THE TORUS EQUIVARIANT COHOMOLOGY RINGS OF
SPRINGER VARIETIES

HIRAKU ABE AND TATSUYA HORIGUCHI

ABSTRACT. The Springer variety of type A associated to a nilpotent operator on C"
in Jordan canonical form admits a natural action of the ¢-dimensional torus 7* where
¢ is the number of the Jordan blocks. We give a presentation of the T*-equivariant
cohomology ring of the Springer variety through an explicit construction of an action of
the n-th symmetric group on the T*-equivariant cohomology group. The T*-equivariant
analogue of so called Tanisaki’s ideal will appear in the presentation.
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1. INTRODUCTION

The Springer variety of type A associated to a nilpotent operator NV : C" — C" is a
closed subvariety of the flag variety of C™ defined by

{Ve € Flags(C") | NV; CV;_; for all 1 <i < n}.

When the operator N is in Jordan canonical form with Jordan blocks of weakly decreas-
ing size A = (A1,---,A¢), we denote the Springer variety by Sy. In 1970’s, Springer
constructed a representation of the n-th symmetric group .S, on the cohomology group
H*(8);C), and this representation on the top degree part is the irreducible representation
of type A ([7], [8]). DeConcini-Procesi [| used this representation to give a presentation of
the cohomology ring H*(8y;C) as a quotient of a polynomial ring by an ideal. Tanisaki
[9] gave another set of generators of this ideal which simplifies their presentation; this
ideal is now called Tanisaki’s ideal. We remark that his argument in [9] works also
over Z-coefficient. Our goal in this paper is to give an explicit presentation of the T-
equivariant cohomology ring Hr, (8x;Z) where we will explain the ¢-dimensional torus
T* below. In more detail, we will give a presentation as the quotient of a polynomial
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2 HIRAKU ABE AND TATSUYA HORIGUCHI

ring by an ideal whose generators are generalizations of the generators of Tanisaki’s ideal
given in [9]. Through the the forgetful map H7,(8x;Z) — H*(8x;Z), our presentation
naturally induces the presentation of H*(8y;Z) given in [9].

We organize this paper as follows. In Section 2, we introduce a natural action of the
(-dimensional torus T* on the Springer variety 8y for A = (A1, -+, \;) and give the T*-
fixed points SZ/CZ of the Springer variety 8, where T is defined by the following diagonal
unitary matrices:

h1Ey,
2B, | B eC,lhil=1(1<i<?)
heE,
Here, F; is the identity matrix of size i. We construct an S,-action on the equivariant
cohomology group HZ,(8x;Z) in Section 3 by using the localization technique which
involves the equivariant cohomology of the T*-fixed points. We state the main theorem
in Section 4, and prove it in Section 5 by using this S,-action on H7,(8x;Z). Our method
of the proof is the T*-equivariant analogue of [9].

Acknowledgements. The authors thank Professor Toshiyuki Tanisaki for valuable
suggestions and kind teachings.

2. NILPOTENT SPRINGER VARIETIES AND TZ-FIXED POINTS

We begin with a definition of type A nilpotent Springer varieties. We work with type
A through out this paper and hence omit it in the following. We first recall that a flag
variety Flags(C™) consists of nested subspaces of C":

Vo=0=VWwcWc---CcV,.1CV,=0C")
where dim¢ V; = ¢ for all 4.

Definition. Let N: C" — C™ be a nilpotent operator. The (nilpotent) Springer
variety Sy associated to IV is the set of flags V, satisfying NV; C V;_; forall 1 <i <n.

Since 8,y,-1 is homeomorphic (in fact, isomorphic as algebraic varieties) to Sy for
any invertible matrix g € GL,,(C), we may assume that N is a Jordan canonical form.
In this paper, we consider the Springer variety

Sx:={Vs € Flags(C") | NgV; CV;_q forall 1 <i <n}
where Ny is in Jordan canonical form with Jordan blocks of weakly decreasing sizes

A= (A1, A2, M)

Let T™ be an n-dimensional torus consisting of diagonal unitary matrices:

a1

92
(2.1) ™ = . | giEC,|gi|:1(1§i§n)

9n
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Then the n-dimensional torus 7" naturally acts on the flag variety Flags(C™), but T"
does not preserve the Springer variety 8, in general. So we introduce the following
{-dimensional torus:
hiEy,
; haEy, N :
(22) T = ) eT"| heClh|=1(1<i<V¥)
heE},

where E; is the identity matrix of size i and A = (A, Aa,...,A¢). Then the torus T*
preserves the Springer variety 8. Our goal in this section is to give the T*-fixed point
set Srfe.

The T"-fixed point set Flags(C™)T" of the flag variety Flags(C") is given by

{(<6w(1)> C <6w(1)7€w(2)> c---C <6w(1),€w(2), .. .,ew(n)) = (Cn) | w e Sn}

where e, es,..., e, is the standard basis of C" and S, is the symmetric group on n
letters {1,2,...,n}, so we may identify Flags(C™")T" with S,,.

Let w be an element of S,, satisfying the following property:

(2.3) for each 1 < k < ¢, the numbers between A\; + -+ A\g—1 + 1 and A\ + -+ + Mg

appear in the one-line notation of w as a subsequence in the increasing order.

Here, we write Ay +---+ Ap_1 +1=1 when k = 1.

Example. We consider the case n = 6, £ = 3, and A = (3,2,1). Using one-line notation,
the following permutations

wy = 124365, wo = 416253, w3 = 612435

satisfy the condition (2.3). In fact, each of the sequences (1,2, 3), (4,5), and (6) appears
in the one-line notations as a subsequence in the increasing order.

Lemma 2.1. The T*-fized points Sfﬁ of the Springer variety Sy is the set
{w € S, | w satisfy the condition (2.3)}.

Proof. Let w = V, be a permutation satisfying the condition (2.3). Since w(1) is equal
to one of the numbers 1, Ay +1, Ay + Ao +1, ..., Ay +---+ X1+ 1, we have NyV; C {0}.
If w(l) = A+ -+ Ag—1 + 1, then w(2) is equal to one of the numbers 1 A\ + 1,
e AT A1 2, oo, A -+ A1 + 1. So we also have NyVy C V. Continuing
this argument, we have NoV; C V;_; for all 1 < ¢ < n, and it follows that the w is an
element of 8y. On the other hand, the w is clearly fixed by T, so the w is an element of
87",

Conversely, let V4 be an element of S?\%. Let v1,v2,...,v; be generators for V; where

vj = ( gj),x(j), e ,x%j))t in C" for all j. Since we have

_ (D) (1) (1) (1) (1) NI
NOUI - (.’E2 P 71.)\1 707 x)\l"rQ’ T 71')\14,_)\27 07 """ 7x)\1+...+)\£71+27 e 7x£1 )7 0) )

A1 A2 /\Z
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the condition NoV; C Vi = {0} implies that

1 1 1
(24) U1 = (iﬁg )7 07 T 70a $g\1)+17 07 e 707 """ ’$E\l)+“'+>\l—1+1’ 07 o 70>t'
—_—— ————

)‘1 >\2 )\z

It follows that exactly one of :1:1(-1) G=LAM+LA+X+1.. . A+ +Xq+1)

which appear in (2.4) is nonzero. In fact, V4 is fixed by the T*-action and hence we have
(h-v1) = (v1) for arbitrary h € T* where

h- U1 = (hlxgl)a 07 T )07 h2$§\11)+17 O) T 707 """ 7h€$g\11)+...+,\£_1+17 07 T Jo)t‘
—_—
A1 A2 Ae

Since each h; runs over all complex numbers whose absolute values are 1, only one of
ajgl) in (2.4) must be nonzero.

If $§\11)+---+/\k71+1 is nonzero for some 1 < k < ¢, then we may assume that
U1 = (07 7O>1>O>"' 70)t7
_ (.9 (4) (4) D\
U= (27, ’x)\1+"'+)\k71’0’ TN ot A2 ’xT(l]))
for 2 < j < n where the (A + -+ + Ag—1 + 1)-th component of v; is one. Since we have
_ (.2 (2) (2) (2) (2) 2) Mt
NOUQ — (l‘Q y T 7x)\1 707 1")\14_27 e 7:13)\14,_)\27 07 """ 7'1")\1+...+)\e_1+2) e ,.’L‘SL )7 0) 9
A1 A2 Ae
the condition NyVso C V; implies that
(2.5)
_ (.2 (2) (2) t
vy = (21,0, 0, -+ 707x/\1+"‘+>\k—1+2’07 B | IR 795,\1+...+)\£_1+170,"' L0
—_———

A Ak Ae

Therefore, we see that the only one of 3%(2) =1 M+1..., 4+ +X\1+2,..., 1+
-+ + X1 + 1) which appear in (2.5) is nonzero by an argument similar to that used
above. Continuing this procedure, we conclude that Vo, = w for some w € §,, satisfying
the condition (2.3). In fact, w(1) is equal to one of the numbers 1, A\; + 1, A\; + A2 + 1,
s A A+ L Ifw(l) = A4 -+ Ag—1 + 1, then w(2) is equal to one of the
numbers 1 A +1, ..., 1+ -+ Xe—1+2, ..., A1 +---+ 1+ 1 and so on. This means
that for each k = 1,...,¢ the numbers between A\{ +--- + A p_1 + 1 and \; +--- + A
appear in the one-line notation of w as a subsequence in the increasing order. O

Regarding a product of symmetric groups Sy, x Sy, x --- x Sy, as a subgroup of
the symmetric group S, it follows from Lemma 2.1 that the T*fixed points STZ of the
Springer variety 8 is identified with the right cosets Sy, x Sy, x - - - x S),\ S, where each

w E 8{1 corresponds to the right coset [w]. In fact, the condition (2.3) provides a unique
representative for each right coset.
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3. AN ACTION OF THE SYMMETRIC GROUP S,, ON H7,(8))

In this section, we introduce an action of the symmetric group S,, on the equivariant
cohomology group H%,(8)) over Z-coefficient by using the localization technique. We
will see that the projection map

o Hiu(Flags(C")) — Hii(Sy)

induced from the inclusions of 8y into Flags(C"™) and T! into T" is an S,-equivariant
map. In particular, we consider the following commutative diagram

Hj.(Flags(C")) —*— Hj.(Flags(C")T") = € H*(BI")

wESy
(31) p*l TI'J/
H:,(8)) TN (8T = € HY(BTY)

a4
weSy

where all the maps are induced from inclusion maps, and construct S,-actions on the
three modules Hin (Flags(C")), @,eq, H(BT"), and @, ¢ H*(BT*) to construct
A

an Sp-action on H7,(8y). All (equivariant) cohomology rings are assumed to be over
Z-coefficient unless otherwise specified.

First, we introduce the left action of the symmetric group 5, on the cohomology
group H*(Flags(C™)). To do that, we consider the right S,-action on the flag variety
Flags(C™) as follows.

For any V, € Flags(C"™), there exists g € U(n) so that V; = @2:1 Cg(ej), where
{e1,...,en} is the standard basis of C". Then the right action of w € S,, on Flags(C™)
can be defined by

(3.2) Vo w="V]

where V/ = ’_; Cg(ew(j))-

We recall an explicit presentation of the T"-equivariant cohomology ring of the flag
variety Flags(C"). Let E; be the subbundle of the trivial vector bundle Flags(C") x C"
over Flags(C™) whose fiber at a flag V4 is just V;. We denote the T"-equivariant first
Chern class of the line bundle E;/E; | by #; € H2,(Flags(C")). Let C; be the one
dimensional representation of 7" through a map T" — S* given by diag(g1, ..., gn) + G-
We denote the first Chern class of the line bundle ET™ x - C; over BT™ by t; € H?(BT™).
Since t1,...,t, generate H*(BT™) as a ring and they are algebraically independent, we
identify H*(BT™) with a polynomial ring;

H*(BT") =Z[t1, ..., t).
Then the equivariant cohomology H7.,. (Flags(C™)) is generated by Zy,...,Tn,t1,...,ty
as a ring. Defining a surjective ring homomorphism from Z[zy,...,zpn,t1,...,t,] to

H%.. (Flags(C™)) by sending z; to Z; and ¢; to t;, its kernel I is generated as an ideal by
ei(z1,...,xn) —ei(t1,...,t,) for all 1 <i < n, where e; is the i-th elementary symmetric
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polynomial. Thus, we have an isomorphism
(3.3) Hin (Flags(C™) 2 Zlxy, ... @, t1, ..., o) /1.
The right action in (3.2) induces the following left action of the symmetric group S,
on H7,(Flags(C")):
(3.4) W T = Ty, Wt =1

for w € S,,. In fact, the pullback of the line bundle E;/FE;_; under the right action in (3.2)
is exactly the line bundle E,,;y/E,i)—1, and the right action in (3.2) is T"-equivariant.

Second, we define a left action of v € S, on the direct sum ,,cq Z[t1,...,tn] of the
polynomial ring as follows:
(3.5) (0 Olw = fluwo

where w € S, and f € @, Z[t1,...,ts]. Observe that the map ¢; in (3.1) is the
following mapping
(3.6) 1(Zi)lw = twy, t(t)lw =t
Note that it follows from (3.4), (3.5), and (3.6) that the map ¢; is Sp,-equivariant map,
ie. w- (11(f)) =vi(w- f) for any f € Hn(Flags(C")) and w € S,,.
To construct an Sp-action on @, _ore H* (BT %), we need some preparations. We
A

identify H*(BT*) with a polynomial ring with ¢ variables. That is,
H*(BT") = Z[uy, . .., u

where u; € H?(BTY) is the first Chern class of the line bundle ET* x ¢ C; over BT*.
Here, C; is the one dimensional representation of T through a map T¢ — S! given by
diag(hy, - hi,hay - hyy oo hey - hy) = Ry

It is known that Flags(C™) and 8, admit a cellular decomposition ([6]), so the odd
degree cohomology groups of Flags(C™) and 8, vanish. The path-connectedness of
Flags(C™) and 8, together with this fact implies that the maps ¢; and ¢2 in (3.1) are
injective (cf.[5]) and that the map py in (3.1) is surjective (cf.[2]). The map 7 in (3.1) is
clearly surjective. Therefore, we obtain the following lemma. Let g; be the image py(Z;)
of z; for each 1.

Lemma 3.1. The T*-equivariant cohomology ring HY, (8x) is generated by yi,. .. ,Yn,
ui,...,up as a ring where g; is as above and H*(BT) = Z[uy, ..., uy]. a

Let ¢ : [n] =[] ([n] :={1,2,...,n}) be a map defined by

(3.7) o(i) =k
HAM 4+ A1 +F1 < i< A +---+ A where A\ +---+ A1 = 0 when kK = 1. Observe
that the map 7 in (3.1) is the following mapping

(38) W(f’w(tla ce atn)) = f‘w(u¢>(1)v s 7u¢(n))7
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where f|,, denotes w-component of f. It follows from (3.6), (3.8) and the commutative
diagram in (3.1) that
(3.9) 12(Yi)|w = Ug(w(s)) and ta(i)|w = ;.

Third, we define the left action of v € S, on the direct sum @wesipz Zluy, ..., ug] of
the polynomial ring as follows:
(3.10) (v Pl = fluw
for w € 8{5 and f € @weszz Zluy, . ..,up] where w' is the element of SF{L/ whose right
coset agrees with the right coset [wv] of Sy, x Sy, x --- x Sy,\S,. Note that the map 7
in (3.1) is not Sp-equivariant in general.
Lemma 3.2. For any v € S, and 1 <1i <n, it follows that
(3.11) v+ (02(i) = 2(Bo(z)) and v (e2(u;)) = v2(uq)
where the map 1o is in (3.1) and y; is the image of T; under the map py in (3.1).
Proof. From (3.9) and (3.10), we have
(v (e2(ui))lw = ta(ui) o = ui = ta(ui)|w

for all w € S,,. So the second equation holds. From (3.9) and (3.10) again, we have

(v (2(¥i))lw = t2(¥i) lwr = Ug(ur (i))»

12(Ju(i))lw = Ug(uw(w(i)-

Therefore, it is enough to prove ¢(w'(i)) = ¢(wwv(i)). Since [w'] = [wv] in Sy, X Sy, X
-+ x 83, \Sn, we have

MA A1+ 1< (@) < M+ + A
Mt AL <wo(@) <A+ + A
for some r. From the definition (3.7) of the map ¢, we have ¢(w'(i)) = ¢(wwv(i)), and
the first equation holds. We are done. O
Since the map 2 is injective, we obtain an S,-action on HJ,(8,) satisfying
(3.12) W+ Yi = Yoy and w - u; =y
for w € S, from Lemma 3.1 and Lemma 3.2. Moreover, one can see that the map p) in

(3.1) is Sp-equivariant homomorphism by (3.4) and (3.12). We summarize the results in
this section as follows.

Proposition 3.3. There exists an Sy-action on H7,(8)) such that the map py in (3.1)
is Sp-equivariant homomorphism where the Sp-action on H}..(Flags(C")) is given by
(3.4).

4. MAIN THEOREM

In this section, we state our main theorem. For this purpose, let us clarify our no-

tations. We set pa(S) := Ap—st1 + Ap—st2+ -+ Ag for s = 1,--- ,n. We denote by A
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the transpose of A. That is, A = (11, -+ ,mx) where k = Ay and n; = [{j | A; > i} for

1 <+ < k. For indeterminates y1,--- ,ys and a,a9, - -, let
d
(4'1) ed(yla t >y8|a17 az,--- ) = Z(_l)d_rer(yla T 7ys)hd—r(a1a t ,as—l—l—d)
r=0

for d > 0 where e; and h; denote the i-th elementary symmetric polynomial and the
i-th complete symmetric polynomial, respectively. In fact, this is the factorial Schur
function corresponding to the Young diagram consisting of the unique column of length
d as shown in the next section (see Lemma 5.1). We also define a map ¢, : [n] — [{] by
the condition

(4.2)  (Ugr(1)r " > Uy (n))

Z(ul,-‘-,ul,ul,uz,---,ul,UQ, ...... SUL, UDy  w o yUg,y v ,u1,u2,”',uz)
A=Az 2(Aa—As) Ee=Aet1)
as ordered sequences where for each 1 < r < /¢ the r-th sector of the right-hand-side
consists of (u1,ug, - ,u,) repeated (A, — A\p41)-times. Here, we denote Ag11 = 0.
Let us define a ring homomorphism
(4.3) YLy, Ynsur, ) = Hio(8))

by sending y; to 7; and wu; to u; where H*(BTZ) = Z[u1,- - ,ug]. Recall that y; is the
equivariant first Chern class of the tautological line bundle E;/E;_1 over Flags(C™) (see
Section 3) restricted to 8. This homomorphism % is a surjection by Lemma 3.1.

Theorem 4.1. The map ¥ in (4.3) induces a ring isomorphism
H’;Z(S)\) = Z[ylu oy Yn, UL, ,Ug]/f/\

where f)\ is the ideal of the polynomial ring Z[yi, - ,yn,u1, - ,ug] generated by the
polynomials eq(Yiy, -+ s Yi,[Upy (1), > Upy(n)) defined in (4.1) with ¢\ described in (4.2)
for1<s<n,1<i;<---<ig<n,andd>s+1—p;s(s).

Remark. The ideal I, ) is the T*-equivariant analogue of so-called Tanisaki’s ideal (it
is written as Ky in [9]). Each generator of I given above specializes to a generator of
Tanisaki’s ideal given in [9] after the evaluation u; = 0 for all 1.

5. PROOF OF THE MAIN THEOREM

In this section, we prove Theorem 4.1. Our argument is the T-equivariant version of
[9]. We first show that eq(¥iy, -, Uii[Ugy (1), » Uy (n)) = 0 in HT,(8)) for 1 < s <,
1<i3 <-<ig<n,and d > s+ 1—p;(s). By the Sy-action on H%,(8)) constructed
in Section 3, we may assume that i1 =1,--- ,ig = s.

Let us first consider the cases for s < n, and prove that for d > s 41 — p5(s) we have
ed(W1, 5 Pslugy (1) s Ugpy(n)) = 0 in HZ,(8)). Take a T"-invariant complete flag Us
by refining the flag (--- € N2C™ C NoC™ C C"). This is possible since Ny is in Jordan
canonical form. We denote by w the element of S, corresponding to U,, i.e. Uy = Wk,
where F, is the standard flag defined by F; = (e, - ,¢;) for all 1 <i < n. For a Young
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diagram p with at most s rows and n — s columns, the Schubert variety corresponding
to p with respect to the reference flag U, is

X, (Us) ={V € Gro(C") | dim(V N Up_g4i_p,) > i for all 1 <i < s}

where Grg(C"™) denotes the set of s dimensional complex linear subspaces in C". It
is known that X,(F) N X, (F.) = 0 unless ¢ C vt (cf. [1] § 9.4, Lemma 3). Here,
vl =(n—s—vs-,n—s—u1) and F, is the opposite flag of F, defined by F;, =
(ént1—is "+ ,€n). By multiplying both sides of this equality by w, we get

(5.1) X, (wF) N X,(Us) =0 unless u C v/l

Since the flag @wF, is T"-invariant, the Schubert variety X, (wF,) is a T™-invariant irre-
ducible subvariety of Grs(C"). Let S, := [X,(wF,)] € H3.(Grs(C")) be the associated
T"-equivariant cohomology class.

Let p : Flags(C") — Grs(C™) be the projection defined by p(Vs) = Vs. Then it follows
that

P(8x) C Xo(Ue)

where pg = (n —s,---,n—5,0,---,0) with n — s repeated pj;(s)-times and 0 repeated
(s —px(s))-times (cf. [9] § 3, Proposition 3). Hence, we obtain the following commutative
diagram

Hiw (Flags(Ch)) +2— Hi, (Gry(C"))

(5.2) pxl li*
Hif(8y) " Hin(Xug(UL)

where ¢* is the map induced by the inclusion and k is the restriction of the projection map
p. Let psq = (1,---,1,0,---,0) with 1 repeated d-times and 0 repeated (s — d)-times.
This Young diagram has at most s rows and n — s columns since we are assuming that
s < n. Recall that the T"-equivariant Schubert class S, = [X,(@F,)] comes from the
relative cohomology H,. (Grs(C™), Grs(C")\X,,(wF%)). So it follows that i*SHS,d =0 for
d>s+1—p;s(s) since pusq ¢ M(T) and (5.1) show that any cycle in X, (U,) does not
intersect with X,,_, (wF,). Thus, we obtain py (p*gus,d) = 0 by the commutativity of the
diagram (5.2).

To give a polynomial representative of p) (p* 5'#8’ ), let us first describe p* gus, , in terms

of z1,--- ,Z, and t1,--- ,t,. Observe that w € S,, acts on C™ from the left by
for (z1,---,zp) € C", and this naturally induces Sy-action on Flags(C"). For each w €

Sp, the induced map on Flags(C") is equivariant with respect to a group homomorphism
Yy : T — T™ defined by (g1, ,9n) = (Gw-1(1)s" " »Jw-1(n))- This ¢, induces a ring
homomorphism on H*(BT") = Z[t1,- - ,tn] :

o Lt ) = 2ty ] by = ty=1(3)s
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and the induced map w* on H}., (Flags(C™)) is a ring homomorphism satisfying w*(t;a) =
i (ti)w* () for any o € Hy (Flags(C")) and @ = 1,--- ,n where the products are taken
by the cup products via the canonical homomorphism H*(BT™) — Hj.(Flags(C")).
Similarly, S,, acts on Grs(C™) from the left, and the projection p : Flags(C") — Grs(C™)
is Sy-equivariant. Observe that w*z; = Z; for any w € S, since w naturally induces a
map F;/E;_1 — E;/E;_1 which is a fiber-wise isomorphism.

Recall from [3] that the T"-equivariant Schubert class [X,(F,)] € Hjn(Grs(C™)) with
respect to the standard reference flag F, is represented by the factorial Schur function
(see [4]) in the T"-equivariant cohomology of Flags(C") :

P Xu(F)] = (=T, s —Ts| =ty -+, —t1).
For the convenience of the reader, we here recall the definition of factorial Schur functions

from [4]: for a Young diagram p with at most s rows, the factorial Schur function
associated to p is defined to be

S,u(wl) T 7373’@17 az,-- ) = Z H(xT(a) - aT(a)+c(a))
T ocp

as a polynomial in Z[xy, - ,2s] ® Z[a1,as, -] where T runs over all semistandard
tableaux of shape p with entries in {1,---,s}, T'(«) is the entry of 7" in the cell « € p,
and c(a) = j—1i is the content of = (7, j). This polynomial is symmetric in x-variables.

From the definition, we have that X, (@F,) = wwoX,(Fs) where wg € S, is the longest
element with respect to the Bruhat order. So it follows that

p*Su = p*((wwo) ™) [Xu(Fo)] = ((wwo) ™) p*[Xpu(FY)]
=su(=Z1, = Zs| — Loy, —tan))

since the projection p : Flags(C") — Grs(C™) is equivariant with respect to the left
Sp-actions. In particular, the following lemma with the definition (4.1) shows that

(5.3) PSS, = (1) %a(Z1, - Zaltoqy, s tagm))-
Lemma 5.1. For indeterminates x1,--- ,Ts,a1,a9, -+, we have
k
Sps i (l'la T 7$s|a17 az, - .- ) = Z(_l)k_rer(xla te axs)hk—r(ala te 7as+1—k)
r=0
for k>0 where g, = (1,---,1,0,---,0) with 1 repeated k-times and 0 repeated (s —k)-
times.

Proof. We first find the coefficient of the monomial z1---x, in sy, ,(x|a). For each
I = (iy,d9, - ,ig—y) satisfying r +1 <1y < iy < -+ < i, < s, there is a summand in
Su,.,(w|a) corresponding to the standard tableau T of shape y, x whose (j, 1)-th entry is

J f1<j<r,
ij_y ifr+1<j<k.
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The summand is of the form
(21 —ar)(z2 —a1) -+ (zr — 1) (i — @iy —)(Tiy — Qiy—r—1) -~ (Tiy_, — Qip_, —k41),
and the contribution of the monomial z; - - - , from this polynomial is
(—D* (g iy 1~ @iy 1)1 T
Since the condition on [ is equivalent to

1Sz’l—rgig—r—lS-"gik,T—k—i-lSs—k—i-l,

we see that the coefficient of x1 -2, in s, , (z1,- -+ ,7s|ar, ag,- ) is
(_1)k_rhk—r(a1a e 7as—k+1)-
Recalling that s, (71, -+ ,2s|a1,az,---) is symmetric in z-variables, we conclude that
the coefficient of zj, - - -z, is (—=1)* "hg_, (a1, -+ ,as_p+1) forany 1 < jy < --- < j, <s.
Thus, the polynomial
(=1 Tep(wr, -+ we)hp—p(ar, -+, as_pr1)
gives the summand in s, (71, ,%s|a1, az, - -) whose degree in z-variables is 7. O

From now on, we take a specific choice of w as follows, and we study the image of the
Schubert classes p*S,, under py. We choose w so that its one-line notation is given by

w=J - Jp
where each sector J, is a sequence of subsectors
J. = jT(}) .. .jp‘T_ArﬁLl)
consisted by sequences of the form

i == A +m, A=A+ dedm, s M = A Ao+ A

Note that jﬁm) is a sequence of length r, and J, is a sequence of length r(A, — A\, 41). We
define J, to be the empty sequence if A\, = \,.41. Writing down J, for some small r, the
reader can see how the complete flag wF, refines the flag (--- € NJC" C NoC" C C").

Example. If n = 16 and A = (7,5, 2,2), then
w=12384951061113157 121416

where J; = jfl)jgm =12 Jy= jél)jg)jgg) =38495 10, J; is the empty sequence, and

Jy = jil)jf) =61113 157 12 14 16. The reader should check that wF, refines the flag
(- C NZC" C NoC" C C™).

The map ¢ : [n] — [¢] defined in (3.7) takes each sequence j,(,m) to the sequence 1,--- | r

since k-th number of jﬁm) satisfies

MA M F1I< M= A)+ X4+ +m< A+ + A
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This shows that ¢ o w coincides with the map ¢, defined in (4.2). Applying py to (5.3),
we obtain

px 0 D" (Spea) = (=D %ea(fn, - Uslugy (1), s gy ()

in H,,(8). Since i*(Sy, ;) = 0, the commutative diagram (5.2) shows that the left-hand-
side of this equality vanishes. That is, we proved that eq(71,- -, Us|tug, (1), > Ugy(n)) =
0 for the cases s < n.

We are left with the case s = n. In this case, we have that d > n +1 — py(n) = 1.

Observe that in H}. (Flags(C™)) we have

ed(‘fb T 7‘%71“17 o 7tn)

(_1)d_r€’r(i’17 e wi‘n)hdfr(tly e 7tn+1fd)

I
M=~

1
I
o

<_1)d77ﬂ67’(t17 T Jtn)hdfT(th T 7tn+1,d)

[
M~

\3
Il
o

by the presentation given in (3.3). It is straightforward to check that this is equal
to eq(tnta—d, - ,tn) (which is zero since the number of variables is greater than d) by
considering the generating functions with a formal variable z for elementary and complete
symmetric polynomials :

n n
[T —t2) =D (—D)en(ts, - s ta)2",
i=1 r=0

L

= = 2l )"

=1 r>0

That is, the polynomial eq(Z1, - - , Zy|t1, - - ,t,) vanishes in H7, (Flags(C™)), and hence
we see that eq(J1, -, UnlUg, (1), s Ugpy(n)) = 0.

Now, the homomorphism (4.3) induces a surjective ring homomorphism

QE : Z[yla oy Yns UL, 'U@]/T)\ — H;Z(S)\)

In what follows, we prove that this is an isomorphism by thinking of both sides as
Z[uy, - - - ug]-algebras. Namely, the ring on the left-hand-side admits the obvious mul-
tiplication by w1, ,u,, and the ring on the right-hand-side has the canonical ring
homomorphism H*(BT*) — H},(8)) with the identification H*(BT*) = Zuy, - - - ug].

Recall that §) admits a cellular decomposition by even dimensional cells constructed
by [6] (c.f. [2]). So the spectral sequence for the fiber bundle ET* x,¢ 8y — BT* shows
that H7,(8)) is a free Z[uy, - - -, ugl-module and that its rank over Z[uy, - - - , u] coincides
with the rank of the non-equivariant cohomology:

n!

* * n
rankz[uh.“’ué}HT@(S)\) = rankZH (8)\) = m = ( )
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Hence, to prove that the map v is an isomorphism, it is sufficient to show that the

module Z[y1, -+, Yn, U1, -ug]/f,\ is generated by (K) elements as a Z[uy, - - - , ug]-module.
To do that, let us consider a graded ring! Z[y1,--- ,yn]/Ix where Iy is Tanisaki’s ideal,
namely this is generated by eq(yi,, - ,vi,) for 1 <s<n,1 <4 <--- <is <n,and

d>s+41—ps(s). In [9], it is shown that this is a free Z-module of rank (7).

Lemma 5.2. Let ®1(y), -, Pr(y) be homogeneous polynomials in Zlyy,- - ,yn] which
give an additive basis of Z[y1, -+ ,yn]/Ix where k = (K) If we think of ®1(y),-- -, Pr(y)

as elements of Zly1, -+ , Yn, U1, - ,uz]/.f,\, then they generate Z[y1,- -+ ,Yn,u1, " - ,W]/I}
as a Zluy, - -+ ,ug]-module.

Proof. Tt suffices to show that any monomial mofyy, -,y in Z[y1, -+ , Yn, 1, - ,uE]/IN)\
can be written as a Z[ui, - -- ,ug]-linear combination of ®;(y),--- , ®r(y). We prove this

by induction on the degree d of m. The base case d = 0 is clear, i.e. ®;(y) = 1 for
some i. We assume that d > 1 and the claim holds for d — 1. Let ¢ be a homomorphism
from Zly1, -+ ,Yn,u1, - ,ug)/Ix to Zlyr,- - ,yn]/Ix sending y; to y; and u; to 0. This is

well-defined since each generator eq(y1, -, Us|tg, (1), »Ug, (n)) Of Ix is mapped to the
corresponding generator eq(yi,, - ,yi,) of In. By the assumption, #(m) can be written
as a Z-linear combination of ®1(y), -, Px(y), that is, we have

m— Zaié[)i(y) € ker6

for some a; € Z. Here, ker6 is the ideal of Z[y1, - ,yn,u1, - ,ug]/lz)\ generated by
uy,- -+ ,up. In fact, it follows that the image of I in Z[y1~, S Yny Uty e ug) /Iy 1S in-
cluded in the ideal (uq, - - - ,Uf) of Z[y1,- -+ ,Yn,u1, - ,ug]/I from the following equation
in Z[yla s Yn, UL, 7“@}/1)\:
. ) — d—r . .
ed(y’tlv T 7%3) - Z (_1) er(yu? e 7yls)hd*7"(u¢>\(1)7 T ,U¢>\(5+1,d))-
0<r<d

Therefore, the monomial m can be written as
1
(5.4) m =" a®i(y)+ Y fi(y, w)u;
i j=1

for some polynomials fi(y,u),- -, fe(y,u). Since m has degree d, we can replace the poly-
nomials in the right-hand-side by their homogeneous components of degree d. Namely, we
can assume that deg ®;(y) = deg f;(y,u) +1 = d. Now, the induction assumption shows

that each fj(y,u) is written as a Z[ui, - - - , ug)-linear combination of ®1(y),---, Px(y)
since the degree of each monomial in y contained in f;(y,u) is less than d. Hence,
the element m is written by a Z[ug, - - ,us|-linear combination of ®;(y),- -, Pr(y) in

Zlyr, -, Ynsu1, - ,ug) /Iy, as desired.
O

From Lemma 5.2, the surjection ¢ has to be an isomorphism as discussed above.

IThe argument in [9] to give a presentation of the ring H*(8x;C) works also over Z-coefficient, and in
that sense this ring is the presentation given in [9].
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