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Abstract

We consider a minimization problem on bounded smooth domain Ω in RN

S ′ := inf

{
∥∇u∥22
∥u∥22∗

∣∣∣∣ u ∈ H1(Ω) \ {0} ,
∫
Ω

|u|2∗−2u = 0

}
.

This minimization problem plays a crucial role related with Lp Lyapunov-
type inequalities (1 ≤ p ≤ ∞) for linear partial differential equations with
Neumann boundary conditions (on bounded smooth domains in RN). In this
paper, we prove that existence of the minimizer of S ′ and Lp Lyapunov-type
inequalities in critical case.

Keywords: Minimization problem, Critical, Sign changing, Lyapunov
inequalities, Neumann, Neumann boundary value problem

1. Introduction

Let N ≥ 3 and Ω be a bounded domain in RN with a smooth boundary.
We consider the linear elliptic equation{

−∆u(x) = a(x)u(x) in Ω
∂u
∂ν
(x) = 0 on ∂Ω

(1)

where the function a : Ω → R belongs to the set Λ defined as

Λ :=

{
a ∈ LN/2(Ω) \ {0}

∣∣∣∣∫
Ω

a(x)dx ≥ 0 and (1) has nontrivial solutions

}
.
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We define βp as

βp = inf
{
∥a+∥Lp(Ω)

∣∣a ∈ Λ ∩ Lp(Ω)
}
.

The eigenvalues of the eigenvalue problem{
−∆u(x) = λu(x) in Ω

∂u
∂ν
(x) = 0 on ∂Ω

belong to Λ. Thus Λ is not empty therefore Λ is well defined. Cañada,
Montero and Villegas [4] proved that βp is attained in the case N/2 < p ≤ ∞,
βp = 0 and it is not attained in the case 1 ≤ p < N/2. But the case p = N/2
has not been studied so far. In this paper we prove the case p = N/2 for
N ≥ 4. As result, βN/2 is attained and the minimizer a(x) is represented by
the form

a(x) = |u(x)|
4

N−2

where u(x) is solutions of some quasilinear elliptic equation. Timoshin[10]
considered similar problem with Dirichlet boundary conditions, that is,{

−∆u(x) = a(x)u(x) in Ω
u(x) = 0 on ∂Ω

(2)

Λ̃ :=
{
a ∈ LN/2(Ω) \ {0}

∣∣(2) has nontrivial solutions} .
β̃p = inf

{
∥a∥Lp(Ω)

∣∣∣a ∈ Λ̃ ∩ Lp(Ω)
}
.

About this problem, he proved that β̃p is not attained in the case p = N/2
by using not attainability of Sobolev best constant on the bounded domains.
The result is β̃p = S is not attained where S is Sobolev best constant. This
result is different from with Neumann boundary conditions.

2. Main Theorem

Theorem 2.1.
Let N ≥ 4, Ω be bounded with smooth boundary. Then βN/2 is attained.
Furthermore βN/2 = S ′ where

S ′ := inf

{
∥∇u∥22
∥u∥22∗

∣∣∣∣ u ∈ H1(Ω) \ {0} ,
∫
Ω

|u|2∗−2u = 0

}
.
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From this, the minimizer of βN/2 is represented that

a(x) = |u(x)|
4

N−2

where u(x) is a solution of{
−∆u(x) = |u(x)|

4
N−2u(x) in Ω

∂u
∂ν
(x) = 0 on ∂Ω.

(3)

3. Preliminaries

Lemma 3.1. We have

S ′ <
S

2
2
N

where S is Sobolev best constant.

Without loss of generality, we may assume that 0 ∈ ∂Ω, and that the mean
curvature of ∂Ω at 0 is strictly positive.
For all ε > 0, uε(x) ∈ H1(Ω) is defined by

uε(x) :=
(N(N − 2)ε2)

N−2
4

(ε2 + |x|2)N−2
2

= ε
2−N

2 U
(x
ε

)
where

U(x) =
(N(N − 2))

N−2
4

(1 + |x|2)N−2
2

.

In addition, we define ũε(x) as follows.

ũε(x) := ϕ(x)uε(x)

where ϕ(x) is a suitable cut off function. Then, we have the following esti-
mates due to Adimurthi and Mancini(see [1]) as ε → 0:

∥∇ũε∥22
∥ũε∥22∗

=



S

2
2
N

(1− c0ε|logε|+O(ε)) N = 3

S

2
2
N

(1− c1ε+O(ε2|logε|)) N = 4

S

2
2
N

(1− c2ε+O(ε2)) N ≥ 5
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where c0, c1, c2 are positive constants which depend only on N .

For each ũε there exist a constant aε > 0 such that

ũε − aε ∈ X :=

{
u ∈ H1(Ω)

∣∣∣∣∫
Ω

|u|2∗−2u = 0

}
.

Proposition 3.2. We obtain

aε = O
(
ε

(N−2)2

2(N+2)

)
.

Proof of Proposition 3.2. For s ≥ 1(s ̸= N/(N − 2)) we have

∥ũε∥ss = O
(
εmin{s 2−N

2
+N, sN−2

2 }
)
.

In particular,

∥ũε∥1 = O
(
ε

N−2
2

)
∥ũε∥

N+2
N−2
N+2
N−2

= O
(
ε

N−2
2

)
∥ũε∥2

∗

2∗ = O(1).

Recall that
2p−1(ap + bp) ≥ (a+ b)p (a, b ≥ 0, p ≥ 1).

a, b and p are replaced by a = |aε − ũε|, b = ũε, p = (N + 2)/(N − 2) in
each, we obtain

2
4

N−2 (|aε − ũε|
N+2
N−2 + ũ

N+2
N−2
ε ) ≥ (|aε − ũε|+ ũε)

N+2
N−2

≥ a
N+2
N−2
ε .

We integrate above inequality over Ω and we have

2
4

N−2

∫
Ω

(|aε − ũε|
N+2
N−2 + ũ

N+2
N−2
ε ) ≥

∫
Ω

a
N+2
N−2
ε

hence

2
4

N−2

∫
Ω

|aε − ũε|
N+2
N−2 ≥

∫
Ω

a
N+2
N−2
ε − 2

4
N−2

∫
Ω

ũ
N+2
N−2
ε . (4)
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Since ∫
Ω

|ũε − aε|2
∗−2(ũε − aε) = 0

we calculate using (4)

0 =

∫
Ω

|ũε − aε|2
∗−2(ũε − aε)

=

∫
[ũε>aε]

(ũε − aε)
N+2
N−2 −

∫
[aε>ũε]

(aε − ũε)
N+2
N−2

= 2
N+2
N−2

∫
[ũε>aε]

(ũε − aε)
N+2
N−2 − 2

4
N−2

∫
Ω

|aε − uε|
N+2
N−2

≤ 2
N+2
N−2

∫
[ũε>aε]

(ũε − aε)
N+2
N−2 −

{∫
Ω

a
N+2
N−2
ε − 2

4
N−2

∫
Ω

ũ
N+2
N−2
ε

}
.

Thus ∫
Ω

a
N+2
N−2
ε ≤ 2

4
N−2

{
2

∫
[ũε>aε]

(ũε − aε)
N+2
N−2 +

∫
Ω

ũ
N+2
N−2
ε

}
≤ 2

4
N−2

{
2

∫
[ũε>aε]

ũ
N+2
N−2
ε +

∫
Ω

ũ
N+2
N−2
ε

}
≤ 2

4
N−23

∫
Ω

u
N+2
N−2
ε .

Therefore

a
N+2
N−2
ε ≤ C0

∫
Ω

u
N+2
N−2
ε = C0∥uε∥

N+2
N−2
N+2
N−2

= O(ε
N−2

2 ).

Hence we obtain

aε = O
(
ε

(N−2)2

2(N+2)

)
. 2

Proof. We estimate ∥ũε − aε∥22∗ similarly to Girão and Weth(see [7]) using
Proposition.∫

Ω

|ũε − aε|2
∗ ≥

∫
Ω

|ũε|2
∗
+ |Ω|a2∗ε − C

(
aε

∫
Ω

|ũε|
N+2
N−2 + a

N+2
N−2
ε

∫
Ω

|ũε|
)

=

∫
Ω

|ũε|2
∗
+O(ε

N(N−2)
N+2 ).
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Consequently

∥ũε − aε∥22∗ ≥ ∥ũε∥22∗ +O(ε
N(N−2)

N+2 )

and therefore

∥∇(ũε − aε)∥22
∥ũε − aε∥22∗

≤ ∥∇ũε∥22
∥ũε∥22∗ +O(ε

N(N−2)
N+2 )

=
∥∇ũε∥22
∥ũε∥22∗

+O(ε
N(N−2)

N+2 ).

We recall that the value of Sobolev quotient of ũε(x) in the case N = 3,
N = 4 and N ≥ 5 and taking account of the fact that N ≥ 4 we obtain

∥∇(ũε − aε)∥22
∥ũε − aε∥22∗

<
S

2
2
N

for ε small enough,

and hence

S ′ <
S

2
2
N

.

Lemma 3.3. If S ′ < S/2N/2 then S ′ is attained.

Proof. We consider a minimizing sequence {un} ∈ X for S ′. Then un is
bounded in H1(Ω). So we can suppose, up to a subsequence,

un ⇀ u in H1(Ω) (n → ∞)

un → u in Lp(Ω) (n → ∞) (1 ≤ p < 2∗)

un → u a.e. (n → ∞)

In addition, since H1(Ω) ↪→ L2∗−1(Ω) is a compact embedding, we have∫
Ω

|un|2
∗−2un →

∫
Ω

|u|2∗−2u (n → ∞).

Furthermore, we may assume that

∥un∥2∗ = 1 (n ∈ N),
∥∇un∥22 = S ′ + o(1) (n → ∞).
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For each un there exist a constant an such that

un − u− an ∈ X.

We calculate similarly to the proof of Proposition 3.2. We obtain that

an = o(1) (n → ∞).

Since ∥un∥2
∗

2∗ = 1 for all n ∈ N by Brezis-Lieb lemma(see [2]) we have

∥un∥2
∗

2∗ = ∥u∥2∗2∗ + ∥un − u∥2∗2∗ + o(1) (n → ∞).

Thus

1 = ∥un∥22∗ = (∥u∥2∗2∗ + ∥un − u∥2∗2∗)
2
2∗ + o(1) ≤ ∥u∥22∗ + ∥un − u∥22∗ + o(1).

On the other hand, we have

∥u∥22∗ + (∥un − u− an∥2∗ + ∥an∥2∗)2 ≤ ∥∇u∥22
S ′ +

∥∇(un − u)∥22
S ′ + o(1)

=
∥∇un∥22

S ′ = 1 + o(1)

and
∥u∥22∗ + (∥un − u− an∥2∗ + ∥an∥2∗)2 ≥ ∥u∥22∗ + ∥un − u∥22∗ .

Thus
∥u∥22∗ + ∥un − u∥22∗ ≤ 1 + o(1).

Hence there exists a limit and we have the equality.

lim
n→∞

(∥un − u∥2∗2∗ + ∥u∥2∗2∗)
2
2∗ = lim

n→∞
(∥u∥22∗ + ∥un − u∥22∗) = 1.

Above equality holds if and only if u ≡ 0 or un → u in L2∗(Ω). Suppose that
u ≡ 0 a.e. By Cherrier’s inequality(see [5][6]) we obtain

S

2
2
N

∥un∥22∗ ≤ (1 + ε)∥∇un∥22 + Cε∥un∥22 (ε > 0, n ∈ N).

Replacing ε by S/(S ′2(2+N)/N)−1/2 > 0 and tending n to ∞, taking account
to un → 0 in L2(Ω) we obtain

lim
n→∞

S

2
2
N

∥un∥22∗ ≤ lim
n→∞

(
1 +

1

2S ′
S

2
2
N

− 1

2

)
∥∇un∥22.
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Therefore
S

2
2
N

≤
(

1

2S ′
S

2
2
N

+
1

2

)
lim
n→∞

∥∇un∥22.

Consequently
S

2
2
N

≤ S ′.

It is contradict S/2N/2 > S ′. Hence u ̸= 0 and un → u in L2∗ . Thus u is the
minimizer of S ′.

4. Proof of Main theorem

We prove βN/2 = S ′ and attainability of βN/2 similar to Cañada, Montero
and Villegas (see [4] the supercritical case). Since

X :=
{
u ∈ H1(Ω)

∣∣ϕ(u) = 0
}
, ϕ(u) :=

∫
Ω

|u|2∗−2u

if u0 ∈ X \ {0} is any minimizer of S ′, Lagrange multiplier theorem implies
that there is λ ∈ R such that

F ′(u0) = λϕ′(u0)

where F : H1(Ω) → R is defined by

F (u) = ∥∇u∥22 − S ′∥u∥22∗ .

Also, since u0 ∈ X we have ⟨F ′(u0), 1⟩ = 0. Moreover, ⟨F ′(u0), v⟩ = 0, ∀v ∈
H1(Ω) satisfying ⟨ϕ′(u0), v⟩ = 0. As any v ∈ H1(Ω) may be written in
the form v = a + w, a ∈ R, and w satisfying ⟨ϕ′(u0), w⟩ = 0, we conclude
⟨F ′(u0), v⟩ = 0, ∀v ∈ H1(Ω), i.e. F ′(u0) ≡ 0. Hence u0 satisfies{

−∆u0 = A(u0)|u0|
4

N−2u0 in Ω
∂u0

∂ν
= 0 on ∂Ω

(5)

where

A(u) = S ′

(∫
Ω

|u|
2N
N−2

)− 2
N

.
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If a ∈ Λ∩L
N
2 (Ω) and u ∈ H1(Ω) is a nontrivial solution in (1), then for each

k ∈ R we have

∥∇(u+ k)∥22 = ∥∇u∥22 =
∫
Ω

au2 ≤
∫
Ω

au2 + k2

∫
Ω

a

=

∫
Ω

au2 + k2

∫
Ω

a+ 2k

∫
Ω

au =

∫
Ω

a(u+ k)2 ≤ ∥a+∥N
2
∥u+ k∥22∗ .

Since u is a nontrivial solution of (1), u+ k is a nontrivial function. Conse-
quently

∥a+∥N
2
≥ ∥∇(u+ k)∥22

∥u+ k∥22∗
.

By choosing k0 ∈ R such that u+ k0 ∈ X, we obtain

βN
2
≥ S ′.

Conversely, if u0 ∈ X \ {0} is any minimizer of S ′, then u0 satisfies (5).

Therefore A(u0)|u0|
4

N−2 ∈ Λ ∩ LN/2(Ω) and

∥A(u0)|u0|
4

N−2∥N
2
= S ′

(∫
Ω

|u0|
2N
N−2

)− 2
N
(∫

Ω

|u0|
2N
N−2

) 2
N

= S ′.

Hence βN/2 = S ′ and βN/2 is attained.

On the other hand, let a ∈ Λ ∩ L
N
2 be any minimizer of βN/2. Then

∥a+∥N
2
∥u+ k0∥22∗ = ∥∇(u+ k0)∥22.

Hence a(x) ≡ M |u(x) + k0|
4

N−2 (M > 0 : constant). Furthermore, since
a(x) > 0 we have

∫
Ω
a(x) ≥ 0. In addition, since∫

Ω

au2 =

∫
Ω

a(u+ k0)
2

we obtain k0 ≡ 0. Finally, we define w(x) = M
N−2

4 |u(x)| we have that

|w(x)|
4

N−2 = M |u(x)|
4

N−2 = a(x).

Moreover, since u(x) is a solution of (1) and w(x) is multiple of u(x), then
w(x) is a solution of (1) and consequently a solution of (3). 2

9



5. Corollary

Corollary 5.1. Let Ω be a ball B := B(0, 1) and u be a minimizer for S ′ on
B. Then u is foliated Schwarz symmetric, i.e. there exists a unit vector e ∈
RN , |e| = 1 such that u(x) only depends on r = |x| and θ := arccos(x/|x| ·e),
and u is nonincreasing in θ. Moreover, either u does not depend on θ(hence
it is a radial function), or (∂u/∂θ)(r, θ) < 0 for 0 < r ≤ 1, 0 < θ < π.

Proof. We can prove the Corollary 5.1. similar to Girão-Weth(see [7] Propo-
sition 4.1.)
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