’s formula

(2.1) on Br(x
i
n), we have

∫

Br(xi
n)

(
(∆2un)vn − un(∆2vn)

)
dx = B∂Br(xi

n) [un, vn]
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The RHS is O(λ
1/4
n ) = o(1) by Proposition 1.1 and Proposition 3.5.

The LHS is∫

Br(xi
n)

(
λne

unvn − λneunvn(un − un(xi
n))− λneunvnun(xi

n)
)
dx

= (1− un(xi
n))

∫

Br(xi
n)

λne
unvndx−

∫

Br(xi
n)

λneunvn(un − un(xi
n))dx

= (1− un(xi
n))

∫

Br(xi
n)

λne
unvndx−

∫

B r
δi
n

(0)

eũi
n ṽi

nũ
i
ndy.

Note that∫

Br(xi
n)

λne
unvndx =

∫

Br(xi
n)

∆2vndx =

∫

∂Br(xi
n)

∂∆vn

∂ν
= O(λ1/4

n )

by Proposition 3.5. On the other hand, by Corollary 3.4 (3.13), we
have

(1− un(xi
n))

∫

Br(xi
n)

λneunvndx = (−2 log λn + O(1))o(λ1/4
n ) = o(1).

Finally,
∫

B r
δi
n

(0)

eũi
n ṽi

nũ
i
ndy →

∫

R4

eUUV idy = 64π2bi

by (3.9) and (3.10). All together, we conclude bi = 0 for all i =
1, · · · ,m.

5. Some discussions about the asymptotic nondegeneracy.

In order to prove the asymptotic nondegeneracy of the multi-bubble
solutions un, that is, the solution vn to (1.6) satisfies vn ≡ 0 for all
n ∈ N large, one of the possible way of arguments is as follows.

Assume that there would exist non trivial solutions vn of (1.6) for
large n ∈ N. Since we have assured Theorem 1.2, it suffices to derive
some contradiction from the fact V i ≡ 0. The next lemma is obtained
easily.

Lemma 5.1. We have

vn → 0, ∆vn → 0

locally uniformly on Ω \ S.

Proof. Since λneun → 0 locally uniformly on Ω \ S and ‖vn‖L∞(Ω) = 1,
the elliptic regularity implies that there exists v∞ such that, if we



LOCAL ASYMPTOTIC NONDEGENERACY 19

choose a subsequence, ∆vn → v∞ locally uniformly in Ω \ S and v∞ is
a solution of

∆v∞ = 0 in Ω \ S, v∞ = 0 on ∂Ω.

Thus v∞ ≡ 0 on Ω, because S is a set of finite points which are neg-
ligible. Again elliptic regularity implies vn → 0. Since the limits are
unique, above convergences hold for the full sequence.

Since Lemma 5.1 holds, it is sufficient to show

(5.1) vn → 0 uniformly in Br (pi)

for each i to obtain the desired result, where 0 < r ¿ 1. In the sequel,
we abbreviate i in several characters and assume pi = 0 as before.

By Theorem 1.2, we have already obtained

(5.2) ṽn → 0 local uniformly in R4.

Therefore suppose (5.1) does not hold. Then we get

lim sup
n→∞

max
x∈Br(0)

|vn(x)| = M > 0,

and therefore, up to subsequences (denoted by the same symbol), we
have x̃n ∈ B r

δn
(0) such that

|ṽn(x̃n)| = max
x∈Br(0)

|vn| → M, |x̃n| → ∞.

Now, we take the Kelvin transformed functions

ûn(z) = ũn

(
z

|z|2
)

, v̂n(z) = ṽn

(
z

|z|2
)

,

which satisfy the equation

∆2v̂n(z) = |z|−8eûn v̂n for z ∈
(
B δn

r
(0)

)c

.

Note that

(5.3) x̂n :=
x̃n

|x̃n|2 → 0, v̂n(x̂n) = ṽn(x̃n) → M.

Next we take the unique solution wn of the following problem:

∆2wn = fn :=

{
|x|−8eûn v̂n, in B1 (0) \B δn

r
(0),

0, in B δn
r

(0),

wn = ∆wn = 0 on ∂B1 (0).

Using Proposition 3.11, we get

0 ≤ |x|−8eûn ≤ C < ∞
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in B1 (0) \B δn
r

(0), where C is a constant independent of n. On the

other hand, v̂n(x) → 0 for every x ∈ Br (0) \{0} by (5.2), therefore,

‖fn‖Lp(B1(0)) → 0 for each p ∈ [1,∞)

by the dominated convergence theorem. Consequently,

(5.4) wn and ∆wn → 0 uniformly in B1 (0)

follows from the elliptic regularity. We also take the unique solution
φn of the problem

∆φn =

{
∆(v̂n − wn), in B1 (0) \B δn

r
(0),

0, in B δn
r

(0),

φn = 0 on ∂B1 (0).

The elliptic regularity theory guarantees

(5.5) ‖φn‖L∞(B1(0)) ≤ C‖∆(v̂n − wn)‖
L∞

„
B1(0)\B δn

r
(0)

«.

Note that ∆(v̂n − wn) is harmonic in B1 (0) \B δn
r

(0). Therefore the

maximum principle gives

‖∆(v̂n − wn)‖
L∞

„
B1(0)\B δn

r
(0)

«

≤ ‖∆(v̂n − wn)‖L∞(∂B1(0)) + ‖∆(v̂n − wn)‖
L∞

„
∂B δn

r
(0)

«

≤ ‖∆v̂n‖L∞(∂B1(0)) + ‖∆v̂n‖
L∞

„
∂B δn

r
(0)

« + ‖∆wn‖
L∞

„
∂B δn

r
(0)

«,

where ‖∆wn‖
L∞

„
∂B δn

r
(0)

« = o(1). Since

∆zv̂n(z) = |y|4∆yṽn(y)− 4|y|2(y · ∇y)ṽn(y),

for y = z/|z|2, we get

‖∆v̂n‖L∞(∂B1(0)) = ‖∆yṽn(y)− 4(y · ∇y)ṽn(y)‖L∞(∂B1(0)) = o(1)

from (5.2).
Assume for the moment that

(5.6) ‖∆v̂n‖
L∞

„
∂B δn

r
(0)

« = o(1)

as n →∞. Then we can get the desired contradiction as follows: The
estimates (5.5) and (5.6) imply

(5.7) ‖φn‖L∞(B1(0)) = o(1).
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Now we consider the difference v̂n−wn−φn. This function is harmonic
on B1 (0) \B δn

r
(0), so the maximum principle guarantees

‖v̂n − wn − φn‖
L∞

„
B1(0)\B δn

r
(0)

«

≤ ‖v̂n − wn − φn‖L∞(∂B1(0)) + ‖v̂n − wn − φn‖
L∞

„
∂B δn

r
(0)

«

≤ ‖v̂n‖L∞(∂B1(0))

+ ‖v̂n‖
L∞

„
∂B δn

r
(0)

« + ‖wn‖
L∞

„
∂B δn

r
(0)

« + ‖φn‖
L∞

„
∂B δn

r
(0)

«

where the estimates

‖v̂n‖L∞(∂B1(0)) = ‖ṽn‖L∞(∂B1(0)) = o(1),

‖v̂n‖
L∞

„
∂B δn

r
(0)

« = ‖ṽn‖
L∞

„
∂B r

δn
(0)

« = ‖vn‖L∞(∂Br(xn)) = o(1)

follow by (5.2) and Lemma 5.1. Hence it follows that

‖v̂n‖
L∞

„
B1(0)\B δn

r
(0)

«

≤ ‖wn‖L∞(B1(0)) + ‖φn‖L∞(B1(0)) + ‖v̂n − wn − φn‖
L∞

„
B1(0)\B δn

r
(0)

«

= 2‖φn‖L∞(B1(0)) + o(1) = o(1)

by (5.4) and (5.7), which contradicts to (5.3).
However, an easy way of estimation using Proposition 3.5 can only

provide

‖∆v̂n‖
L∞

„
∂B δn

r
(0)

« = ‖(r/δn)4∆yṽn(y)− 4(r/δn)2(y · ∇y)ṽn(y)‖
L∞

„
∂B r

δn
(0)

«

≤ (
r4/δ2

n

) ‖∆vn‖L∞(∂Br(xn)) +
(
4r2/δ2

n

) ‖(x · ∇)vn‖L∞(∂Br(xn))

= O(1/δn),

which is far from the needed decay (5.6).
Another possible way to obtain the asymptotic nondegeneracy is to

refine Proposition 3.5. This will be a future subject.
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