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Abstract. We consider a semilinear elliptic problem with the
boundary reaction:

−∆u = 0 in Ω,
∂u

∂ν
+ u = a(x)up + f(x) on ∂Ω,

where Ω ⊂ RN , N ≥ 3, is a smooth bounded domain with a flat
boundary portion, p > 1, a, f ∈ L1(∂Ω) are nonnegative functions,
not identically equal to zero. We provide a necessary condition
and a sufficient condition for the existence of positive very weak
solutions of the problem. As a corollary, under some assumption of
the potential function a, we prove that the problem has no positive
solution for any nonnegative external force f ∈ L∞(∂Ω), f 6≡ 0,
even in the very weak sense.

1. Introduction.

In this paper, we consider the semilinear elliptic boundary value
problem with the boundary reaction:

(1.1)





−∆u = 0 in Ω,

u ≥ 0 in Ω,
∂u
∂ν

+ u = a(x)up + f(x) on ∂Ω

where Ω ⊂ RN , N ≥ 2 is a smooth bounded domain, ν is the exte-
rior unit normal vector to ∂Ω, p > 1, a, f ∈ L1(∂Ω) are nonnegative
functions, not identically equal to zero.

In the recent paper, Quittner and Reichel [6] consider the more gen-
eral problem with nonlinear Neumann boundary conditions:

(1.2) −∆u = 0 in Ω,
∂u

∂ν
+ u = g(x, u) on ∂Ω
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where g : ∂Ω×R→ R is a Carathéodory function. They call a function
u : Ω → R a very weak solution of the problem (1.2) if u|Ω ∈ L1(Ω),
u|∂Ω, g(·, u|∂Ω) ∈ L1(∂Ω) and

(1.3) −
∫

Ω

u∆ζdx =

∫

∂Ω

g(x, u)ζdsx −
∫

∂Ω

u

(
ζ +

∂ζ

∂ν
u

)
dsx

holds for any ζ ∈ C2(Ω). In [6], Quittner and Reichel prove several
properties of very weak solutions, such as regularity and the integral
representation formula of the very weak solution to (1.2) for the linear
case, regularity and a priori bounds in nonlinear case, and so on. See §2
for some of their results. Moreover, the authors obtain the interesting
existence results of singular very weak solutions to the model problem,
i.e., g(x, u) = (u+)p in (1.2), on a special domain Ω as described below:
Let Ω ⊂ RN

+ = {x = (x′, xN) : xN > 0} be a smooth bounded domain
with a flat boundary portion Γ1, that is, there exist two closed sets
Γ1, Γ2 ⊂ ∂Ω such that

(i) ∂Ω = Γ1 ∪ Γ2, Γ1 ⊂ ∂RN
+
∼= RN−1 and 0 ∈ int(Γ1),

(ii) int(Γi) = Γi for i = 1, 2 and int(Γ1) ∩ int(Γ2) = ∅.
By perturbing the explicit singular half-space solution and using a vari-
ational method, the authors prove the following existence result for the
very weak solutions: For N = 3, 4 and p > N−1

N−2
but very close to N−1

N−2
,

the problem

−∆u = 0 in Ω,
∂u

∂ν
+ u = up on ∂Ω

admits at least two positive, unbounded very weak solutions, blowing
up at 0 ∈ int(Γ1), see [6]: Theorem 17. Also for any p > N−1

N−2
, there

exists a function f ∈ L∞(∂Ω) such that the problem

−∆u = 0 in Ω,
∂u

∂ν
= up + f(x) on ∂Ω

admits a positive, unbounded very weak solution, see [6]: Theorem 12.
However, if we introduce a (singular) potential function into the

equation, the situation is drastically changed. Actually, main result in
this paper concerns the nonexistence of positive very weak solutions to
(1.1) as follows:

Theorem 1.1. Let Ω ⊂ RN , N ≥ 3, be a smooth bounded domain with
0 ∈ ∂Ω. Let p > 1 and f ∈ L∞(∂Ω), f ≥ 0, f 6≡ 0 on ∂Ω. Assume
that a ∈ L1(∂Ω) be a function such that a ≥ 0 on ∂Ω, and there exists
R > 0 such that

(1.4)

∫

BN
R (0)∩∂Ω

a(y)

|y|N−2
dsy = +∞,
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where BN
R (0) denotes a N-dimensional ball with radius R center 0.

Then there exists no positive solution of the problem

−∆u = 0 in Ω,
∂u

∂ν
+ u = a(x)up + f(x) on ∂Ω,

even in the very weak sense.

By a simple calculation, we check that a(x) = 1
|x| satisfies the as-

sumptions in Theorem 1.1 on a smooth bounded domain in RN , N ≥ 3,
with a flat boundary portion Γ1. Actually, we compute∫

BN
R (0)∩∂Ω

a(y)

|y|N−2
dsy ≥

∫

BN
R (0)∩Γ1

dsy

|y|N−1

=

∫

BN−1
R (0)∩Γ1

dy′

|y′|N−1
= |SN−2|

∫ R

0

rN−2

rN−1
dr = +∞,

where y = (y′, 0) ∈ Γ1, y′ = (y1, · · · , yN−1), and dy′ = dy1 · · · dyN−1.
Thus we have the nonexistence of positive very weak solutions to the
simple elliptic problem like

−∆u = 0 in Ω,
∂u

∂ν
+ u =

up

|x| + f(x) on ∂Ω,

for any nonnegative bounded external force f 6≡ 0 on such a domain
when N ≥ 3. This fact contrasts with the existence results by Quittner
and Reichel mentioned above.

This paper is organized as follows: In §2, we collect several useful
facts on very weak solutions, which will be used in later sections. Main
source of this part is [6], however, some basic lemmas, such as weak
maximum principle or existence of very weak solutions by the method
of sub-super solutions, are also proved in this section. In §3, we provide
a necessary condition and a sufficient condition for the existence of very
weak solutions to (1.1). The result proved here is an extension of that
of Brezis and Cabré [1], to the nonlinear Neumann boundary condition
cases. Finally in §4, we prove Theorem 1.1.

2. Several facts about very weak solutions.

In this section, we collect several facts about the very weak solutions
which will be useful later. We refer the reader to the paper by Quittner
and Reichel [6] for complete descriptions and proofs.

In the following, let Ω be a smooth bounded domain in RN , N ≥ 2
(not necessary with a flat boundary portion). As in [6], we define
L1(Ω × ∂Ω) as the space of functions u : Ω → R such that u|Ω ∈
L1(Ω) and u|∂Ω ∈ L1(∂Ω). This is a Banach space under the norm
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‖u‖L1(Ω×∂Ω) = ‖u‖L1(Ω) +‖u‖L1(∂Ω), and isomorphic to L1(Ω)×L1(∂Ω).
Note that, generally, u|∂Ω is not the trace of u|Ω. With admitting some
ambiguity, we will use the symbol u to denote both u|Ω and u|∂Ω for
simplicity.

First we recall the linear theory developed in [6]. Let u ∈ L1(Ω×∂Ω)
be a very weak solution to the linear problem

(2.1) −∆u = 0 in Ω,
∂u

∂ν
+ u = g(x) on ∂Ω,

where g ∈ L1(∂Ω). Recall a function u ∈ L1(Ω × ∂Ω) is a very weak
solution of (2.1) if

−
∫

Ω

u∆ζdx =

∫

∂Ω

g(x)ζdsx −
∫

∂Ω

u

(
ζ +

∂ζ

∂ν

)
dsx

holds for any ζ ∈ C2(Ω).
Next lemma concerns the unique solvability and a priori estimate of

very weak solutions to (2.1).

Lemma 2.1. ([6]: Lemma 3) Let g ∈ L1(∂Ω). Then (2.1) admits a
unique very weak solution u ∈ L1(Ω× ∂Ω) with the estimate

‖u‖L1(Ω×∂Ω) ≤ C‖g‖L1(∂Ω)

for some C > 0. Moreover, u ≥ 0 a.e. (with respect to N-dimensional
Lebesgue measure) in Ω and a.e. (with respect to the surface measure
on ∂Ω) on ∂Ω, if g ≥ 0 a.e. on ∂Ω.

Next lemma concerns the weak maximum principle.

Lemma 2.2. Let h, k ∈ L1(∂Ω). Let u ∈ L1(Ω × ∂Ω) denote a very
weak supersolution to

−∆u ≥ 0 in Ω,
∂u

∂ν
+ u ≥ h on ∂Ω,

in the sense that

−
∫

Ω

u∆ζdx ≥
∫

∂Ω

hζdsx −
∫

∂Ω

u

(
ζ +

∂ζ

∂ν

)
dsx

for any ζ ∈ C2(Ω), ζ ≥ 0 on Ω, and let v ∈ L1(Ω× ∂Ω) be the unique
very weak solution to

−∆v = 0 in Ω,
∂v

∂ν
+ v = k on ∂Ω,

respectively. If h ≥ k on ∂Ω, then we have u ≥ v on Ω.
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Proof. For any ϕ ∈ C∞
0 (Ω), ϕ ≥ 0, put ζ be the unique solution to

(2.2) −∆ζ = ϕ in Ω,
∂ζ

∂ν
+ ζ = 0 on ∂Ω.

Then ζ ∈ C2(Ω) and ζ ≥ 0 on Ω by the maximum principle. Testing
by ζ and subtracting, we have

−
∫

Ω

(u− v)∆ζdx ≥
∫

∂Ω

(h− k)ζdsx −
∫

∂Ω

(u− v)

(
ζ +

∂ζ

∂ν

)
dsx,

which yields ∫

Ω

(u− v)ϕdx ≥
∫

∂Ω

(h− k)ζdsx ≥ 0.

Since ϕ ∈ C∞
0 (Ω), ϕ ≥ 0 is arbitrary, we have u− v ≥ 0 a.e. on Ω.

Also, for any η ∈ C∞(∂Ω), η ≥ 0, let ξ ∈ C2(Ω) be the unique
solution to

(2.3) −∆ξ = 0 in Ω,
∂ξ

∂ν
+ ξ = η on ∂Ω.

Maximum principle implies ξ ≥ 0 on Ω. Testing by ξ and subtracting,
we have in this case∫

∂Ω

(u− v)ηdsx ≥
∫

∂Ω

(h− k)ξdsx ≥ 0.

Since η ∈ C∞(∂Ω), η ≥ 0 is arbitrary, again we have u− v ≥ 0 a.e. on
∂Ω.

Lemma 2.3. Let g : ∂Ω× R 3 (x, s) 7→ g(x, s) ∈ R+ is a nonnegative
Carathéodory function, increasing with respect to s for any x ∈ ∂Ω.
Assume (1.2) has a weak supersolution w ∈ L1(Ω × ∂Ω), in the sense
that g(·, w) ∈ L1(∂Ω) and

−
∫

Ω

w∆ζdx ≥
∫

∂Ω

g(x,w)ζdsx −
∫

∂Ω

w

(
ζ +

∂ζ

∂ν

)
dsx

for any ζ ∈ C2(Ω), ζ ≥ 0 on Ω. Then (1.2) has a very weak solution
u ∈ L1(Ω× ∂Ω).

Proof. Proof will be done by a standard monotone iteration argument.
See for example, [2]: Lemma 3, or [7]: Lemma 8. Define w(1) = w ∈
L1(Ω × ∂Ω). By the definition, we have g(·, w(1)) ∈ L1(∂Ω). Let w(2)

be the unique weak solution of{
−∆w(2) = 0 in Ω,
∂w(2)

∂ν
+ w(2) = g(x,w(1)) on ∂Ω
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obtained by Lemma 2.1. Thus,
∫

Ω

(−∆ζ)(w(1) − w(2))dx ≥ −
∫

∂Ω

(
∂ζ

∂ν
+ ζ

)
(w(1) − w(2))dsx

holds for any ζ ∈ C2(Ω), ζ ≥ 0 on Ω. As before, for given ϕ ∈ C∞
0 (Ω),

ϕ ≥ 0 on Ω, take ζ ∈ C2(Ω) as the solution of (2.2). Then we have
∫

Ω

(w(1) − w(2))ϕdx ≥ 0,

and since ϕ ≥ 0 can be chosen arbitrary, we conclude that w(1) ≥ w(2)

a.e. on Ω. Similarly, for any η ∈ C∞(∂Ω), η ≥ 0 on ∂Ω, let ξ ∈ C2(Ω),
ξ ≥ 0, be the solution to (2.3). Then we have

0 ≥ −
∫

∂Ω

η(w(1) − w(2))dsx,

which implies that w(1) ≥ w(2) a.e. on ∂Ω. By induction, we obtain

w = w(1) ≥ w(2) ≥ · · · ≥ w(n) ≥ · · · , a.e. on Ω,

w = w(1) ≥ w(2) ≥ · · · ≥ w(n) ≥ · · · , a.e. on ∂Ω.

By Lemma 2.1, we know w(n) ≥ 0 since g is nonnegative. By the
monotone convergence theorem, w(n) converges to u in L1(Ω × ∂Ω).
Since g(x, s) is increasing with respect to s for any x ∈ ∂Ω, we have
also 0 ≤ g(·, w(n)) ≤ g(·, w(1)) ∈ L1(∂Ω) for any n ∈ N, which leads to
g(·, u) ∈ L1(∂Ω). Finally, it is easy to check that u is a desired weak
solution to (1.2).

The following lemma is an integral representation formula of the
unique very weak solution to (2.1).

Lemma 2.4. ([6]: Lemma 5) There exists a linear operator T such that
T is a bounded, self-map from Lp(∂Ω) to Lp(∂Ω) for every p ∈ [1, +∞],
and if g ∈ L1(∂Ω), then the unique very weak solution u ∈ L1(Ω× ∂Ω)
to (2.1) can be written as

u(x) =
1

2π

∫

∂Ω

Tg(y) log |x− y|−1dsy + dΩ

∫

∂Ω

Tg(y)dsy, if N = 2,

u(x) =
1

(N − 2)|SN−1|
∫

∂Ω

Tg(y)|x− y|2−Ndsy, if N ≥ 3

for all x ∈ Ω. Here dΩ is a constant depending Ω. Furthermore, T−1

exists and bounded from Lp(∂Ω) to Lp(∂Ω) for every p ∈ [1, +∞] when
N ≥ 3.
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The last claim follows from the proof of [6], since T is an inverse
operator of a compact perturbation of the identity, and the compact
part maps bounded sets of Lp(∂Ω) to compact sets in Lp(∂Ω) for every
p ∈ [1, +∞].

By using the integral representation formula in Lemma 2.4, the fol-
lowing regularity result for very weak solutions to (2.1) is established
in [6].

Lemma 2.5. ([6]: Theorem 6) If g ∈ Lp(∂Ω) for some p ∈ [1,∞],
then the followings are true for the very weak solution u ∈ L1(Ω× ∂Ω)
to (2.1).

(i) q ≥ p and 1
p
− 1

q
< 1

N−1
=⇒ u ∈ Lq(∂Ω),

(ii) q ≥ p and 1
p
− N

(N−1)q
< 1

N−1
=⇒ u ∈ Lq(Ω),

(iii) q ≥ p and 1
p
− N

(N−1)q
< 0 =⇒ u ∈ W 1,q(Ω).

3. A necessary condition and a sufficient condition for
the existence of very weak solutions.

In this section, we provide a necessary condition and a sufficient
condition for the existence of a positive very weak solution to (1.1) on a
general bounded smooth domain Ω ⊂ RN . The result can be considered
as a generalization of that of Brezis-Cabré [1] to the nonlinear Neumann
boundary condition case, and Theorem 1.1 is a direct consequence of
this. In [1], Brezis and Cabré establishes a necessary condition and a
sufficient condition for the existence of positive very weak solutions to
the problem

−∆u = a(x)up + f(x) in Ω, u = 0 on ∂Ω,

where a, f are nonnegative L1(Ω) functions, not identically zero. Our
proof is a direct modification of that of Brezis and Cabré to the non-
linear Neumann boundary condition case.

In the following, let G(h) ∈ L1(Ω×∂Ω) denote the unique very weak
solution to the linear problem

{
−∆G(h) = 0 in Ω,
∂G(h)

∂ν
+ G(h) = h on ∂Ω

for h ∈ L1(∂Ω); see Lemma 2.1.

Theorem 3.1. Let p > 1. Assume that f ∈ L1(∂Ω), f ≥ 0, f 6≡ 0 on
∂Ω, and a ∈ L1(∂Ω), a ≥ 0, a 6≡ 0 on ∂Ω. Put v = G(f) ∈ L1(Ω×∂Ω).
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(i) If the problem (1.1) has a very weak solution u ≥ 0, then avp ∈
L1(∂Ω) and

(3.1) G(avp) ≤
(

1

p− 1

)
v in Ω

holds true.
(ii) If avp ∈ L1(∂Ω) and

(3.2) G(avp) ≤
(

p− 1

p

)p
1

p− 1
v in Ω

holds true, then the problem (1.1) has a very weak solution u ≥ 0.
Furthermore, v ≤ u ≤ p

p−1
v holds on Ω.

The proof of Theorem 3.1 consists of several lemmas, which are de-
scribed below.

Lemma 3.2. Let u, v ∈ C2(Ω), v > 0 on Ω. Let φ ∈ C2(R) be a
concave function. Then we have
(3.3)(

∂

∂ν
+ 1

){
vφ

(u

v

)}
= φ′

(u

v

) (
∂u

∂ν
+ u

)
+

{
φ

(u

v

)
−

(u

v

)
φ′

(u

v

)} (
∂v

∂ν
+ v

)

on ∂Ω. In particular, if ∂v
∂ν

+ v ≥ 0 on ∂Ω, then
(3.4)(

∂

∂ν
+ 1

){
vφ

(u

v

)}
≥ φ′

(u

v

) {(
∂u

∂ν
+ u

)
−

(
∂v

∂ν
+ v

)}
+φ(1)

(
∂v

∂ν
+ v

)

holds.

Proof. By direct computation, we have

∇
{

vφ
(u

v

)}
= φ′

(u

v

)
∇u +

{
φ

(u

v

)
−

(u

v

)
φ′

(u

v

)}
∇v,

which implies

∂

∂ν

{
vφ

(u

v

)}
= φ′

(u

v

) (
∂u

∂ν

)
+

{
φ

(u

v

)
−

(u

v

)
φ′

(u

v

)} (
∂v

∂ν

)

on ∂Ω. Adding this to the identity

vφ
(u

v

)
= φ′

(u

v

)
u +

{
φ

(u

v

)
−

(u

v

)
φ′

(u

v

)}
v,

we have (3.3). Since φ is concave on R, we have φ(s) + (1− s)φ′(s) ≥
φ(1) for any s ∈ R. Putting s = u

v
, we get

φ
(u

v

)
−

(u

v

)
φ′

(u

v

)
≥ −φ′

(u

v

)
+ φ(1).
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Thus if ∂v
∂ν

+ v ≥ 0 on ∂Ω, we obtain (3.4) by inserting the above
inequality into (3.3).

Next lemma is a weak form of Lemma 3.2.

Lemma 3.3. Let φ ∈ C1(R) be a concave function with φ′ is bounded
on R. For h, k ∈ L1(∂Ω), k ≥ 0, k 6≡ 0 on ∂Ω, let u, v be the unique
very weak solution of

−∆u = 0 in Ω,
∂u

∂ν
+ u = h on ∂Ω,

and

−∆v = 0 in Ω,
∂v

∂ν
+ v = k on ∂Ω,

respectively. Then it holds
{
−∆

(
vφ

(
u
v

)) ≥ 0 in Ω,(
∂
∂ν

+ 1
) {

vφ
(

u
v

)} ≥ φ′
(

u
v

)
(h− k) + φ(1)k on ∂Ω

in the weak sense. That is, vφ
(

u
v

) ∈ L1(Ω×∂Ω), φ′
(

u
v

)
(h−k)+φ(1)k ∈

L1(∂Ω), and

−
∫

Ω

vφ
(u

v

)
∆ζdx ≥

∫

∂Ω

{
φ′

(u

v

)
(h− k) + φ(1)k

}
ζdsx

−
∫

∂Ω

vφ
(u

v

) (
ζ +

∂ζ

∂ν

)
dsx(3.5)

holds for any ζ ∈ C2(Ω), ζ ≥ 0 on Ω.

Proof. First, by mollifying φ, we see that (3.4) holds for φ ∈ C1(R)
and concave. Following the proof of [1], we approximate h, k ∈ L1(∂Ω)
by sequences hn, kn ∈ C∞(∂Ω), kn ≥ 0, kn 6≡ 0. Let un and vn be the
unique classical solutions

−∆un = 0 in Ω,
∂un

∂ν
+ un = hn on ∂Ω,

and

−∆vn = 0 in Ω,
∂vn

∂ν
+ vn = kn on ∂Ω,

respectively. Note that vn > 0 in Ω by the standard strong maximum
principle (see for example, [5] Theorem 2.2). Consider the problem

−∆ζ = 1 in Ω,
∂ζ

∂ν
+ ζ = 0 on ∂Ω.
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Multiplying ζ to the equations satisfied by u and un, and subtracting,
we have∣∣∣∣−

∫

Ω

(un − u)∆ζdx

∣∣∣∣ =

∣∣∣∣
∫

∂Ω

(hn − h)ζdsx

∣∣∣∣ ≤ ‖hn − h‖L1(∂Ω)‖ζ‖L∞(∂Ω),

which implies un → u in L1(Ω), and also vn → v in L1(Ω). By using
the solution of

−∆η = 0 in Ω,
∂η

∂ν
+ η = 1 on ∂Ω,

we also obtain that un → u, vn → v in L1(∂Ω). Since vn > 0 on Ω,

vnφ(un/vn) is well defined and vnφ
(

un

vn

)
converges to vφ

(
u
v

)
(up to a

subsequence) a.e. on Ω and ∂Ω. Now, by (5.10) in [1]:∣∣∣∣vnφ

(
un

vn

)∣∣∣∣ =

∣∣∣∣vn

{
φ

(
un

vn

)
− φ(0)

}
+ φ(0)vn

∣∣∣∣

=

∣∣∣∣vnφ′
(

θ
un

vn

)(
un

vn

)
+ φ(0)vn

∣∣∣∣ ≤ C(|un|+ |vn|),

for some θ ∈ (0, 1), we see that vnφ
(

un

vn

)
is dominated by some L1

functions in L1(Ω) and L1(∂Ω) respectively, again up to a subsequence.
(Recall φ′ is bounded). Thus by Dominated Convergence Theorem, we
have

vnφ

(
un

vn

)
→ vφ

(u

v

)

in L1(Ω) and L1(∂Ω), respectively. Since it holds that

−
∫

Ω

vnφ

(
un

vn

)
∆ζdx ≥

∫

∂Ω

{
φ′

(
un

vn

)
(hn − kn) + φ(1)kn

}
ζdsx

−
∫

∂Ω

vnφ

(
un

vn

)(
ζ +

∂ζ

∂ν

)
dsx

for any ζ ∈ C2(Ω), ζ ≥ 0 on Ω, passing to the limit in the above and
using the boundedness of φ′ again, we obtain (3.5).

Now, we prove Theorem 3.1.

Proof. Just as done by Brezis and Cabré [1], we use the concave func-
tion

φ(s) =

∫ s

1

1

tp
dt =

1

p− 1

(
1− 1

sp−1

)
for s ≥ 1.

We see φ′(s)sp = 1 for s ≥ 1, φ is concave, φ′ is bounded for s ≥ 1,
φ(1) = 0, φ′(1) = 1 and 0 ≤ φ(s) ≤ 1

p−1
. We extend φ on the interval
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(−∞, 1] by setting φ(s) = s − 1. Then φ thus obtained satisfies the
assumptions in Lemma 3.3.

First, we prove (i) of Theorem 3.1. Assume there exists a very weak
solution u ≥ 0 to (1.1):

−∆u = 0 in Ω,
∂u

∂ν
+ u = a(x)up + f(x) on ∂Ω.

Since a(x)up + f(x) ≥ f(x) on ∂Ω, weak maximum principle (Lemma
2.2) implies

u ≥ G(f) = v on Ω.

Thus 0 ≤ a(x)vp ≤ a(x)up on ∂Ω and since aup ∈ L1(∂Ω) by the
definition of the very weak solution u, we have avp ∈ L1(∂Ω).

Then we take φ as above and apply Lemma 3.3 with h = aup + f ,
k = f . Since u/v ≥ 1, we obtain

−
∫

Ω

vφ
(u

v

)
∆ζdx ≥

∫

∂Ω

{
φ′

(u

v

)
(aup + f − f) + φ(1)f

}
ζdsx

−
∫

∂Ω

vφ
(u

v

) (
ζ +

∂ζ

∂ν

)
dsx

=

∫

∂Ω

avpζdsx −
∫

∂Ω

vφ
(u

v

) (
ζ +

∂ζ

∂ν

)
dsx

for any ζ ∈ C2(Ω), ζ ≥ 0 on Ω by (3.5). This is the weak form of
{
−∆

(
vφ

(
u
v

)) ≥ 0 in Ω,(
∂
∂ν

+ 1
) {

vφ
(

u
v

)} ≥ a(x)vp on ∂Ω,

therefore, again by the weak maximum principle Lemma 2.2, we have

G(avp) ≤ vφ
(u

v

)
≤ 1

p− 1
v,

here we have used φ(s) ≤ 1
p−1

for s ≥ 1. This proves (3.1) of part (i).

Next, we prove (ii) of Theorem 3.1. Assume avp ∈ L1(∂Ω) and (3.2)
holds. Put

w =

(
p

p− 1

)p

G(avp) + v ∈ L1(Ω× ∂Ω).

Then −∆w = 0 and (3.2) implies that w ≤ p
p−1

v, thus
(

∂

∂ν
+ 1

)
w =

(
p

p− 1

)p

avp + f ≥ awp + f

on ∂Ω. That is, w is a very weak supersolution to (1.1). Always 0 is a
subsolution to (1.1). Therefore by the monotone iteration Lemma 2.3,
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we have a very weak solution u satisfying 0 ≤ u ≤ w. Actually, weak
maximum principle implies

v ≤ u ≤ w ≤ p

p− 1
v.

This proves part (ii) of Theorem.

Remark 3.4. Similar results as Theorem 3.1 hold true for other vari-
ants of the problem (1.1), which are considered in [4], [3], or [7], [8].
For example, the following claim can be proved in the same way as
before.

Let p > 1 and a, f satisfy the same assumption of Theorem 3.1.
Consider the problem

(3.6) −∆u + u = 0 in Ω,
∂u

∂ν
= a(x)up + f(x) on ∂Ω

on a smooth bounded domain Ω. The notion of very weak solutions and
the corresponding linear theory (existence, uniqueness, and so on) are
examined in [7]. For any h ∈ L1(∂Ω), let G(h) ∈ L1(Ω × ∂Ω) be the
unique very weak solution of

−∆G(h) + G(h) = 0 in Ω,
∂G(h)

∂ν
= h on ∂Ω.

We have:
(i) If the problem (3.6) has a very weak solution u ≥ 0, then aG(f)p ∈

L1(∂Ω) and

G(aG(f)p) ≤
(

1

p− 1

)
G(f) in Ω.

(ii) If aG(f)p ∈ L1(∂Ω) and

G(aG(f)p) ≤
(

p− 1

p

)p
1

p− 1
G(f) in Ω,

then the problem (3.6) has a very weak solution u ≥ 0 with G(f) ≤
u ≤ p

p−1
G(f) on Ω.

4. Proof of Theorem 1.1.

In this section, we prove Theorem 1.1.

Proof. Assume the contrary that there exists a very weak solution u ≥
0 to (1.1) on a bounded smooth domain Ω with 0 ∈ ∂Ω. Consider
v = G(f), i.e., the unique weak solution of

−∆v = 0 in Ω,
∂v

∂ν
+ v = f on ∂Ω.
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We know that v ≥ 0, v 6≡ 0 on Ω since f ≥ 0, f 6≡ 0 on ∂Ω. Note that,
by the definition of very weak solutions, v is a distributional solution
of

−∆v = 0 in D′(Ω).

(Simply we restrict the class of test functions from C2(Ω) to D(Ω)).
Thus by Weyl’s lemma, we see v ∈ C∞(Ω). Also since f ∈ L∞(Ω),
the regularity Theorem 2.5 implies that v ∈ W 1,q(Ω) for any q < ∞,
thus v ∈ C0,α(Ω) for some α ∈ (0, 1). Hence by the standard strong
maximum principle (see for example, [5]), we have v > 0 on Ω. We
have checked that there exists c > 0 such that v ≥ c > 0 on ∂Ω, since
v ∈ C(∂Ω) and ∂Ω is compact. Now, let us consider w̃ = G(acp), i.e.,
the unique weak solution of

−∆w̃ = 0 in Ω,
∂w̃

∂ν
+ w̃ = cpa(x) on ∂Ω.

Since a(x)vp ≥ a(x)cp on ∂Ω, w = G(avp) satisfies w ≥ w̃ by the weak
maximum principle Lemma 2.2. By the integral representation formula
Lemma 2.4, w̃ can be written as

w̃(x) =
cp

(N − 2)|SN−1|
∫

∂Ω

Ta(y)|x− y|2−Ndsy,

where T : Lq(∂Ω) → Lq(∂Ω) is a bounded linear operator with a
bounded inverse for any q ∈ [1, +∞]. In the following, we prove that
w̃(x) → +∞ as |x| → 0. Since T and T−1 are bounded linear from
Lq(∂Ω) to Lq(∂Ω) for any q ∈ [1, +∞], it is enough to prove that

∫

∂Ω

a(y)

|x− y|N−2
dsy → +∞ as |x| → 0.

This is assured by the assumption (1.4), because for |x| ≤ 1
n
, we have

∫

∂Ω

a(y)

|x− y|N−2
dsy ≥

∫

BN
R (0)∩∂Ω

a(y)

|x− y|N−2
dsy

≥
∫

BN
R (0)∩∂Ω

a(y)(|y|+ 1
n

)N−2
dsy → +∞

as n → ∞. Thus we obtain w = G(avp) also blows up as |x| → 0.
However, this contradicts to the necessary condition (3.1) proved in
Theorem 3.1:

w = G(avp) ≤ 1

p− 1
v on Ω,

since v ∈ C(Ω). This proves Theorem 1.1.
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