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Abstract

We consider a minimization problem on bounded smooth domain € in RV
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This minimization problem plays a crucial role related with LP Lyapunov-
type inequalities (1 < p < oo) for linear partial differential equations with
Neumann boundary conditions (on bounded smooth domains in RY). In this
paper, we prove that existence of the minimizer of S” and L? Lyapunov-type
inequalities in critical case.
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1. Introduction

Let N > 3 and € be a bounded domain in R with a smooth boundary.
We consider the linear elliptic equation

—Au(z) = a(x)u(x) in
{ Quiz) =0 on 0f2 (1)

where the function a : 2 — R belongs to the set A defined as

A= {a e LNV2(Q)\ {0}

/ a(xz)dr > 0 and (1) has nontrivial Solutions} .
Q
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We define 3, as
Bp = inf {||a+||Lp(Q)|a eAN LP(Q)} )

The eigenvalues of the eigenvalue problem

{ —Au(z) = Au(x) in Q
Quiz) =0 on 0f2

belong to A. Thus A is not empty therefore A is well defined. Canada,
Montero and Villegas [4] proved that §, is attained in the case N/2 < p < oo,
B, = 0 and it is not attained in the case 1 < p < N/2. But the case p = N/2
has not been studied so far. In this paper we prove the case p = N/2 for
N > 4. As result, /2 is attained and the minimizer a(z) is represented by
the form

a(z) = |u(z)| 72

where u(z) is solutions of some quasilinear elliptic equation. Timoshin[10]
considered similar problem with Dirichlet boundary conditions, that is,

—Au(z) = a(z)u(z) in Q
{ u(z) =0 on 052 (2)

A= {a € LN2(Q) \ {0}/(2) has nontrivial solutions} .
3, = inf {HaHLp(Q)‘a e Anr(@)}.

About this problem, he proved that Bp is not attained in the case p = N/2
by using not attainability of Sobolev best constant on the bounded domains.
The result is 3, = S is not attained where S is Sobolev best constant. This
result is different from with Neumann boundary conditions.

2. Main Theorem

Theorem 2.1.
Let N > 4, 2 be bounded with smooth boundary. Then 8y, is attained.
Furthermore By/, = S’ where

T2y = 0} .
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From this, the minimizer of 8y/, is represented that

3. Preliminaries

Lemma 3.1. We have

where S is Sobolev best constant.

Without loss of generality, we may assume that 0 € 9€), and that the mean
curvature of 92 at 0 is strictly positive.
For all € > 0, u.(z) € H'() is defined by

(N(N — 2)61)2%2 LU(J;)

O e e

where

In addition, we define 4. (z) as follows.

Ue() := P()ue(x)

where ¢(z) is a suitable cut off function. Then, we have the following esti-
mates due to Adimurthi and Mancini(see [1]) as ¢ — 0:

p

S
— (1 — coe|loge| + O(¢)) N=3
|]V~u82||2 =<¢ —5(1—cie+O(?loge])) N=4
a3+ 2N
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where c¢g, 1, ¢ are positive constants which depend only on N.

For each u, there exist a constant a. > 0 such that

/ lul* ~2u = 0} .
Q
Proposition 3.2. We obtain
(N—2)2
a. = O<52<N+2>>.
Proof of Proposition 3.2. For s > 1(s # N/(N — 2)) we have

[ e||3 = O(emm{SQENJrN, 5¥}>

e —a. € X = {uEHl(Q)

In particular,

iy = O(c™=)
N+2 9
lac]| ¥23 = O(72)

l[l3- = O(1).

Recall that
2071 (a? + P) > (a+ b)P (a,b>0,p > 1).

a, b and p are replaced by a = |a. — 4|, b = 4., p = (N +2)/(N —2) in

each, we obtain

N+

N

272 (|a. — |2 4+ @l2) > (Jae — | + @) N2
N+2
> al .

We integrate above inequality over €2 and we have

N+2 N2
277 [ (o - al¥ 4 il > [ oF
Q Q

N+2 N+2

_4 . Nt2 ~N_—5 _4 ~N—5

2N—2/|a5—u5|N—2 z/aév 2 —2N—2/uEN 2,
Q Q Q
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Since

we calculate using (4)

0 = /[ﬂe—ae
Q

2*72<I~L6 o as)

5 Nt2 _ (N+2
= / (us - as) N-2 — (as - us) —2
[te>ae] lae>0e]
— ons (G — a) 2 — 2852 | |a, — u| N2
[tie >ac] Q

N2 N2
N+2 _ N+2 + 4 I
< 2N—2 (Ue—(lg) 2_{/CLEN2_2N2/UEN 2}'
[te>ae] Q Q

Thus
Ni2 4 N Ni2 N3
/aéV_Q < 2% {2 (ua CL€> 2+/U£§V_2}
Q [tie>ac) Q
4 N42 N42
< W3 {2 al =’ +/ﬁs”‘2}
[ﬂ5>a5] Q
4 N+2
< 223/u5N2
Q
Therefore
N+2 N42 N+2 —2
a¥? < co/ug” = Collucllxi: = O 7).
Q N-—-2
Hence we obtain
w-2)?
a. = O<52<N+2> ) H

Proof. We estimate ||@. — a.||3. similarly to Girdo and Weth(see [7]) using

Proposition.
N2
» s /|a€|2 102 —C(a€/|ﬂ€|m+a§‘2/|ﬂg|)
Q Q Q

/ |te — a.
Q
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Q
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Consequently

- - N(N-2)
e = acll3e > [|ic|3. + O ~+)
and therefore
V@ -a)l3 _ IV
Hﬂs — Q¢ %* B ||a5 %* + 0(61\’%\;—22))
| V|3 N(N-2)
g O,

We recall that the value of Sobolev quotient of u.(x) in the case N = 3,
N =4 and N > 5 and taking account of the fact that N > 4 we obtain

V(i — 2
I ~(Us a52)||2 < — for e small enough,
||te — acl|5 2N
and hence
S < —
2%

Lemma 3.3. If S’ < §/2V/2 then S’ is attained.

Proof. We consider a minimizing sequence {u,} € X for S’. Then u, is
bounded in H*(€2). So we can suppose, up to a subsequence,

u, —uin HY(Q) (n — o)
U, = uin LP(Q) (n—o00) (1 <p<2¥)

U, — u a.e. (n— 00)

In addition, since H*(Q)) — L?"~1(Q) is a compact embedding, we have

/|un|2*_2un—>/|u|2*_2u (n — 00).
Q Q

Furthermore, we may assume that

lunllz- =1 (n €N),
Vun||2 = 5"+ o(1) (n — o0).
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For each u,, there exist a constant a,, such that
Uy — U — ap € X.
We calculate similarly to the proof of Proposition 3.2. We obtain that

a, =o(l) (n— o0).

Since ||u,||% = 1 for all n € N by Brezis-Lieb lemma(see [2]) we have
unll2e = [Jul3 + ||un — ul3 +o(1)  (n — o).
Thus
1= Jlunl3 = (Jull3 + lun — ul3) % +o(1) < Jull2 + [lun — ul3 + o(1).

On the other hand, we have
[Vull; | 1V (un = wlly

i3 + (lun = w = anllar + [lanll2-)? < 5 S +0(1)
Va3
= 2 = 1+0(1)
and
[l + (lun = w = anllas + llanlla)? > [Jull + llun = w3
Thus

5. < 1+o0(1).

%* + [Jun —u

I

Hence there exists a limit and we have the equality.

2*)2%

pe + lun —u

3: + ||u

lim ({ju, —u = lim (Jju
n—00 n—00

Above equality holds if and only if u = 0 or u,, — u in L* (). Suppose that
u = 0 a.e. By Cherrier’s inequality(see [5][6]) we obtain

5 < (1+8)||[Vun|l3 + Ccllunll; (¢ >0,n €N).

2—%!\%

Replacing € by S/(S'2@+M/N) —1/2 > 0 and tending n to oo, taking account
to u, — 0 in L*(Q) we obtain
15 1
2 : 2
o< Jim (14 5507 - 5 ) IVl
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Therefore s s )
— < (—— + 5) lim |V |[3-

2%~ \25 2% n
Consequently
S <
ON
It is contradict S/2%/? > S'. Hence u # 0 and u,, — u in L?". Thus u is the
minimizer of S’. O

4. Proof of Main theorem

We prove By/, = S’ and attainability of By, similar to Canada, Montero
and Villegas (see [4] the supercritical case). Since

*__
2 2U

X :={ue H' (Q)|¢(w) =0}, d(u):= /Q lu

if up € X \ {0} is any minimizer of S’, Lagrange multiplier theorem implies
that there is A € R such that

F'(ug) = A¢'(uo)
where F': H'(Q2) — R is defined by
F(u) = [[Vullz = §'|Jull-.
Also, since ug € X we have (F'(ug), 1) = 0. Moreover, (F'(ug),v) =0, Yv €
HY(Q) satisfying (¢(ug),v) = 0. As any v € H'(Q2) may be written in

the form v = a + w, a € R, and w satisfying (¢'(up),w) = 0, we conclude
(F'(ug),v) =0, Vv € H'(2), i.e. F'(ug) = 0. Hence uy satisfies

% =0 on OS2
where ,
N

Alu) = 8 (/Q yu\ﬁﬂ> _



Ifa € ANLZ(Q) and u € H'() is a nontrivial solution in (1), then for each
k € R we have

ISR = IVl = [ o< [ari [ a
Q Q Q
= Jawsw [ a2 [au= [ ot 02 < oyl bl
Q Q Q Q ?

Since w is a nontrivial solution of (1), u + k is a nontrivial function. Conse-

quently
IV (u+ k)3

|lu+ k
By choosing ko € R such that u + kg € X, we obtain

la* ||y =
2

2
2*

By = S

Conversely, if ug € X \ {0} is any minimizer of S’, then wug satisfies (5).
Therefore A(uo)|uo| 72 € A N LY/2(Q) and

”A<“0)|UO|N4—2||J;:S'(/ '“0'51—3) (/ |%|13§2) =g
Q Q

Hence By = 5" and By, is attained.
On the other hand, let a € AN L~ be any minimizer of By/,. Then

la* {1yl + koll5- = [V ( + Ko)I3-

Hence a(zx) = Mlu(x) + kdﬁ(M > 0 : constant). Furthermore, since
a(x) > 0 we have [, a(z) > 0. In addition, since

/auzz/a(u+k0)2
QO 0

we obtain ko = 0. Finally, we define w(z) = M1 |u(z)| we have that
4

[w(@)| 72 = Mlu(@)| 7= = a(z).

Moreover, since u(x) is a solution of (1) and w(z) is multiple of u(z), then
w(z) is a solution of (1) and consequently a solution of (3).



5. Corollary

Corollary 5.1. Let Q be a ball B := B(0,1) and u be a minimizer for S’ on
B. Then u is foliated Schwarz symmetric, i.e. there exists a unit vector e €
RY, |e| = 1 such that u(x) only depends on r = |z| and @ := arccos(x/|x|-e),
and u is nonincreasing in 6. Moreover, either u does not depend on 6 (hence
it is a radial function), or (Qu/06)(r,0) < 0for 0 <r <1,0< 6 <.

Proof. We can prove the Corollary 5.1. similar to Girao-Weth(see [7] Propo-
sition 4.1.) O
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