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Abstract. Let SN ⊂ RN+1, N ≥ 3, be the unit sphere, and let SΘ ⊂ SN be a geodesic
ball with geodesic radius Θ ∈ (0, π). We study the bifurcation diagram {(Θ, ∥U∥∞)} ⊂
R2 of the radial solutions of the Emden-Fowler equation on SΘ

∆SNU + Up = 0 in SΘ,

U = 0 on ∂SΘ,

U > 0 in SΘ,

where p > 1. Among other things, we prove the following: For each p > pS := (N −
2)/(N + 2), there exists Θ ∈ (0, π) such that the problem has a radial solution for
Θ ∈ (Θ, π) and has no radial solution for Θ ∈ (0,Θ). Moreover, this solution is unique
in the space of radial functions if Θ is close to π. If pS < p < pJL, then there exists
Θ∗ ∈ (Θ, π) such that the problem has infinitely many radial solutions for Θ = Θ∗, where

pJL =

{
1 + 4

N−4−2
√
N−1

if N ≥ 11,

∞ if 2 ≤ N ≤ 10.

Asymptotic behaviors of the bifurcation diagram as p → ∞ and p ↓ 1 are also studied.

1. Introduction and Main results

Let SN ⊂ RN+1, N ≥ 3, be the unit sphere, and let SΘ ⊂ SN be the geodesic ball
centered at the North Pole with geodesic radius Θ ∈ (0, π). We call SΘ the spherical cap.
In this paper we are concerned with the solution of the Emden-Fowler equation on SΘ

(1.1)


∆SNU + Up = 0 in SΘ,

U = 0 on ∂SΘ,

U > 0 in SΘ,

where ∆SN denotes the Laplace-Beltrami operator on SN and p > 1. In the Euclidean
case it is well known that the qualitative property of the structure of the solutions of the
problem

(1.2)


∆U + Up = 0 in BΛ,

U = 0 on ∂BΛ,

U > 0 in BΛ

depends on p, and does not depend on Λ. Here, BΛ ⊂ RN denotes the ball centered at
the origin O with radius Λ > 0. By the symmetry result of [13], every solution of (1.2) is
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radially symmetric. The critical Sobolev exponent

pS :=

{
N+2
N−2

, if N ≥ 3,

∞, if N = 1, 2

plays an important role. It is known that (1.2) has a unique solution if 1 < p < pS,
and has no solution if p ≥ pS [25]. In the hyperbolic space the moving plane method
is applicable and every positive solution of a semilinear elliptic equation with general
nonlinearity on a geodesic ball with radius Λ > 0 is radially symmetric. See [18, 26]
for this symmetry result. Bonforte et. al. [6] showed, among other things, that in the
hyperbolic space the Emden-Fowler equation on the geodesic ball with radius Λ > 0 has a
unique positive solution if 1 < p < pS, and has no solution if p ≥ pS. Thus, the hyperbolic
case is qualitatively the same as the Euclidean case. In the spherical case Padilla [24] and
Kumaresan-Prajapat [18] showed that if SΘ is included in a hemisphere (0 < Θ < π

2
),

then every positive solution of a semilinear elliptic equation with general nonlinearity is
radially symmetric. On the other hand, if SΘ includes a hemisphere (π

2
< Θ < π), then

there is a semilinear elliptic equation such that it has a nonradial positive solution. See
[4, 20] for the existence of nonradial positive solutions. As far as (1.1) is concerned, if
0 < Θ < π and 1 < p ≤ pS, then one can easily show that the solution is radial, changing
variables and applying the symmetry result of [13] to the equation. When Θ = π

2
and

p > 1, the radial symmetry of a solution of (1.1) is guaranteed by [26, Theorem 1]. The
question whether a solution of (1.1) is radial in the case where π

2
< Θ < π and p > pS

seems to remain open. In this paper we restrict ourselves to radially symmetric solutions.
This study is motivated by the result of Bandle-Peletier [3]. In the case where N = 3

and p = pS(= 5) they showed that (1.1) has no solution if SΘ is included in a hemisphere,
and has a radial solution if SΘ includes a hemisphere. This indicates that the solution
structure depends not only on p but also on the radius Θ. Actually, we will see in
Corollary B below that (1.1) has a solution even in the supercritical case p > pS if Θ
is close to π. Hence, the solution structure in the spherical case is different from the
solution structures in both the Euclidean and hyperbolic cases. The difference between
the Euclidean and spherical cases was also found in the structure of the positive solutions
of the Brézis-Nirenberg problem{

∆S3u+ λu+ u5 = 0 in SΘ(⊂ S3),

u = 0 on ∂SΘ

which involves the critical Sobolev exponent. See [1, 7] for details. It seems that the
present paper is the first attempt to study the supercritical Emden-Fowler equation on a
spherical cap. The supercritical Emden-Fowler equation on other manifolds was studied
in [5].

Let us explain the problem in detail. Let θ be the geodesic distance from the North
Pole of SN . Let p > 1 be fixed. Then the solution U of (1.1) depends only on θ. The
problem (1.1) can be reduced to the ODE

(1.3)


U ′′ + (N − 1) cos θ

sin θ
U ′ + Up = 0, 0 < θ < Θ,

U(Θ) = 0,

U > 0, 0 ≤ θ < Θ.
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We consider the possibly sign-changing solution of the initial value problem

(1.4)

{
U ′′ + (N − 1) cos θ

sin θ
U ′ + |U |p−1U = 0, 0 < θ < π,

U(0) = Γ > 0, U ′(0) = 0.

In Lemma 3.2 we will see that the solution U( · ) of (1.4) has the first positive zero
Θ(Γ) ∈ (0, π). In Theorem A below we show that Θ(Γ) is a C1-function defined on
0 < Γ < ∞. It is clear that U(θ) (0 ≤ θ ≤ Θ(Γ)) is decreasing. Hence, ∥U∥C0(SΘ(Γ)) = Γ.

The set of all the regular radial solutions of (1.1) can be represented by the bifurcation
diagram {(Θ(Γ),Γ)} ⊂ R2. Thus, in this paper we mainly study the graph of the function
Θ(Γ).

In order to compare our main theorem below with the result of Joseph-Lundgren [16]
we mention their result. They studied the bifurcation diagram for the semilinear elliptic
problem on the unit ball B1 ⊂ RN

(1.5)


∆U + λ(U + 1)p = 0 in B1,

U = 0 on ∂B1,

U > 0 in B1.

They found the so-called Joseph-Lundgren exponent

pJL :=

{
1 + 4

N−4−2
√
N−1

, if N ≥ 11,

∞, if 2 ≤ N ≤ 10.

The solution set of (1.5) can be parametrized by the L∞-norm of the solution U which is
equal to U(O). Let γ := ∥U∥∞ = U(O). Then the bifurcation diagram can be described

as {(λ(γ), γ)} ⊂ R2. Let λ∗N := 2
p−1

(
N − 2− 2

p−1

)
. They showed the following: If

pS < p < pJL, then λ(γ) oscillates infinitely many times around λ∗N and λ(γ) → λ∗N
(γ → ∞), and if p ≥ pJL, then λ(γ) is monotonically increasing and λ(γ) → λ∗N (γ → ∞).
In our problem a similar result is obtained for the bifurcation curve {(Θ(Γ),Γ)}.

Theorem A (Supercritical). Suppose that N ≥ 3 and p > pS. Let Θ(Γ) be the first
positive zero of the solution of (1.4). Then the following hold:
(i) The function Θ(Γ) is of class C1. For each Γ > 0, 0 < Θ(Γ) < π.
(ii) Θ(Γ) → π as Γ ↓ 0. If Γ > 0 is small, then Θ′(Γ) < 0.
(iii) Θ(Γ) → Θ∗ as Γ → ∞, where Θ∗(∈ (0, π)) is defined in Theorem C below.
(iv) If pS < p < pJL, then Θ(Γ) oscillates infinitely many times around Θ∗ as Γ → ∞.

See Figure 1 (a) for the bifurcation diagram in the case pS < p < pJL. When 3 ≤ N ≤ 10,
pJL = ∞, and hence, (iv) always holds. An immediate consequence of Theorem A is the
following:

Corollary B. Suppose that N ≥ 3 and p > pS. Then the following hold:
(i) There exists Θ > 0 such that (1.3) has no regular solution for Θ ∈ (0,Θ) and has a
regular solution for Θ ∈ (Θ, π).
(ii) If pS < p < pJL, then (1.3) has a regular solution for Θ = Θ, where Θ is given in (i).
(iii) If pS < p < pJL, then (1.3) has infinitely many regular solutions for Θ = Θ∗, where
Θ∗ is given in Theorem C below.
(iv) There exists Θ ∈ (0, π) such that (1.3) has a unique regular solution for Θ ∈ (Θ, π).
This solution is nondegenerate in the space of radial functions.
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Figure 1. Schematic bifurcation diagrams: (a) pS < p < pJL (Theo-
rem A), (b) p ≥ pJL (Conjecture 1.1), (c) 1 < p ≤ pS (N ≥ 4) and
1 < p < pS (N = 3) (Proposition 1.2), (d) p = pS and N = 3 (Proposi-
tion 1.2).

In the study of the bifurcation diagram the singular solution plays a key role. The problem

(1.5) has the singular solution U∗(r) = r−
2

p−1 − 1 for λ = λ∗N . The problem (1.3) also

has a singular solution U∗(θ) such that U∗(θ) = O(θ−
2

p−1 ) (θ ↓ 0). Namely, the following
theorem holds.

Theorem C. Suppose that N ≥ 3 and p > pS. There exists Θ∗ ∈ (0, π) such that (1.3)
has a singular solution U∗(θ) for Θ = Θ∗ such that U∗(θ) ∈ C2(0,Θ∗] and

(1.6) U∗(θ) = a

(
cos

θ

2

)−(N−2)(
2 tan

θ

2

)−µ

(1 + o(θ)) as θ ↓ 0,

where

(1.7) a :=
(√

µ(N − 2− µ)
)µ

and µ :=
2

p− 1
.

In the next theorem we obtain the behavior of the curve {(Θ(Γ),Γ)} for large p.

Theorem D. Suppose that N ≥ 3. Let Θ be given in Corollary B (i), and let Θ∗ be given
in Theorem C. Then,

Θ → π as p→ ∞.

Since Θ ≤ Θ∗, it holds that Θ∗ → π as p → ∞. In particular, when N = 3, Θ ≥
π − arcsin 4

p−1
for p ≥ pS(= 5).

In Theorems A and D detailed properties of Θ(Γ) in the case p ≥ pJL are not clarified.

Conjecture 1.1. Suppose that N ≥ 11. If p ≥ pJL, then Θ(Γ) is strictly decreasing and
(1.3) has no regular solution for Θ ∈ (0,Θ∗].

Figure 1 (b) shows a conjectured bifurcation diagram in the case p ≥ pJL.
Next, we consider the critical case p = pS and subcritical case 1 < p < pS. We recall

known results to state Theorem E below.

Proposition 1.2 (Critical/Subcritical). Suppose that N ≥ 3 and 1 < p ≤ pS. Let Θ(Γ)
be the first positive zero of the solution of (1.4).
(i) The function Θ(Γ) is of class C1. For each Γ > 0, 0 < Θ(Γ) < π.
(ii) Θ(Γ) → π as Γ ↓ 0.
(iii) Θ(Γ) is strictly decreasing.
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(iv) If N ≥ 4, then Θ(Γ) → 0 as Γ → ∞.
(v) If N = 3 and p = pS(= 5), then Θ(Γ) → π

2
as Γ → ∞. On the other hand, if N = 3

and 1 < p < pS, then Θ(Γ) → 0 as Γ → ∞. In particular, if N = 3 and p = pS(= 5),
(1.3) has no regular solution for Θ ∈ (0, π

2
].

See Figure 1 (c) and (d).
When 1 < p < pS, for each fixed Θ0 ∈ (0, π), there is a unique Γ0 > 0 depending on

p such that Θ(Γ0) = Θ0. Therefore, we write Γ0 by Γ(p). The asymptotic shape of the
branch as p ↓ 1 is as follows:

Theorem E. Suppose that N ≥ 3. There exists Θ† ∈ (0, π) such that the following
statements hold:
(i) If 0 < Θ < Θ†, then Γ(p) → ∞ as p ↓ 1.
(ii) If Θ = Θ†, then Γ(p) → Γ† as p ↓ 1 with some constant Γ† > 0.
(iii) If Θ† < Θ < π, then Γ(p) → 0 as p ↓ 1.

Since the solution structure changes at p = pS, it is natural to study the case where
p ↓ pS. We are led to the following:

Conjecture 1.3. Let Θ be given in Corollary B (iv), and let Θ∗ be given in Theorem C.
If N ≥ 4, then Θ → 0 (p ↓ pS) and Θ∗ → 0 (p ↓ pS). If N = 3, then Θ → π

2
(p ↓ pS) and

Θ∗ → π
2
(p ↓ pS).

Let us explain technical details. Using the stereographic projection v(r) := U(θ) and
r := tan θ

2
, we have

v′′ +
N − 1

r
v′ − (N − 2)rA(r)v′ + A(r)2vp = 0,

where

A(r) :=
2

1 + r2
.

We let u(r) := A(r)
N−2

2 v(r). Then, we have the semilinear elliptic problem

(1.8)


u′′ + N−1

r
u′ + N(N−2)

4
A(r)2u+ 1

A(r)q
up = 0, 0 < r < R,

u(R) = 0,

u > 0, 0 ≤ r < R,

where

R := tan
Θ

2
and q :=

N − 2

2
(p− pS).

Note that if R = 1, then SΘ is a hemisphere (Θ = π
2
). The problem (1.4) is equivalent to

the problem

(1.9)

{
u′′ + N−1

r
u′ + N(N−2)

4
A(r)2u+ 1

A(r)q
|u|p−1u = 0, 0 < r <∞,

u(0) = γ > 0, u′(0) = 0,

where γ := 2
N−2

2 Γ. By R(γ) we denote the first positive zero of the solution u( · , γ) of

(1.9), i.e., R(γ) = tan Θ(Γ)
2

. In this paper we mainly consider (1.9).
First, we prove a global parametrization result, using the implicit function theorem.

Specifically, we show that Θ(Γ) is a C1-function defined on 0 < Γ <∞. Next, we construct
a singular solution of (1.8) u∗(r) near the origin whose asymptotic expansion is given by
(1.6) in the original variables, using the method of Merle-Peletier [19, Theorem 1.1]. We
see that u∗(r) has the first positive zero R∗ if the domain of u∗(r) is extended to (0,∞).
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Then, u∗(r) is the positive singular solution on (0, R∗]. We modify the method used in the
proof of [19, Theorem 1.2] in order to prove the convergence Θ(Γ) → Θ∗. Let ZJ [f( · )]
denote the number of the zeros of the function f( · ) on the interval J ⊂ R, i.e.,

ZJ [f( · )] := ♯{x ∈ J ; f(x) = 0}.

In the study of the oscillation of the curve {(Θ(Γ),Γ)} we use the intersection number
between the regular solution u(r, γ) and the singular solution u∗(r) on the interval I(γ) :=
(0,min{R(γ), R∗}), which is denoted by

ZI(γ)[u( · , γ)− u∗( · )],

where u(r, γ) is the solution of (1.9). By blow-up argument we show that ZI(γ)[u( · , γ)−
u∗( · )] → ∞ as γ → ∞. This divergence leads to Theorem A (iv). The existence of infin-
itely many turning points for semilinear elliptic equations on a Euclidean ball was proved
by the several authors. In [12, 14] the Brezis-Nirenberg problem including a supercriti-
cal exponent was studied. Dolbeault-Flores [12] used the geometric theory of dynamical
systems. Guo-Wei [14] used the Morse indices of solutions, using the intersection number
between the regular and singular solutions. In [8, 9, 10, 11] Dancer studied infinitely
many turning points of supercritical semilinear Dirichlet problems on a rather general
domain, using the analytic property. However, the existence of infinitely many positive
solutions was not proved in [8, 9, 10, 11]. Combining a detailed analysis of the inter-
section number and techniques developed in [14, 19], the second author of the present
paper recently proved the existence of the infinitely many turning points and positive
solutions of a rather general equation on a ball in [21, 22, 23]. In particular, this method
is applicable to a Neumann problem on a ball. See [23]. The method used in the proof
of Theorem A (iv) was developed in [21]. Theorem A (ii), which indicates that the small
solution is nondegenerate, is proved by the Sturm-Liouville comparison theorem. Specif-
ically, we prove that uγ(r, γ) has exactly one zero on [0, R(γ)) and that uγ(R(γ), γ) < 0.
Combining Theorem A (ii) and (iii), we show that the solution is unique for Θ ∈ (Θ, π).
One can show that for each Θ ∈ (0, π) the solution does not exist for large p > 1, using
the Pohožaev identity (8.1). Consequently, Theorem D holds. In the proof of Theorem E
we follow the idea of Yanagida-Yotsutani [28]. Using the scaled equation (8.10) below,
one can analyze the asymptotic behavior of Γ(p) as p ↓ 1.

This paper consists of eight sections. In Section 2 we recall known results about the
Emden-Fowler equation on RN . In Section 3 we prove Theorem A (i). In Section 4 we
construct the singular solution (Theorem C). In Sections 5, 6, and 7 we prove Theorem A
(iii), (ii), and (iv), respectively. The proof of Corollary B is in Section 7. In Section 8 we
prove Theorems D and E. Proposition 1.2 is also proved in Section 8.

2. Known results

We recall known results about solutions of the equation

ū′′ +
N − 1

ρ
ū′ + ūp = 0, 0 < ρ <∞.

See [16] for a phase plane analysis without rigorous proof and [29] for a rigorous proof.
This problem has the singular solution

(2.1) ū∗(ρ) := aρ−µ,
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where a and µ are defined by (1.7). Let ū(ρ, γ̄) be the solution of

(2.2)

{
ū′′ + N−1

ρ
ū′ + ūp = 0, 0 < ρ <∞,

ū(0) = γ̄ > 0, ū′(0) = 0.

We use Emden’s transformation

ȳ(t) :=
ū(ρ, γ̄)

ū∗(ρ)
and t :=

1

m
log ρ,

where

(2.3) m := a−
p−1
2 .

Then ȳ(t) satisfies

(2.4)


ȳ′′ + αȳ − ȳ + ȳp = 0, −∞ < t <∞,

ae−mµtȳ(t) → γ̄ as t→ −∞,

e−mt(e−mµtȳ(t))′ → 0 as t→ −∞,

where

(2.5) α := m(N − 2− 2µ).

Let z̄(t) := ȳ′(t). Then, (ȳ, z̄) satisfies

(2.6)

{
ȳ′ = z̄

z̄′ = −αz̄ + ȳ − ȳp.

We study the orbit (ȳ(t), z̄(t)). Let

J(ȳ, z̄) :=
z̄2

2
− ȳ2

2
+
ȳp+1

p+ 1
.

By direct calculation we have

d

dt
J(ȳ(t), z̄(t)) = −αz̄(t)2.

If p > pS, then α > 0, and hence, d
dt
J(ȳ(t), z̄(t)) ≤ 0. Then, J is a Lyapunov function of

(2.6). We see by the initial condition in (2.4) that (ȳ(−∞), z̄(−∞)) = (0, 0). Therefore,
J(ȳ(t), ȳ(t)) ≤ 0 for all t ∈ R.

The system (2.6) has the unique equilibrium (1, 0) in the bounded set {(ȳ, z̄) ∈ R2; J(ȳ, z̄) <
0, ȳ > 0}. It follows from the Poincaré-Bendixson theorem that (ȳ(t), z̄(t)) → (1, 0) as
t→ ∞. Next, we study the behavior of (ȳ(t), z̄(t)) near (1, 0). The two eigenvalues of the
linearization at (1, 0) are given by λ2 + αλ+ p− 1 = 0. Therefore, (1, 0) is a spiral point
if α2 − 4(p− 1) < 0. This inequality is equivalent to (N − 2− 2µ)2 − 8(N − 2− µ) < 0.
Solving this inequality for µ, we have

(2.7)
N − 4− 2

√
N − 1

2
< µ <

N − 4 + 2
√
N − 1

2
.

Since 1 + 4/(N − 4 + 2
√
N − 1) < pS < p, µ < (N − 4 + 2

√
N − 1)/2 holds. If N ≤ 10,

then (N − 4 − 2
√
N − 1)/2 ≤ 0 < µ, and hence, (2.7) holds. In the case N ≥ 11, (2.7)

holds if

(2.8) p < 1 +
4

N − 4− 2
√
N − 1

(= pJL).

We have seen the following: The orbit (ȳ(t), z̄(t)) starts from (0, 0) at t = −∞ and
converges to (1, 0) as t → ∞. Moreover, if (2.8) holds, then (ȳ(t), z̄(t)) rotates clockwise
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around (1, 0). Therefore, there is {tj}∞j=1 (t1 < t2 < · · · → ∞) such that z(tj) = 0
(j ∈ {1, 2, . . .}) and

y(t2) < y(t4) < · · · < y(t2j) < · · · < 1 < · · · < y(t2j−1) < · · · < y(t3) < y(t1).

This means that y(t) oscillates around 1 infinitely many times. Since ȳ(t) = ū(ρ,γ̄)
ū∗(ρ)

, the

intersection number between ū(ρ, γ̄) and ū∗(ρ), which we denote by Z(0,∞)[ū( · , γ̄)−ū∗( · )],
is ∞.

Proposition 2.1. (i) Let ū(ρ, γ̄) be the solution of (2.2). If pS < p < pJL, then
Z(0,∞)[ū( · , γ̄)− ū∗( · )] = ∞.
(ii) Let (ȳ(t), z̄(t)) be the solution of (2.4). If p > pS, then, for each γ̄ > 0, (ȳ(t), z̄(t))
converges to (1, 0) as t→ ∞.

3. Parameterization results

The aim of this section is to show that the regular solutions of (1.8) can be parameterized
by γ. Parametrization results for Euclidean cases were obtained by several authors. See
[17, 21] for example. The proof is similar. However, we give the proof for readers’
convenience.

Lemma 3.1. Suppose that p > 1. Let (R0, u0(r)) be a solution of (1.9) with γ = γ0. Then,
there is a C1-mapping γ 7→ (R(γ), u(r, γ)) such that all solutions of (1.9) near (R0, u0(r))
can be described as {(R(γ), u(r, γ))}|γ−γ0|<ε (u(0, γ) = γ) and that (R(γ0), u(r, γ0)) =
(R0, u0(r)).

Proof. Since u(r, γ) is a solution of (1.9), u(r, γ) is a C1-function of r and γ. Since u
satisfies the equation in (1.9), ur(R0, γ0) ̸= 0, otherwise u(r, γ0) ≡ 0 (0 < r < R) by the
uniqueness of the solution of the ODE. Since u(R0, γ0) = 0, we can apply the implicit
function theorem to u(r, γ) = 0. Then, there is a C1-function R = R(γ) defined on
|γ − γ0| < ε such that u(R(γ), γ) = 0 and R(γ0) = R0. Because of the continuity of
u(r, γ), u(r, γ) > 0 in {(r, γ); 0 < r < R(γ), |γ − γ0| < ε}. Thus, (R(γ), u(r, γ)) is a
solution of (1.9). The implicit function theorem also says that all solutions of (1.9) near
(R0, u0(r)) are {(R(γ), u(r, γ))}|γ−γ0|<ε and that the mapping γ 7→ (R(γ), u(r, γ)) is of
class C1. The proof is complete. □

Lemma 3.2. Suppose that p > 1. Let U(θ,Γ) be the solution of (1.4). Then U( · ,Γ) has
the first positive zero Θ(Γ) ∈ (0, π).

Proof. Let U be the solution of (1.4). By the equation in (1.4) we have

(3.1) (U ′ sinN−1 θ)′ + |U |p−1U sinN−1 θ = 0.

Integrating (3.1) over [0, θ], we have

(3.2) U ′(θ) = − 1

sinN−1 θ

∫ θ

0

|U(φ)|p−1U(φ) sinN−1 φdφ.

Thus,

(3.3) if U(θ) > 0 for θ ∈ [0, θ0), then U
′(θ) < 0 for θ ∈ (0, θ0].

By contradiction we prove the statement of the lemma. Suppose the contrary, i.e., U(θ) >
0 for θ ∈ [0, π). By (3.3) we see that U ′(θ) < 0 for θ ∈ (0, π).
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Let θ1 and θ2 be such that 0 < θ1 < θ2 < π. We let θ > θ2. Integrating (3.1) over
[θ1, θ], we have

U ′(θ) = − C(θ)

sinN−1 θ
,

where

C(θ) := |U ′(θ1)| sinN−1 θ1 +

∫ θ

θ1

|U(φ)|p−1U(φ) sinN−1 φdφ.

We have

C(θ2) = |U ′(θ1)| sinN−1 θ1 +

∫ θ2

θ1

|U(φ)|p−1U(φ) sinN−1 φdφ

≥ |U ′(θ1)| sinN−1 θ1 + U(θ2)
p

∫ θ2

θ1

sinN−1 φdφ

> 0.

Since θ2 < θ, C(θ2) < C(θ). Therefore,

(3.4) U ′(θ) < − C(θ2)

sinN−1 θ
for θ > θ2.

Integrating (3.4) over [θ2, θ], we have

U(θ) ≤ U(θ2)− C(θ2)

∫ θ

θ2

dφ

sinN−1 φ
.

Hence, U(θ) → −∞ as θ ↑ π. This contradicts the assumption. Thus, there exists the
first positive zero Θ(Γ) ∈ (0, π). □

As we see in the following lemma, the solution set of (1.8) is a curve and it can be
parametrized by γ.

Lemma 3.3. Suppose that p > 1. There is a C1-mapping γ 7→ (R(γ), u(r, γ)) defined on
(0,∞) such that all regular solutions of (1.8) can be described as (R(γ), u(r, γ)). Specifi-
cally, for each γ > 0, R(γ) is defined and 0 < R(γ) <∞.

Proof. Let u(r, γ) be the solution of (1.9). Because of Lemma 3.2 and r = tan θ
2
, the

solution u( · , γ) of (1.9) also has the first positive zero R(γ) ∈ (0,∞).
R(γ) is defined for every γ > 0 and 0 < R(γ) <∞. By Lemma 3.1 we see that R(γ) is

of class C1. It is clear that {(R(γ), u(r, γ))}γ>0 is the set of all regular solutions of (1.8).
The proof is complete. □

4. Singular solution

In this section we show that (1.8) has a singular solution (R∗, u∗(r)). Let u(r) be a
solution of (1.8). We use the change of variables

(4.1) y(t) := 2−
q

p−1
u(r)

ū∗(r)
and t :=

1

m
log r.

Here, ū∗(r) is defined by (2.1), m is defined by (2.3). Then y satisfies

(4.2) y′′ + αy′ − y + yp +B0(t)y
p +B1(t)y = 0,

where α is defined by (2.5),

(4.3) B0(t) :=
(
1 + e2mt

)q − 1, and B1(t) :=
N(N − 2)e2mt

(1 + e2mt)2
.
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Note that B0(t) > 0 and B1(t) > 0.
We construct the singular solution near t = −∞.

Lemma 4.1. Suppose that p > pS. Assume that the problem

(4.4)

{
y′′ + αy′ − y + yp +B0(t)y

p +B1(t)y = 0,

y(t) → 1 as t→ −∞

has a solution y∗(t) near t = −∞. Then, y∗(t) satisfies

(4.5) y∗(t) = 1 +O(e2mt) as t→ −∞.

Proof. Let τ := −t and η(τ) := y(t)− 1. Then η(τ) satisfies

(4.6)

{
η′′ − αη′ + (p− 1)η = g(τ), τ0 < τ <∞,

η(τ) → 0 as τ → ∞,

where τ0 is large,

(4.7) g(τ) := −B0(−τ)(η + 1)p −B1(−τ)(η + 1)− φ(η),

φ(η) := (1 + η)p − 1− pη.

There are three cases:

(4.8) (1) p− 1 >
(α
2

)2
, (2) p− 1 <

(α
2

)2
, (3) p− 1 =

(α
2

)2
.

We consider only the case (1). The other cases can be similarly treated. Because the
linearly independent solutions of the homogeneous equation associated with the equation
of (4.6) becomes unbounded as τ → ∞, we have

η(τ) =
e

ατ
2

β

∫ ∞

τ

e−
α
2
σ sin(β(σ − τ))g(σ)dσ,

where β :=
√

(p− 1)−
(
α
2

)2
. If |η| is small, then there are a small ε > 0 and τε such that

(4.9) |φ(τ)| ≤ |(1 + η)p − 1− pη| ≤ ε|η| (τ > τε)

By (4.7) and (4.9) we have

|g(τ)| ≤ C0e
−2mτ + ε|η(τ)| (τ > τε).

Using the same method as in the proof of [19, Lemma 3.1], we have η(τ) = O(e−2mτ ) as
τ → ∞. Therefore, (4.5) holds. The details of this part can be found in the proof of [21,
Lemma 6.3]. We omit the rest of the proof. □
Lemma 4.2. Suppose that p > pS. The problem (4.4) has a unique solution near t = −∞.

Proof. There are three cases (4.8) as in the proof of Lemma 4.1. We consider only the
case (1). We transform (4.2) to the integral equation

(4.10) η(τ) = F(η)(τ).

In the case (1) F becomes

F(η)(τ) =
e

ατ
2

β

∫ ∞

τ

e−
α
2
σ sin(β(σ − τ))g(σ)dσ.

By ∥ · ∥ we denote ∥ · ∥C0[τ0,∞). We set X := {η(τ) ∈ C0[τ0,∞); ∥η(τ)∥ < ∞} and

B := {η(τ) ∈ X; ∥η∥ < δ}. If δ > 0 is small, then we can show that F(B) ⊂ B and F is
a contraction mapping on B, using Lemma 4.1. Hence, the contraction mapping theorem
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says that (4.10) has a unique solution in B. We omit the detail. See [19, Lemma 3.2] of
[21, Lemma 6.4]. □

Let y∗(t) be the solution of (4.4) obtained in Lemma 4.2. We define

(4.11) u∗(r) = 2
q

p−1ar−µy∗(
1

m
log r).

We need the asymptotics of u∗(r) to prove the existence of the singular solution.

Corollary 4.3. Suppose that p > pS. Let u
∗(r) be defined by (4.11). Then

(4.12) u∗(r) = 2
q

p−1ar−µ(1 + o(1)) as r ↓ 0.

(4.13) (u∗)′(r) = −2
q

p−1µar−µ−1(1 + o(1)) as r ↓ 0.

Proof. (4.12) is obtained by (4.11) and Lemma 4.1. The proof of (4.13) is the same as
that of [23, Corollary 4.6]. Differentiating (4.10) in τ , we have

η′(τ) =
α

2β
e

ατ
2

∫ ∞

τ

e−
α
2
σ sin(β(σ − τ))g(σ)dσ − e

ατ
2

∫ ∞

τ

e−
α
2
σ cos(β(σ − τ))g(σ)dσ.

We have that η′(τ) = O(e−2mτ ), and hence, (y∗)′(r) = O(e2mt). Differentiating (4.11) in
r, we have

(4.14) (u∗)′(r) = −2
q

p−1µar−µ−1y∗(
1

m
log r) + 2

q
p−1ar−µ(y∗)′(

1

m
log r)

1

r
.

Substituting the asymptotics of y∗ and (y∗)′ into (4.14), we have (4.13). We omit the
detail of the proof. □

Corollary 4.4. Suppose that p > pS. Let U
∗(θ) := A(r)−

N−2
2 u∗(r) and r := tan θ

2
. Then,

(1.6) and the following hold:
(4.15)

(U∗)′(θ) = a

(
cos

θ

2

)−N (
2 tan

θ

2

)−µ−1
(
−µ+ (N − 2)

(
sin

θ

2

)2

+ o(1)

)
as θ ↓ 0.

Proof. By direct calculation we have (1.6). We have

d

dθ
U∗(θ) =

1

A(r)

d

dr

(
A(r)−

N−2
2 u∗(r)

)
= −N − 2

2
A(r)

N−2
2 A′(r)u∗(r) + A(r)−

N
2 (u∗)′(r).(4.16)

Substituting (4.12) and (4.13) into (4.16), we obtain (4.15). □

Since u∗(r) satisfies the equation in (1.8), U∗(θ) satisfies the equation in (1.3). Then the
domain of U∗(θ) can be extended such that U∗(θ) satisfies the equation. In the following
lemma we show that U∗(θ) has the first positive zero, and hence, U∗(θ) is a singular
solution of (1.3).

Lemma 4.5. Suppose that p > pS. Let U∗(θ) := A(r)−
N−2

2 u∗(r) and r := tan θ
2
. Then

U∗(θ) has the first positive zero Θ∗ ∈ (0, π). Hence, (Θ∗, U∗(θ)) is the singular solution
of (1.3).
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Proof. First, we prove

(4.17) (U∗)′(θ) sinN−1 θ → 0 as θ ↓ 0.

In fact, (U∗)′(θ) sinN−1 θ = O(θ−µ−1+N−1) and −µ−1+N −1 = N −2− 2
p−1

> 0. Hence,

(4.17) holds. Integrating (3.1) over (0, θ], we have (3.2). Hence, (3.3) holds. The rest of
the proof is the same as the proof of Lemma 3.2. □
Proof of Theorem C. The singular solution (Θ∗, U∗(θ)) is established in Lemma 4.5, and
(1.6) is obtained in Corollary 4.4. □

Remark 4.6. Let (Θ∗, U∗(θ)) be the singular solution of (1.3). Let u∗(r) := U∗(θ)A(tan θ
2
)
N−2

2 ,

r := tan θ
2
, and R∗ := tan Θ∗

2
. Then (R∗, u∗(r)) is the singular solution of (1.8).

5. Convergence to the singular solution as γ → ∞

Let u(r, γ) be the solution of (1.9), and let R(γ) be the first positive zero of u( · , γ).
Let (R∗, u∗(r)) be the singular solution of (1.8) given in Remark 4.6. Our goal in this
section is to prove the following:

Lemma 5.1. Suppose that p > pS. Let (R∗, u∗(r)) be the singular solution given in
Lemma 4.5. As γ → ∞,

R(γ) → R∗ and u(r, γ) → u∗(r) in C2
loc(0, R

∗].

We postpone the proof of Lemma 5.1. Let y(t) be defined as (4.1). Then (1.9) is
equivalent to the problem

(5.1)


y′′ + αy′ − y + yp +B0(t)y

p +B1(t)y = 0, −∞ < t < tΘ,

2
q

p−1ae−mµty(t) → γ as t→ −∞,

e−mt(e−mµty(t))′ → 0 as t→ −∞,

where tΘ := 1
m
log tan Θ

2
. We define

s := t+
log γ

mµ
and ŷ(s) := y(t).

Then (5.1) becomes

(5.2)


ŷ′′ + αŷ′ − ŷ + ŷp +B0(s− log γ

mµ
)ŷp +B1(s− log γ

mµ
)ŷ = 0, −∞ < s < tΘ + log γ

mµ
,

2
q

p−1ae−mµsŷ(s) → 1 as s→ −∞,

e−ms(e−mµsŷ(s))′ → 0 as s→ −∞.

For each fixed s, as γ → ∞, B0(s− log γ
mµ

) → 0 and B1(s− log γ
mµ

) → 0. Therefore, we expect

that ŷ(s) converges to the solution of (2.4) in a certain sense.

Lemma 5.2. Suppose that p > pS. Let ȳ(s) be the solution of (2.4) with γ̄ := 2−
q

p−1 . For
each s0 ∈ R, as γ → ∞,

ŷ(s) → ȳ(s) uniformly in s ∈ (−∞, s0] and ŷ′(s) → ȳ′(s) uniformly in s ∈ (−∞, s0].

Proof. Multiplying the equation in (5.1) by em(N−2−µ)t, we have{
em(N−2−µ)t(y′ −mµy)

}′
= −em(N−2−µ)t(yp +B0(t)y

p +B1(t)y) < 0,

where we use m2µ(N − 2− µ) = 1. Since

(5.3) em(N−2−µ)t(y′ −mµy) → 0 as t→ −∞,
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we see that y′ −mµy < 0. Since

2
q

p−1ae−mµty(t) → γ as t→ −∞,

we have

y(t) < 2−
q

p−1a−1γemµt = 2−
q

p−1a−1emµs.

Since ŷ(s) = y(t),

(5.4) ŷ(s) < 2−
q

p−1a−1emµs.

Multiplying the equation in (5.2) by em(N−2−µ)s, we have

(5.5)
{
em(N−2−µ)s(ŷ′ −mµŷ)

}′
= −em(N−2−µ)s(ŷp + B̂0(s)ŷ

p + B̂1(s)ŷ),

where B̂0(s) := B0(s − log γ
mµ

) and B̂1(s) := B1(s − log γ
mµ

). Integrating (5.5) and solving it

for ŷ′, we have

ŷ′(s) = mµŷ(s)− e−m(N−2−µ)s
∫ s

−∞

(
ŷ(τ)p + B̂0(τ)ŷ(τ)

p + B̂1(τ)ŷ(τ)
)
em(N−2−µ)τdτ,

where we use (5.3). Using (5.4), we have |ŷ(τ)p+ B̂0(τ)ŷ(τ)
p+ B̂1(τ)ŷ(τ)| ≤ C0e

mµτ , and
there holds

|ŷ′(s)| ≤ mµ|ŷ(s)|+ e−m(N−2−µ)s
∫ s

−∞
C0e

mµτem(N−2−µ)τdτ

= mµ|ŷ(s)|+ C0

m(N − 2)
emµs(5.6)

≤ C1e
mµs.

Therefore, {ŷ(s)}γ is equicontinuous on (−∞, s0]. It follows from the Arzelà-Ascoli the-
orem that for each fixed s1 ∈ (−∞, s0], as γ → ∞, ŷ(s) uniformly converges to a certain
function ŷ0(s) on [s1, s0]. Because of (5.4), this convergence is uniform on (−∞, s0]. By
(5.6) we see that {ŷ′(s)}γ is bounded on (−∞, s0]. Because of (5.2), {ŷ′′(s)}γ is also
bounded on (−∞, s0]. By the same argument as before we see that as γ → ∞, ŷ′(s)
converges to a certain function ŷ1(s) on (−∞, s0]. Taking the limit of y(s) =

∫ s
−∞ y′(τ)dτ ,

we see that ŷ0(s) =
∫ s
−∞ ŷ1(τ)dτ , where by (5.6) we can use the dominated convergence

theorem. Hence, ŷ0(s) is of class C
1 and ŷ1 = ŷ′0. By (5.2) we see that ŷ′′(s) also converges

to a certain function ŷ2(s) on (−∞, s0]. By the same argument as before, we see that

ŷ2 = ŷ′1(= ŷ′′0). Taking the limit of (5.2), we see that ŷ0(s) satisfies (2.4) with γ̄ = 2−
q

p−1 .
Thus ŷ0 = ȳ. We obtain the conclusion. □

Let z(t, γ) := yt(t, γ). Then (y, z) satisfies

(5.7)

{
y′ = z

z′ = −αz + y − yp −B0(t)y
p −B1(t)y.

Proposition 2.1 (i) says that (ȳ(s), z̄(s)) converges to (1, 0) if p > pS. This fact and
Lemma 5.2 indicate that (y(t, γ), z(t, γ)) approaches to (1, 0) as γ → ∞ along t = s0− log γ

mµ

provided that s0 is chosen large enough.

Lemma 5.3. Suppose that p > pS. Let

H(y, z) :=
z2

2
− y2 − 1

2
+
yp+1 − 1

p+ 1
,
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and let Ωε := {(y, z) ∈ R2; H(y, z) < ε, y > 0}. Then the following hold:
(i) Let ε > 0 be fixed. For each large t0 > 0, (y(−t0, γ), z(−t0, γ)) ∈ Ωε provided that
γ > 0 is large.
(ii) If (y(−t0, γ), z(−t0, γ)) ∈ Ωε, then there is Tε < 0 independent of t0 such that
(y(t, γ), z(t, γ)) ∈ Ω2ε for t ∈ [−t0, Tε].

Proof. Because of Lemma 5.2, for each t0, as γ → ∞,

y(−t0) = ŷ(s) → ȳ(s) = ȳ(−t0 +
log γ

mµ
),

where s = −t0+ log γ
mµ

. We similarly see that z(−t0) → z̄(−t0+ log γ
mµ

). Since (ȳ, z̄) converges

to (1, 0) and Ωε is a neighborhood of (1, 0), (i) holds.
We define E(y, z, t) by

(5.8) E(y, z, t) := H(y, z) + B0(t)
yp+1

p+ 1
+B1(t)

y2

2
.

Let y(t) be the solution of (5.1). By direct calculation we have

(5.9)
d

dt
E(y(t), z(t), t) = −αy′(t)2 +B′

0(t)
y(t)p+1

p+ 1
+B′

1(t)
y(t)2

2
.

Let ξ :=
(
p+1
2

) 1
p−1 . Let ε > 0 be small such that Ω2ε ⊂ {0 ≤ y ≤ ξ}. We can choose

T < 0 such that

(5.10) B0(T )
ξp+1

p+ 1
<
ε

8
and B1(T )

ξ2

2
<
ε

8
.

We show that (y(t), z(t)) ∈ Ω2ε for t ∈ [−t0, T ] if (y(−t0, γ), yt(−t0, γ)) ∈ Ωε. Suppose
the contrary, i.e., we assume that

(5.11) (y(t), z(t)) ∈ Ω2ε (−t0 ≤ t < T ) and (y(T ), z(T )) ̸∈ Ω2ε.

Integrating (5.9) over [−t0, T ], we have

E(y(T ), z(T ), T )−E(y(−t0), z(−t0),−t0)

≤
∫ T

−t0

(
B′

0(t)
y(t)p+1

p+ 1
+B′

1(t)
y(t)2

2

)
dt

≤ ξp+1

p+ 1

∫ T

−t0
B′

0(t)dt+
ξ2

2

∫ T

−t0
B′

1(t)dt

≤ ξp+1

p+ 1
B0(T ) +

ξ2

2
B1(T )

≤ ε

8
+
ε

8
=
ε

4
,(5.12)

where we use (5.10) and the two inequalities

B′
0(t) = 2mq(1 + e2mt)q−1e2mt > 0 for t ∈ R, and,

B′
1(t) =

2mN(N − 2)(1− e2mt)e2mt

(1 + e2mt)3
> 0 for t < 0.
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Using (5.12) and (5.8), we have

H(y(T ), z(T )) ≤ H(y(−t0), z(−t0)) + B0(−t0)
y(−t0)p+1

p+ 1
+B1(−t0)

y(−t0)2

2

−
(
B0(T )

y(T )p+1

p+ 1
+B1(T )

y(T )2

2

)
+
ε

4

≤ ε+
ε

8
+
ε

8
+
ε

4
=

3

2
ε.

Hence, (y(T ), z(T )) ∈ Ω3ε/2 ⊂ Ω2ε, which contradicts (5.11). The proof of (ii) is complete.
□

Proof of Lemma 5.1. Let {γn}∞n=1 be a sequence diverging to ∞. Let yn := y(t, γn) be the
solution of (5.1), and let zn := y′n. We fix ε > 0. By Lemma 5.3 (i) we see that for arbitrary
large t0 > 0, (yn(−t0), zn(−t0)) ∈ Ωε provided that n is large. Because of Lemma 5.3 (ii),
there is T < 0 such that (yn(t), zn(t)) ∈ Ω2ε for t ∈ [−t0, T ]. Thus, {(yn(t), zn(t))} is
bounded in (C0[−t0, T ])2. It follows from the equation in (5.1) that {y′′n(t)} is bounded in
C0[−t0, T ]. Differentiating the equation in (5.1), we see that {z′′n(t)} is also bounded in
C0[−t0, T ]. Thus by the Ascoli-Arzelà theorem we see that {(yn, zn)} converges to some
pair of functions (y∗(t), z∗(t)) in (C1[−t0, T ])2. Since (yn, zn) satisfies the equation in
(5.7), (y∗, z∗) satisfies the same equation. Next, we prove y∗ = y∗, where y∗ is the solution
of (4.4). If y∗ = y∗, then yn → y∗ in C2[−t0, T ], and u→ u∗ in C2(I) for some interval I.
Let r0 ∈ I be fixed. Because of the continuous dependence of u in C2

loc(0, R
∗] with respect

to (u(r0), u
′(r0)), u → u∗ in C2

loc(0, R
∗]. Moreover, R(γ) → R∗. By Lemma 4.2 it suffices

to show that

(5.13) y∗(t) → 1 as t→ −∞.

We prove (5.13) by contradiction. Suppose the contrary, i.e., there is a sequence {tk}
such that tk → −∞ and (y∗(tk), z∗(tk)) ̸∈ Ωδ for all k ≥ 1. We choose ε = δ/4. By
Lemma 5.2 for each large s0 > 0, if γ is large, then (ŷ(s0, γ), ŷs(s0, γ)) ∈ Ωε. Since
ŷ(s0, γn) = y(t, γn) = yn(s0 − log γn

mµ
) and ŷs(s0, γn) = yt(t, γn) = zn(s0 − log γn

mµ
), (yn(s0 −

log γn
mµ

), zn(s0 − log γn
mµ

)) ∈ Ωε provided that n is large. By Lemma 5.3 (ii) we see that

(yn(t), zn(t)) ∈ Ω2ε ⊂ Ωδ for t ∈ [s0 −
log γn
mµ

, Tε],

where Tε is independent of n. Since s0 − log γn
mµ

→ −∞ (n → ∞), we can choose n such

that [s0 − log γn
mµ

, Tε] includes an element of {tk}. We obtain a contradiction. □

6. Uniqueness of a small solution

Let u(r, γ) be the solutions of (1.9), and let R(γ) be the first positive zero of u( · , γ).

Lemma 6.1. Suppose that p > 1. Then

R(γ) → ∞ as γ ↓ 0.

Proof. Let v(r) := A(r)−
N−2

2 u(r). Then, v satisfies

(rN−1A(r)N−2v′)′ + rN−1A(r)Nvp = 0.

Integrating this equation over [0, r], we have

v′(r) = − 1

rN−1A(r)N−2

∫ r

0

sN−1A(s)Nvpds ≤ 0.
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where we use v′(0) = 0. Let δ := 2−
N−2

2 γ. Since 0 ≤ v ≤ δ,

−v′(r) ≤ 1

rN−1A(r)N−2

∫ r

0

sN−1A(s)Nδpds,

and hence,

(6.1) −v
′(r)

2δp
≤ 1

rN−1A(r)N−2

∫ r

0

(sA(s))N−1ds.

We have∫ r

0

(sA(s))N−1ds ≤

{
2N−1

N
+
∫ r
1
(sA(s))ds = C0 + log(1 + r2), 1 ≤ r,∫ r

0
(2s)N−1ds = 2N−1rN

N
, 0 ≤ r ≤ 1.

Integrating (6.1) over [0, R(γ)], we have

−
∫ R(γ)

0

v′(r)

2δp
≤
∫ R(γ)

0

1

rN−1A(r)N−2

∫ r

0

(sA(s))N−1dsdr

≤
∫ 1

0

2N−1r

NA(r)N−2
dr +

∫ R(γ)

1

C0 + log(r2 + 1)

rN−1A(r)N−2
dr for R > 1.

The first positive zero of v( · ) is equal to that of u( · ), i.e., R(γ). Therefore, v(R(γ)) = 0.

Since v(0) = δ and C1 :=
∫ 1

0
2N−1r

NA(r)N−2dr <∞,

(6.2)
1

2δp−1
≤ C1 +

∫ R(γ)

1

C0 + log(1 + r2)

rN−1A(r)N−2
dr for R(γ) > 1.

Taking the limit δ ↓ 0, we see that the right-hand side of (6.2) diverges. Hence, R(γ) → ∞
as δ ↓ 0. □
Lemma 6.2. Suppose that p > 1. There is a γ0 > 0 such that R′(γ) < 0 for γ ∈ (0, γ0).
In particular, if γ ∈ (0, γ0), then u(r, γ) is nondegenerate in the space of radial functions.

Proof. By L we denote

L :=
d2

dr2
+
N − 1

r

d

dr
+
N(N − 2)

4
A(r)2.

We define w(r) := uγ(r, γ). Then w(r) satisfies

(6.3)

{
(L+ pA(r)−qu(r, γ)p−1)w = 0, 0 < r < R(γ),

w(0) = 1, w′(0) = 0.

We show that

(6.4) w(R(γ)) < 0.

Let ψ0(r) := A(r)
N−2

2 (A(r)− 1). Then, by direct calculation we see that ψ0(r) satisfies{
(L+NA(r)2)ψ0 = 0, 0 < r <∞,

ψ0(0) = 2
N−2

2 , ψ′
0(0) = 0.

Note that ψ0 has a unique zero at r = 1 on [0,∞) and that ψ0 corresponds to the

second eigenfunction of ∆SN on the whole sphere. Since U(θ)(= A(r)−
N−2

2 u(r)) satisfies

(1.3), U(θ) is decreasing and |U(θ)| ≤ Γ (0 ≤ θ ≤ Θ), where Γ = 2−
N−2

2 γ. Therefore,

|u(r)| ≤ 2−
N−2

2 γA(r)
N−2

2 for r ∈ [0, R(γ)]. We have

pA(r)−qu(r, γ)p−1 ≤ 2−
(N−2)(p−1)

2 pγp−1A(r)2 for r ∈ [0, R(γ)].
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Thus, if γ > 0 is small, then pA(r)−qu(r, γ)p−1 ≤ NA(r)2 for r ∈ [0, R(γ)]. Hence, by the
oscillation theorem for Sturm-Liouville equations (e.g., see [15, pp.224–225]) we see that
w(r) oscillates more slowly than ψ0(r). Since R(γ) is large, ψ0(r) has exactly one zero on
[0, R(γ)], and hence w(r) has at most one zero on [0, R(γ)]. Let λ1 be the first eigenvalue
of the eigenvalue problem

(6.5)


(L+ pA(r)−qu(r, γ)p−1)ϕ+ λϕ = 0, 0 < r < R(γ),

ϕ(R(γ)) = 0,

ϕ(r) > 0, 0 ≤ r < R(γ),

ϕ′(0) = 0.

We define

H[ψ] :=

∫ R(γ)

0

(
(ψ′)2 − N(N − 2)

4
A(r)ψ2 − pu(r, γ)p−1

A(r)q
ψ2

)
rN−1dr.

Multiplying (L+ pA(r)−qu(r, γ)p−1)u = (p− 1)up by urN−1 and integrating it, we have

(6.6) H[u] = −(p− 1)

∫ R(γ)

0

u(r, γ)p+1rN−1dr < 0.

Using a variational characterization of λ1 and (6.6), we have

(6.7) λ1 = inf
ψ∈X

H[ψ]

∥ψ∥2L2

≤ H[u]

∥u∥2L2

< 0,

where ∥ψ∥L2 :=
(∫ R(γ)

0
ψ2rN−1dr

)1/2
and

X :=

{
ψ(r);

∫ R(γ)

0

(
(ψ′)2 + ψ2

)
rN−1dr <∞ and ψ(R(γ)) = 0

}
.

The first eigenfunction ϕ1(r) satisfies
(L+ pA(r)−qu(r, γ)p−1 + λ1)ϕ1 = 0, 0 < r < R(γ),

ϕ1(0) = 1, ϕ′
1(0) = 0.

ϕ1 > 0, 0 ≤ r < R(γ).

Since pA(r)−qu(r, γ)p−1 + λ1 < pA(r)−qu(r, γ)p−1, by the oscillation theorem we see that
w(r) oscillates more rapidly than ϕ1(r), and hence w(r) has at least one zero on [0, R(γ)].
Thus w(r) has exactly one zero on [0, R(γ)]. If w(R(γ)) = 0, then w(r) > 0 on [0, R(γ)).
Therefore, 0 is the first eigenvalue, which contradicts (6.7). Thus, w(R(γ)) ̸= 0. Since
w(0) > 0, w(r) has exactly one zero on (0, R(γ)), which indicates that w(R(γ)) < 0. We
obtain (6.4).

Next, we prove the statements of the lemma, using (6.4). Differentiating u(R(γ), γ) = 0
in γ, we have ur(R(γ), γ)R

′(γ) + uγ(R(γ), γ) = 0. It follows from Hopf’s boundary point
lemma that ur(R(γ), γ) < 0. Hence,

R′(γ) = −uγ(R(γ), γ)
ur(R(γ), γ)

< 0.

Because of (6.3), it is well known that 0 is an eigenvalue of (6.5) if and only if w(R(γ)) = 0.
By (6.4) we see that 0 is not an eigenvalue which means that u(r, γ) is nondegenerate. □
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Remark 6.3. In the above proof we show that w(r) has one zero in (0, R(γ)) and w(R(γ)) <
0. This indicates that the Morse index of u in the space of radial functions is one. We
do not use this fact in this paper.

7. Infinitely many turning points

First, we show that R(γ) oscillates around R∗ as γ → ∞.

Lemma 7.1. Suppose that pS < p < pJL. Let u(r, γ) be the solution of (1.9), and let
R(γ) be the first positive zero of u( · , γ). Let (R∗, u∗(r)) be the singular solution of (1.8)
given in Remark 4.6. Then the following hold:
(i) Z(0,min{R(γ),R∗})[u( · , γ)− u∗( · )] → ∞ as γ → ∞.
(ii) R(γ) oscillates around R∗ infinitely many times as γ → ∞.

Proof. We prove (i), using a blow-up argument. We change variables

ũ(ρ, γ) := 2−
q

p−1γ−1u(r, γ) and ρ := γ
p−1
2 r.

Then ũ(ρ) satisfies

(7.1)

{
ũ′′ + N−1

ρ
ũ′ + ũp + B̃0(ρ, γ)ũ

p + B̃1(ρ, γ)ũ = 0, 0 < ρ < R̃(γ),

ũ(0) = 1, ũ′(0) = 0,

where R̃(γ) := γ
p−1
2 R(γ) which is the first positive zero of ũ( · , γ),

B̃0(ρ, γ) :=

(
1 +

ρ2

γp−1

)q
− 1, and B̃1(ρ, γ) :=

N(N − 2)γp−1

(γp−1 + ρ2)2
.

From Lemma 5.1 it holds R̃(γ) → ∞ (γ → ∞). Let ρ0 > 0 be large. If γ is large, then

the interval [0, ρ0] is included in [0, R̃(γ)]. Since B̃0 > 0 and B̃1 > 0, it is clear from the

equation in (7.1) that ũ(ρ) is decreasing on [0, R̃(γ)]. Therefore, 0 ≤ ũ(ρ) ≤ 1 on [0, ρ0]

provided that γ is large. Since |B̃0(ρ, γ)| and |B̃1(ρ, γ)| uniformly converge to 0 on [0, ρ0],

|B̃0(ρ, γ)ũ(ρ)
p|+ |B̃1(ρ, γ)ũ(ρ)| → 0 in C0[0, ρ0]. It follows from the equation in (7.1) that

as γ → ∞,

(7.2) ũ(ρ) → ū(ρ) in C1[0, ρ0],

where ū(ρ) is the solution of (2.2) with γ̄ = 1. Next, we apply the same change of variables
to the singular solution u∗(r). We define ũ∗(ρ) by

ũ∗(ρ) := 2−
q

p−1γ−1u∗(r) and ρ = γ
p−1
2 r.

By (4.12) we have

(7.3) ũ∗(ρ) = aρ−
2

p−1 (1 + o(1)) as
ρ

γ
p−1
2

→ 0.

When ρ ∈ [0, ρ0],
ρ

γ
p−1
2

uniformly converges to 0, and hence o(1) in (7.3) uniformly con-

verges to 0. Since ũ∗(ρ) is unbounded near ρ = 0,

ũ∗(ρ) → ū∗(ρ) in C0
loc(0, ρ0],

where ū∗(ρ) is defined by (2.1). Since ũ∗(ρ) satisfies the ODE in (7.1), this convergence
holds in C2

loc(0, ρ0], i.e.,

(7.4) ũ∗(ρ) → ū∗(ρ) in C2
loc(0, ρ0].
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On the other hand, if γ > 0 is large, then

Z(0,min{R(γ),R∗})[u( · , γ)− u∗( · )] = Z
(0,min{R̃(γ),γ

p−1
2 R∗})

[ũ( · , γ)− ũ∗( · )]

≥ Z(0,ρ0)[ũ( · , γ)− ũ∗( · )].(7.5)

We see by (7.2) and (7.4) that if γ > 0 is large, then

Z(0,ρ0)[ũ( · , γ)− ũ∗( · )] ≥ Z(0,ρ0)[ū( · )− ū∗( · )].
Proposition 2.1 (ii) says that Z(0,ρ0)[ū( · )− ū∗( · )] → ∞ as ρ0 → ∞. Therefore, if ρ0 and

γ are large and ρ0 ≤ R̃(γ), then Z(0,ρ0)[ũ( · , γ) − ũ∗( · )] can be arbitrary large. By (7.5)
we see that (i) holds.
We prove (ii). Since u(r, γ) and u∗(r) satisfy the same equation, every zero of u( · , γ)−

u∗( · ) is simple. Each zero continuously depends on γ. The zero number of u( · , γ)−u∗( · )
on a bounded interval is finite, since the zero set of u( · , γ)−u∗( · ) does not have an accu-
mulation point. Let I(γ) := (0,min{R(γ), R∗}). The intersection number ZI(γ)[u( · , γ)−
u∗( · )] is preserved if another zero does not come from ∂I(γ). Since u(0, γ)−u∗(0) = −∞,
a zero cannot come from 0 ∈ ∂I(γ). If R(γ) > R∗ for large γ, then there is C > 0 such
that ZI(γ)[u( · , γ)−u∗( · )] ≤ C for all γ > 0, which contradicts (i). If R(γ) < R∗ for large
γ, then we similarly obtain a contradiction. Therefore, there are a positive integer m and
a sequence {γn}∞n=m (γm < γm+1 < · · · → ∞) such that ZI(γn)[u( · , γ) − u∗( · )] = n and
u( · , γ)−u∗( · ) has a zero at min{R(γ), R∗}, i.e., R(γ) = R∗. Since the zero set is discrete,
there is a sequence {γ̂n}∞n=m such that γm < γ̂m < γm+1 < γ̂m+1 < · · · and R(γ̂n) ̸= R∗.
We easily see the following: If ZI(γ)[u( · , γ)−u∗( · )] is even (resp. odd), then R(γ̂n) < R∗

(resp. R∗ < R(γ̂n)). Thus, (ii) holds. □

Proof of Theorem A. Let Θ(Γ) := 2 arctanR(γ), Γ := 2−
N−2

2 γ, and Θ∗ := 2 arctanR∗.
Note that the range of Θ is (0, π). Lemma 3.3 says that R(γ) is a C1-function on (0,∞)
and 0 < R(γ) < ∞ for γ ∈ (0,∞). Hence, (i) holds. It follows from Lemma 6.1 that

Θ(Γ) → π as Γ ↓ 0. Since Θ′(Γ) = 2
N
2 R′(γ)/(1 + R(γ)2), we see by Lemma 6.2 that

Θ′(Γ) < 0 if Γ > 0 is small. Thus, (ii) holds. By Lemma 5.1 we see that Θ(Γ) → Θ∗

as Γ → ∞. Thus, (iii) holds. By Lemma 7.1 (ii) we see that (iv) holds. The proof is
complete. □
Proof of Corollary B. Let Θ := inf{Θ(Γ); Γ > 0}. Since Θ(Γ) → Θ∗ (Γ → ∞), Θ(Γ) → π
(Γ → 0), and Θ(Γ) is continuous, we see that Θ > 0. Therefore, (i) holds. If pS < p < pJL,
then Θ(Γ) oscillates around Θ∗. Hence, Θ < Θ∗ and {Γ > 0; Θ(Γ) ≤ Θ∗ − ε} is bounded
for small ε > 0. The infimum is attained, and (ii) holds. (iii) follows from Theorem A (iv).
If Γ0 > 0 is small, then Θ′(Γ) < 0 for Γ ∈ (0,Γ0), because of Theorem A (ii). On the other
hand, Θ0 := supΓ≥Γ0

Θ(Γ) < π, because of Theorem A (iii). We see that if Θ1 ∈ (Θ0+π
2
, π),

then there exists the unique Γ > 0 such that Θ(Γ) = Θ1 and 0 < Γ < Γ0. It is known that
the solution (Θ(Γ), U(θ)) is nondegenerate if and only if Θ′(Γ) ̸= 0 which is equivalent
to U ′(Θ(Γ)) ̸= 0. The nondegeneracy holds, since Θ′(Γ) ̸= 0 for Γ ∈ (0,Γ0). Thus, (iv)
holds. □

8. Asymptotic shapes of the branch as p→ ∞ and p ↓ 1

We briefly prove Proposition 1.2 before proving Theorems D and E.

Proof of Proposition 1.2. Since Lemmas 3.3 and 6.1 hold for p = pS, (i) and (ii) hold. In
[27, Theorem 5] Shioji and Watanabe showed that if N ≥ 3 and 1 < p ≤ pS, then (1.3)
has at most one solution. Since Θ(Γ) is continuous and Θ(Γ) → π (Γ ↓ 0), Θ(Γ) should be
strictly decreasing, otherwise (1.3) has more than two solutions, which is a contradiction.



20 ATSUSHI KOSAKA AND YASUHITO MIYAMOTO

Thus, (iii) holds. When N ≥ 4 and p = pS, in [2, Section 7.4] Bandle et. al. showed
that for each Θ ∈ (0, π), (1.3) has a regular solution. This result indicates that Θ(Γ) → 0
(Γ → ∞), otherwise Θ(Γ) → c > 0 and (1.3) has no solution for Θ ∈ (0, c), which is a
contradiction. Thus, (iv) holds. When N = 3 and p = pS, in [3, Theorem 1] Bandle and
Peletier showed that (1.3) has no regular solution for Θ ∈ (0, π

2
] and that it has a regular

solution for Θ ∈ (π
2
, π). This indicates that Θ(Γ) ↓ π

2
as Γ → ∞. When N = 3 and

1 < p < pS, it is easily shown that (1.1) has a radial solution for each Θ ∈ (0, π). This
indicates that Θ(Γ) → 0 as Γ → ∞. Hence, (v) holds. □
Proof of Theorem D. Let U(θ) be the solution of (1.3). Then, U(Θ) = 0 and U(θ) is a
solution of (1.4) for some Γ > 0. We use the Pohožaev identity of the following type:

(8.1) H(θ) := −U ′(θ)2 sin2N−2 θ

∫ Θ

θ

dφ

sinN−1 φ
− U(θ)U ′(θ) sinN−1 θ

− 2

p+ 1
U(θ)p+1 sin2N−2 θ

∫ Θ

θ

dφ

sinN−1 φ
.

It is clear that

(8.2) H(Θ) = 0.

By l’Hospital’s rule we have

lim
θ↓0

sinN−2 θ

∫ Θ

θ

dφ

sinN−1 φ
= lim

θ↓0

∫ Θ

θ
dφ

sinN−1 φ

1
sinN−2 θ

= lim
θ↓0

− sin−N+1 θ

(−N + 2) sin−N+1 θ

=
1

N − 2
.(8.3)

By (8.3) we have

lim
θ↓0

sin2N−2 θ

∫ Θ

θ

dφ

sinN−1 φ
= lim

θ↓0
sinN θ

(
sinN−2 θ

∫ Θ

θ

dφ

sinN−1 φ

)
= 0.(8.4)

Using (8.4), we have

(8.5) lim
θ↓0

H(θ) = 0.

Differentiating H(θ) in θ, we have

H ′(θ) =
4N − 4

p+ 1
U(θ)p+1 sinN−1 θ

(
p+ 3

4N − 4
− F (θ)

)
,

where

F (θ) := cos θ sinN−2 θ

∫ Θ

θ

dφ

sinN−1 φ
.

Hereafter, let Θ = Θ0 ∈ (0, π) be fixed. By (8.3) we have

(8.6) lim
θ↓0

F (θ) =
1

N − 2
.

Because of (8.6) and the continuity of F (θ) on (0,Θ0], we see that sup0<θ≤Θ0
F (θ) < ∞.

Therefore there is a large p̄ = p̄(Θ0) > 0 such that if p > p̄, then H ′(θ) > 0 for θ ∈ (0,Θ0).
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We obtain a contradiction, because of (8.2) and (8.5). Thus, if p > p̄, then (1.3) has no
solution for Θ = Θ0. Since the solution set {(Θ(Γ),Γ)} is a continuous curve including
a point near (π, 0), (1.3) has no solution for Θ ∈ (0,Θ0]. We prove the first statement
of Theorem 1.8 by contradiction. Suppose the contrary, i.e., there is ε > 0 such that
Θ ∈ (0, π− ε) for large p > 1, where Θ is given in Corollary B (i). Let Θ1 := π− ε

2
(> Θ).

If p > p̄(Θ1), then (1.3) has no solution for Θ = Θ1. This is a contradiction, because the
definition of Θ says that (1.3) has a solution for Θ ∈ (Θ, π). Thus, Θ → π as p→ ∞.

We consider the case N = 3. Then,

F (Θ) = cos θ sin θ

∫ Θ

θ

dφ

sin2 φ

= −cosΘ

sinΘ
sin θ cos θ + cos2 θ

=
1

2
− sin(2θ −Θ)

sinΘ
.

When N = 3, we have

p+ 3

4N − 4
− F (θ) =

p− 1

8
+

sin(2θ −Θ)

2 sinΘ

>
p− 1

8
− 1

2 sinΘ
for θ ∈ [0, π]\

{
Θ

2
+

3 + 4n

4
π; n ∈ Z

}
.

Therefore, if sinΘ ≥ 4
p−1

, then (1.3) has no solution. Since this nonexistence result is valid

for p ≥ 5(= pS), we assume hereafter that p ≥ pS. Since the solution set is a continuous
curve and it includes a point near (π, 0), (1.3) has no solution if Θ ≤ π−arcsin 4

p−1
. Thus,

Θ ≥ π − arcsin 4
p−1

for p ≥ pS. □
We consider the case p = 1 in order to prove Theorem E. First, we investigate the

following eigenvalue problem:

(8.7)


ϕ′′ + (N − 1) cos θ

sin θ
ϕ′ + λϕ = 0, 0 < θ < Θ,

ϕ(0) = 1, ϕ′(0) = 0,

ϕ(Θ) = 0.

Lemma 8.1. Let λ1(Θ) be the first eigenvalue of (8.7). Then, λ1(Θ) is continuous and
strictly decreasing, λ1(Θ) → 0 as Θ ↑ π, and λ1(Θ) → ∞ as Θ ↓ 0. In particular, for
N = 3, λ1(Θ) = ( π

Θ
)2 − 1.

Proof. First, we consider the case N = 3. Let ϕ̄(θ) := ϕ(θ) sin θ. Then, ϕ̄ satisfies{
ϕ̄′′ + (1 + λ)ϕ̄ = 0, 0 < θ < Θ,

ϕ̄(0) = ϕ̄(Θ) = 0.

Thus, ϕ̄(θ) = c sin πθ
Θ

for some c ∈ R and 1 + λ = ( π
Θ
)2. Since ϕ(0) = 1, c is equal to Θ

π

and ϕ(θ) =
Θsin πθ

Θ

π sin θ
. Since

ϕ′(0) = lim
θ↓0

Θ sin πθ
Θ

π sin θ
− 1

θ
= 0

and ϕ(θ) > 0 on [0,Θ), ϕ satisfies (8.7) and ϕ is the first eigenfunction. Therefore,
λ1(Θ) = ( π

Θ
)2 − 1.

Next, we consider the case N ≥ 4. By a similar method as in the proof of Lemma 3.2
we can prove that, for each λ > 0, there exists Θ = Θ(λ) ∈ (0, π) such that (8.7) holds.
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We omit the detail. Let ϕ(θ, λ) be the solution of (8.7). Then ϕ is of class C1. It follows
from the uniqueness of the solution of (8.7) that ϕθ(Θ, λ) ̸= 0. Applying the implicit
function theorem to ϕ(θ, λ) = 0, we see that Θ(λ), which satisfies ϕ(Θ(λ), λ) = 0, is of
class C1.

On the other hand, by Theorem III in Ince [15], for each Θ1 ∈ (0, π), there exists
the first eigenvalue λ1 > 0 such that Θ(λ1) = Θ1. By the Sturm-Liouville comparison
theorem, if λa < λb, then Θ(λb) < Θ(λa), which indicates that Θ(λ) is strictly decreasing.
Thus, the inverse function λ1 = λ1(Θ) exists and it is continuous and strictly decreasing.
Let Θ0 ∈ (0, π) be fixed. Then, as λ → 0, ϕ(θ) converges to ϕ∗(θ) uniformly on [0,Θ0],
where ϕ∗ is the unique solution of the problem{

ϕ′′
∗ + (N − 1) cos θ

sin θ
ϕ′
∗ = 0, 0 < θ < Θ0,

ϕ∗(0) = 1, ϕ′
∗(0) = 0.

It is clear that ϕ∗(θ) ≡ 1. For each Θ0 ∈ (0, π), the solution of (8.7) satisfies that ϕ(θ) > 0
on [0,Θ0] for small λ > 0. We can choose Θ0 arbitrarily close to π. Hence, Θ(λ) ↑ π as
λ→ 0 which indicates that

(8.8) λ1(Θ) → 0 as Θ ↑ π.
We consider the initial value problem{

ϕ′′ + (N − 1) cos θ
sin θ

ϕ′ + λϕ = 0, 0 < θ < π,

ϕ(0) = 1, ϕ′(0) = 0.

We use the same change of variables as in Section 1. Let ψ(r) := A(r)
N−2

2 ϕ(θ) and
r := tan θ

2
. Then ψ(r) satisfies{

ψ′′ + N−1
r
ψ′ + N(N−2)

4
A(r)2ψ + λA(r)2ψ = 0, 0 < r <∞,

ψ(0) = 2
N−2

2 , ψ′(0) = 0.

Let ψ̃(s) := ψ(r) and s := 2
√
λr. Then ψ̃(s) satisfies{

ψ̃′′ + N−1
s
ψ̃′ + N(N−2)

4λ

(
λ

λ+s2

)2
ψ̃ +

(
λ

λ+s2

)2
ψ̃ = 0, 0 < s <∞,

ψ̃(0) = 2
N−2

2 , ψ̃′(0) = 0.

Taking the limit λ→ ∞, we see that ψ̃(s) converges to ψ̃∗(s) uniformly on any bounded

interval, where ψ̃∗(s) is the solution of{
ψ̃′′
∗ +

N−1
s
ψ̃′
∗ + ψ̃∗ = 0, 0 < s <∞,

ψ̃∗(0) = 2
N−2

2 , ψ̃′
∗(0) = 0.

Moreover, ψ̃∗ can be explicitly written as ψ̃∗(s) = cs−
N
2
+1JN

2
−1(s) for some constant c > 0,

where JN
2
−1(s) represents the Bessel function of the first kind of order N

2
− 1. It is known

that JN
2
−1(s) has the first positive zero which we denote by jN

2
−1. Since ψ̃∗ satisfies the

linear equation, the zero jN
2
−1 is simple. Hence, when λ is large, ψ̃(s) also has the first

positive zero, which we denote by s1(λ). By the uniform convergence of ψ̃(s) to ψ̃∗(s) and
the simplicity of jN

2
−1 we see that s1(λ) → jN

2
−1 (λ → ∞). The first positive zero r1(λ)

of ψ( · ) satisfies that r1(λ) = s1(λ)

2
√
λ
. Therefore,

lim
λ→∞

r1(λ) = lim
λ→∞

s1(λ)

2
√
λ

= 0.
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This indicates that Θ(λ) → 0 as λ→ ∞. Hence

(8.9) λ1(Θ) → ∞ as Θ ↓ 0.

Because of (8.8) and (8.9), λ1(Θ) is defined on (0, π). The proof is complete. □
We study the case where p > 1 is close to 1. Let Θ0 ∈ (0, π) be fixed. Since 1 < p < pS,

Proposition 1.2 says that there is a unique Γ > 0 such that (1.3) with U(0) = Γ has a
solution for Θ = Θ0. Since Γ depends on p, we denote Γ by Γ(p).

We follow the idea of [28, Theorem 2.6] to prove Theorem E. Now we fix λ1 > 0. Then,
by Lemma 8.1, there exists a unique Θ1 ∈ (0, π) such that (8.7) with (λ,Θ) = (λ1,Θ1)
has a positive solution.

We set the following problem

(8.10)


W ′′ + (N − 1) cos θ

sin θ
W ′ + λ1W

p = 0, 0 < θ < Θ1,

W (Θ1) = 0,

W (θ) > 0, 0 < θ < Θ1,

W ′(0) = 0.

Since Proposition 1.2 is valid for (8.10), (8.10) has a unique solution W (θ, p) provided
that 1 < p < pS. Let Γ1(p) := W (0, p). We also consider the initial value problem

(8.11)

{
Z ′′ + (N − 1) cos θ

sin θ
Z ′ + λ1|Z|p−1Z = 0, 0 < θ < π,

Z(0) = Γ, Z ′(0) = 0.

Then the following holds:

Lemma 8.2. There exists a unique Γ† > 0 such that Γ1(p) → Γ† as p ↓ 1.

Proof. Let ϕ(θ) be a solution of (8.7) with (λ,Θ) = (λ1,Θ1). Then, as p ↓ 1, the solution
Z(θ) of (8.11) converges to Γϕ(θ) uniformly on [0,Θ1]. Applying Green’s formula for Z
and Γϕ, we obtain

(8.12) (Z ′(θ)ϕ(θ)− Z(θ)ϕ′(θ)) sinN−1 θ = −λ1(p− 1)F (θ,Γ, p),

where

F (θ,Γ, p) :=

∫ θ

0

|Z(φ)|p−1 − 1

p− 1
Z(φ)ϕ(φ) sinN−1 φdφ.

Since Z converges to Γϕ uniformly on [0,Θ1],

lim
p↓1

F (Θ1,Γ, p) = Γ

∫ Θ1

0

(log Γ + log ϕ)ϕ(φ)2 sinN−1 φdφ.

Hence, there exists a unique Γ† ∈ R such that limp↓1 F (Θ1,Γ, p) = 0 if and only if Γ = Γ†.
We prove the lemma by contradiction. We assume that there exists some δ > 0 such

that Γ1(p) ̸∈ [Γ† − δ,Γ† + δ] as p ↓ 1. Let Γ = Γ1(p). Then, Z(θ) = W (θ) on [0,Θ1]. The
left-hand side of (8.12) is 0 at θ = Θ1. On the other hand, the right-hand side of (8.12)
is some non-zero constant at θ = Θ1 when p is close to 1. This is a contradiction, and
therefore, Γ1(p) → Γ† as p ↓ 1. □
Proof of Theorem E. We take the same λ1 and Θ1 as above. Let W be the solution

of (8.10). Let U(θ) := λ
1

p−1

1 W (θ). Then U is a solution of (1.3) with Θ = Θ1 and

Γ(p) = U(0) = λ
1

p−1

1 Γ1(p). By Lemma 8.2 we see the following:

(i) If λ1 > 1, then λ
1

p−1

1 Γ1(p) → ∞ as p ↓ 1.



24 ATSUSHI KOSAKA AND YASUHITO MIYAMOTO

(ii) If λ1 = 1, then λ
1

p−1

1 Γ1(p) → Γ† as p ↓ 1.

(iii) If λ1 < 1, then λ
1

p−1

1 Γ1(p) → 0 as p ↓ 1.
Here, by Lemma 8.1, there exists some Θ† ∈ (0, π) such that Θ1 > Θ† for λ1 < 1, Θ1 = Θ†

for λ1 = 1, and Θ1 < Θ† for λ1 > 1. Thus, the statement of Theorem E holds. □
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[27] N. Shioji and K. Watanabe, A generalized Pohožaev identity and uniqueness of positive radial solu-
tions of ∆u+ g(r)u+ h(r)up = 0, J. Differential Equations 255 (2013), 4448–4475.

[28] E. Yanagida and S. Yotsutani, Global structure of positive solutions to equations of Matukuma type,
Arch. Rational Mech. Anal. 134 (1996), 199–226.

[29] X. Wang, On the Cauchy problem for reaction-diffusion equations, Trans. Amer. Math. Soc. 337
(1993), 549–590.

Osaka City University Advanced Mathematical Institute, 3-3-138 Sugimoto, Sumiyoshi-
ku, Osaka 558-8585, Japan

E-mail address: kosaka@sci.osaka-cu.ac.jp

Graduate School of Mathematical Sciences, The University of Tokyo, 3-8-1 Komaba,
Meguro-ku, Tokyo 153-8914, Japan

E-mail address: miyamoto@ms.u-tokyo.ac.jp


