IMPROVED HARDY INEQUALITIES IN A LIMITING CASE
AND THEIR APPLICATIONS

MEGUMI SANO AND FUTOSHI TAKAHASHI

AsstracT. We show that the Hardy inequality in a limiting case can be
improved by adding remainder terms with singular weights. We discuss
the optimality of remainder terms from the view point of the weights.
Also we consider the existence of weak solutions of a weighted eigen-
value problem and study the asymptotic behavior of the first eigenvalue
as parameter involved varies.

1. INTRODUCTION

Let Q be a smooth bounded domaini¥, N > 2, with 0 € Q. The
classical Hardy inequality

—n\P p
(1.1) f|Vu|pdxz(N p) f&dx
Q p o IXP

holds for allu € Wé’p(Q), where 1< p < N. Itis known that, forp > 1, the
constant%’)p is optimal and is never attained Wé’p(Q). Therefore, one

can expect the existence of remainder terms on the right-hand side of the
inequality (1.1). Indeed, there are many papers that deal with the improve-
ments of the inequality (1.1) (see [1], [2], [7], [8], [9], [10], [11], [12], [15]
and the references therein). For the cpse2, Chaudhuri and Ramaswamy

[8] have proved that, for & g < 2 and 1< g < 2; := 202, there exists a
constanC > 0 depending o, 3, g andQ such that

_2\?2 2 q z
(1.2) fqulzdxz (N 2) u dx+C( de)q
Q

2 o IX2 o IXP

holds for allu € Wé’Z(Q). Vazquez and Zuazua [18] applied the remainder
term in (1.1) to study the large-time behavior of solutions to the linear heat
equation with a singular potential.
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In this paper, we focus on the critical cgse: N. In this case, (1.1) loses
its meaning as it is and instead,

_1\N N
(1.3) fqulNdxz(N 1) f W gx
Q N IxIN(log & Re)N

holds for allu e W,"(Q), here and hencefortR := sup, IX. We call (1.3)

the Hardy inequality in a limiting casdt is known that the constanii,g—l)'\'

is optimal for any bounded domaia c RN with 0 € Q, see Adimurthi and

Sandeep [3]. We show a simple proof of this fact in Appendix. A main

aim of this paper is to obtain remainder terms for the Hardy inequality in

a limiting case (1.3). Next, we discuss the optimality of remainder terms

from the view point of the weights. Finally, we consider the existence of

weak solutions of a weighted eigenvalue problem with singular weights.
Adimurthi-Chaudhuri-Ramaswamy [1] have proved that for given 0

and forR=¢""""T, the inequality

2
(1.4) f |Vh|2dx>-§f il —dx
2 ] |
B2(0) B0 (x| [17_, log |x|)

holds for allh € WS’Z(BT(O)), whereB2(0) c R? is a ball of radiusT with
center 0 and is the first integer for which < log® & < 1. Here lo§?

is defined inductively by 10g(-) = log(), log¥() = log(log“ () for

k > 2. Note that, the more terms we have on the right-hand side of (1.4),
the largeR must be in the weights, and if we chodRe- eT, thenk must

be 1. By this reason, it seemdiitiult to claim that we have obtained the
remainder terms for the inequality (1.3). In [3], the authors claim that there
existsC > 0 such that the inequality

fquINdxz (N 1) f u dx+Cf u dx
Q N IXIN(log E&)N XN (log 2&)N(log® ik

x| [X|

holds true for any € W2N(Q), whereR; > (e5)#NR. However, the proof

of it is omitted in [3]. The motivation of the present paper is to extend
the studies done for thsubcritical Hardy inequality (1.1) by Adimurthi
et.al.[1] to the critical Hardy inequality (1.3). Our main tools are, basically,
the symmetrization of functions and a transformation invented by Brezis
and Vazquez [7], and the way of arguments is now well known. However,
we need a new type of transformation of functions, which is relevant to our
study. This new transformation, which is a combination of the usual Brezis-
Vazquez’s transformation and a “nonlinear” scaling, is the clue to obtain the
results in this paper; see (2.2) below.
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Our main result on the improvement of the inequality (1.3) is stated in
the following theorem.

Theorerp 1. LetQ be a smooth bounded domainiR, N > 2, with0 € Q,
and putR = sup, IX. Forany-1 <L < N -2, letq > 0 be such that
N-1

(1.5) a=a(q,L) = N

g+L+2<N.

Then the inequality
_1\N N
(1.6) fquINdxz(N 1)f CRN
Q N Q|x|N(Iog|R7fN

N q q
+wy "C(L,N, Q)% fLwdx
Q|x|N(IogR—e)

X

holds for allu € Wé’N(Q), wherewy, is the area of the unit sphere & and

N-1
N

! %q N-1
C(L,N,g) ™" := f s (Iog é) ds=(L+ 1)—(aq+1)r(
0

hereI'(-) is the Gamma function.

or1).

Remark?. LetL > —1 be given. Note that the map
1
H —
rN(log Beyo
is decreasing im € [0, R] if and only if @ < N. Thus ifg > 0 be such that
a = a(g,L) > N, then we cannot apply the rearrangement argument (see

Step 2 in the proof of Theorem 1). This is the case, for examptezifN.
However even in this case, the inequality

—_1\M N
(1.7) f|Vu|Ndx2(N 1) dex
o N a [X|N(log BeN

1

1-N N [Vighl a
+ o TC(L N, )t f L S
8 | XN (log B)

X

holds for allu € WN(Q). Here and hencefortBz(0) c RN be a ball such
that|Q| = |Bg(0)|, |Al denotes the measure of a get RN, and

u*(x) = U*(Ix]) = inf{d > 0] [{x € Q | Ju(X)| > A} < B (O)]}

is the symmetric decreasing rearrangement (the Schwarz symmetrization)
of u.
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We note thaR > R for any bounded domaift. Moreover, the map

1

r Re
N
rN(log =)

is monotonically decreasing ime [0, R] if and only if y < Nlog %e. There-

fore, if the domainQ satisfies a geometric conditiean < Nlog %e (this is
valid, for example, ifQ has a “long thin nose”), the last integral of (1.7) is
estimated from below as

|u#|q |LI#|q |u|q
—dx> — 1 _dx> [ ————dx
o0 o9 B o (1og B Jo i (og )

by the symmetrization argument. Therefore, for some donfaisetisfying
a geometric condition, we have (1.6) even when N.

Remark3. (1.6) does not hold wheh < -1 (see Theorem 9). Therefore
we see that the weight function in the remainder term of (1.6) is optimal.

Direct application of Theorem 1 yields the following Corollary 4, which
was first proved in [3]. We believe that the proof here is much simpler than
that in [3].

Corollary 4. (Adimurthi-SandeefB]: Theorem 1.3) LeN > 2. The best
constan(®2)N in the inequality (1.3) is never attained W™ (€).

We also obtain dferent types of remainder terms involving the sym-
metrization of functions.

Theorerq 5. LetQ be a smooth bounded domainR, N > 2, with 0 € Q,
and putR = sup, |X. LetBgr(0) c RN be a ball such thai2] = |Bg(0).
Then we have the following statements:

() The inequality

—_1\N N
(1.8) f|Vu|Ndx2(N 1)[ W= x
o N/ Ja xN(log £

Ju#|N

+41(BY(0))

B IXIN(log fp)™

holds for allu € W2™(Q), whered;(BY(0)) is the first eigenvalue of
—Ay acting onW,;N(BY(0)).
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(I The inequality
N - 1\" up
(1.9) f|VulNdx2 ( ) f W= gx
o N a |XN(log BN

1

N - 1\" N g
" N Br(0 N Re\" Re\N X
= [N (log %) (log log &)

holds for allu € W™ (Q).
() ForO<g< NandL > -1, pute = (q,L) = N2q+ L+ 2 The
inequalities:

_1\M N
(1.10) f|Vu|Ndx2(N 1)f CRN
Q N QleN(IOQ%TeN

+Bwr SC(L N, 0% (f lu#;lq)adx]
B

r(0) |X|N (Iog %

N
q

C (N-1\"? U
TR\ TN N 70x
Br(0) (|x|N log l%f) (Iog log &e)

1

and

_1\N N
(1.11) f|Vu|Ndx2(N 1) f W= gx
o N/ Ja xN(log £

+ Bw;’%C(L, N,q)a (f "ﬁ;'q)adx]
B,

R(0) |X|N (Iog Re

1

alz

U
N+2

L uB0) [ ——
o) 1" (log £7)

dx

hold for all u € WN(Q), where B,C are positive constants in
(2.7) below, and1,(B%(0)) is the first eigenvalue ofA acting on
HZ(B2(0)), hereB2(0) is the unit ball inR?,

Remarks. Note that the functions

rH;, (ysNIog&_:‘)
rN(log Beyr R

re— - 1 —, (y < Nlog R (Iog Iogie))
rN(log B&)N(log log Be)r R R



6 MEGUMI SANO AND FUTOSHI TAKAHASHI

are monotonically decreasing on ). Thus for some domainQ, we can
replace the integrals aff on Bz(0) in the right-hand sides of the inequalities
(1.8)—(1.11) by those ofi on Q, by the argument as in Remark 2. For
example, ifQ satisfies a geometrical conditionsllog & (log log ), then,
the inequality

_1\N N
f|Vu|Ndxz(N 1) f u ——dx
0 N o [X|N(log BeN

I

N -1\ N g
“I™N o 1 (100 BT (log log B
X (log 57) (log log )
holds true for alu € W,N(Q) instead of (1.9).

Letl < p < c0o @andB # —1. A. Kufner [14] obtained the following
one-dimensional Hardy inequality:

fo WP (10g%) " ar > ("” : 1')p fo ) M (105 ar

for functionsv € W*?(0, R) satisfyingv(0) = 0 wheng < -1, orv(R) = 0
whenp > —1 (see [14] Example 5.13). Whe¢h= -1, the above inequal-

ity is meaningless and it may not be known whether the similar inequality
holds true or not. Here, we show the following one-dimensional Sobolev
inequality including the weightlog RTe, by using Theorem 1.

Corollary 7. Forany-1<L <0, let0 < g < -2L. Then the inequality

R R q %I
f V' (0)r IogR—edrz Cf %dr
0 r o r(log %)

holds for allv € W;?(0, R), whereC = C(L, 2, q) is the constant in Theorem
1.

Remark8. The sharper Hardy inequality

N-1\" N
(1.12) f VulNdx > ( ) f S N
Br(0) N Br(0) XN (log )M

holds for allu € W>"(Bg(0)), whereN > 2. Recently, loku and Ishiwata
[13] showed that the constarﬁﬁ‘é)’\' in the inequality (1.12) is optimal and
never attained iNVé’N(BR(O)). Furthermore, the author’s [16] provided a re-
mainder term for the inequality (1.12). Wheénc RN is a general bounded
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domain, the inequality

_ N
fqulNdx> ( 1) f __WE gy
a [XN(log )N
holds true for allu € Wg’N(Q). A simple proof of this fact can be seen in
[17].

Now, we discuss the optimality of the remainder term (1.6) in Theorem
1.

'[heorem 9. LetQ be a smooth bounded domaini®, N > 2, 0 € Q, with
R=sup.,IX. For0<q< N, pute” := 82q+ 1. Define

Fn = {f Q- R f el (Q\{0}) and?a € (a*, N] s.t.

lim sup f (X)X (Iog %3) < 00 } and

|x|—0
. . + 0o R : N ﬁe «
Gnyi=qf: Q>R | fely(Q\{0}) and Ilmlrgf f(X)IX Iogm >0 .
X|—

If f € Fy, then there exista(f) > 0 such that the inequality
(1.13)

wgo o (N=1)" u ( ' )E
fQNul dxz( N ) L—|x|N(Iog%3)Ndx+/l(f) Lf(x)|u| dx

holds true for allu € W (Q).
If f € Gy, then no inequality of type (1.13) can hold. Especially, we
cannot replacer in the remainder term of (1.6) hy*.

We remark that there exist functiorfswith f ¢ Fyandf ¢ Gy, for

N o Y
example,f(x) = |X~ (Iog |x‘) (Iogl log Re ™ ) foranyy > 0.
Next, let us consider the following quasilinear eigenvalue problem with
singular weights:

uN-2u .
AU = p————— + AT (U in Q,

whereAyu = div(|VuN-2Vu) is the N-Laplacian, 0< ¢ < N, 0 < u <
(8N, 1 € R and the weight functiorf satisfiesf € Fy.
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We call a functioru € Wy™(Q) a weak solution of the problenP)! if

JulN-2u V1)) 2
f|Vu|N‘2Vu-V¢dx: f dx+/lf|u|q ug fdx
Q Q |X|N (log o

holds whenevep € W, N(Q). We look for a weak solution € W, N(Q)
of (P)ﬁ by a constrained minimization argument. The solution obtained
here corresponds to the first eigenvaluelpff) of the operator-Ayu —

HN"(’I'—)N acting onWlN(Q) Furthermore we study the asymptotic be-
X 0og X

havior of 4,(f) asu 7 (54)N. Recalle” = 82q+ 1 forg e (O, N).

Theorem 10. For all f € Fy, the problem(P)! admits a positive weak
solutionu € W;N(Q) corresponding tal = 4,(f) > 0, which satisfies
A, (f) = A(f) for alimit A(f) > Oasu — ()N,

The organization of this paper is as follows:§h, Theorem 1, Theorem

5 and Corollary 7 are proved. §2, Theorem 9 and Theorem 10 are studied.
In Appendix, we show Proposition 16 to make this paper self-contained.

2. IMPROVED HARDY INEQUALITIES IN A LIMITING CASE

In this section, we prove Theorem 1, Theorem 5 and Corollary 7. As
mentioned ir§1, main tool of the proof is a new transformation of functions,
which is inspired by the idea of Brezis anéXfuez [7].

First, we prepare a simple lemma.

Lemma 11 ([11] Lemma 1.1) LetN > 2, and¢, n be real numbers such
thaté > 0andé —n > 0. Then

(2.1) € -m" + N =N > i,
Proof. Taylor’s formula implies

(¢ =" + N&"ip — &% = N(N - 1)p° f (-0 - )t

Thus if p < 0, the estimat& — tp > t|p| yields (2.1), and ify > 0, the
estimatet — tnp > (1 —t)|n| yields (2.1). |

In the proof of Theorem 1, we utilize the well-known transformation of
Brezis and VAzquez [7] combined with the new change of variables; see
(2.2). This new transformation is the key to the proof.

Proof of Theorem 1 . (Step 1): First we prove the inequality (1.6) wh@n
is a ballBr(0) (i.e. R = R) and for smooth positive radially honincreasing
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functionsu € C3'(Br(0)). We define the new transformation

-1

(2.2) V(s = (Iog RTe)_N u(r), wherer =[x, s= 9(r) = (Iog RTe) ,
S(r)

rlogB —

S(r) =

Note thatv(0) = v(1) = 0 sinceu(R) = 0, and

2.3) U(r) = - (NT_l) (Iog RTe)_& V(Sr(r)) ; (log RTe) V(s(r)s(r) < 0.

Now we observe that
(2.4)

_1\N N
I ::f |Vu|Ndx—(N—1) f LRedx
Br(0) N Br(0) [XIN(log TN

1

R N-1\" RO un)N
_ (1) INeN-Lgr — f —d
wNL u'(r)|™r r ( N ) WN > 7(og Fie)N r

= on f (% (109 R—e)_é YD (10g RTe) V(s(r»g(r)]

r r

N-1\" R Ju(r)N
_( N ) wao r(los‘f%e)”OIIr

Here, we can apply Lemma 11 with the choice

_ NT‘l (Iog RTe) V(Sr(r)) and 5= (log RTG) V(s)S(1).

Dropping&N > 0in (2.1) and using the boundary conditiorn8) = v(1) =
0, we obtain

N
rN=tdr

N-1
N

3

N-1
(25) 1> —a)NN(%) LRv(ﬂr))N‘1V(qr))§(r)dr

N-1

R
con [ WEOM ) (rlogT) e

N-1 N ! N-1 ! NN-1
= —wyN (T) f v(s) VvV (s)ds+ wa V() s "ds
0 0

1
:wa V(9)NsNds
0
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N-1
N

On the other hand, by using the estimate
1 L N-1_N-1 1 % l ~
f \/(t)dt‘ = f V(DL vt < (f |\/(t)|NtN1dt) (Iog g) ,

S S 0

1 1 % 1 1 -~ 4
q V(NN L (10g =
fo V()9 ds < (fo v (s)Ns ds) L S (og s) ds

Therefore, we have

V()| =

we get

(2.6) fol V(9N ds> C(L, N, g)a (fol Iv(s)|9s- ds)q .

Consequently, by (2.5) and (2.6), we obtain

| > wnC(L,N,Q)d (fol V()% ds)q = wnC(L, N, Q) [fj%dr]

Qalz

L " ule K
= wy, *C(L,N,q)" f—adx .
Br |X|N (Iog R—e)

X

wherea = o(q, L) = 52q+ L+ 2.

(Step 2): Lets* denote the symmetric decreasing rearrangemeunt 8-

. 1 . .
sume|Q| = |Br(0). Note that the functiom —» ————— is monotoni-
rN(log Be)

cally decreasing on [R] sincea < N. Thus by using the symmetrization

argument, we obtain

f|Vu|Ndxzf IVu#|Nd x
Q Br(0)

—_1\N #IN N #1a
(N l) f %dx+ wy, “C(L, N, 0)¢ f B L
N Br(0) IXIN(log T 80 XN (log &)

[ X

\%

N-1 N #N N #1q
> ( ) f '“—lﬁdx+w; “C(L, N, q)d f Lwdx
N Br(0) [X|N(log EE)N 8(0) [N (log )

X

_1\N N _N N q a
z(N 1) dex+w; TC(L, N, )" fLwdx
N a [xN(log BN a XN (log 2¢)

X

<lz

alz
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where the first inequality comes from thélfa-Szeg@ inequality, the sec-
ond one comes from Step 1, the third one comes from the facRthaR,
and the last one comes from the Hardy-Littlewood inequam/(b) ffg* >
fg fg for nonnegative measurable functiohgndg. Finally, a density ar-

gument assures (1.6) holds true forwat W, ™ (Q).
The proof of Theorem 1 is now complete. O

Proof of Theorem 5 . As in the proof of Theorem 1, it is enough to check
that all inequalities hold true whe@ = Bg(0) and for all smooth positive

radially decreasing functionse C7’(Bg(0)), since the rest of the argument
is the same as Step 2 in the proof of Theorem 1. Thus as before, we put

N-1\" u
LS .
Br(0) N Br(0) IXIN(log TN

X

for smooth positive radially decreasing functians C3'(Br(0)).
We use the same transformation (2.2) in the proof of Theorem 1.

Proof of (I).From (2.5) and the Poincainequality, we obtain

1
|zhf WK@WS”*dS:‘f‘ IvviNdx > 2;(BY) vNdx
0 BY(0) BY'(0)
N ! N -1 N R |u(r)|N
=uBY) oy [ MM Fds= 4(BY)wy | ————xdr
0 0t (Iog Be)
Ju

g0 XN (log FON

= 44 (BY)

This proves ().

Proof of (11). From (2.5) and the sharper Hardy inequality in a limiting case
(1.12), we obtain

—1\N N
| 2f A dxz(N 1) f lex
BYO) N BYo IXN(log ;)N

_(N—lrw Lo
"\ N N o s(log N

C(N=1\" Ju/N g
a N f N Re N Re N X
Br(O) |X| (Iog M) (Iog Iog—)

X

This proves (Il).
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Proof of (lll). We follow the argument by Adimurthi, Chaudhuri, and Ra-
maswamy [1]. By (2.4), we observe that

N-1 N
N
r

| = o f R[NT‘l (1og RTe) YD) (1079) V(s(r))s(r)] N-1gy

0
(N —1)Nw fR unrN
N "Jo r(logBeN
N-1\" v N v(sr) ,  Re, \"
(T) wN (1— N—lv(s(r))rlogTsl(r)) —1:dr.
Putx(r) = - Y& jog Reg(r). Sinceu is radially decreasing, we have

TNZL V)

(log B w(r) = —(%2) ™2 + (Iog B) v/(s(r))$(r) < O which implies

X(r) = —1. Thus by the inequality ([1] Lemma 2.1.):
(2.7) (1+x" > 1+ Nx+CxX¥+Bx" ("x>-1),

where C and B are positive constants, we obtain

N-1 N2 ! N-2 2 ! N N-1
Iz( ) Cfo V()N 2(V (9))*sd s+ Bfo V(9NN tds

rlog B¢

N

- (NN_Zl) fol v(9N v (s)ds

N-2
) %(NT_l) fol'("g(s))/’z sds+ B fo V(9N sds

C(N=1\"2 1 v¢ Y Lo P
ZmaX{W (T) L‘ (Sl\;gl) SdS/ll(Bi(O))OJNL '(VZ(S))‘ SdS}

5
N " [ a
+BquC(L,N,q)qf — B _dx
Br(0) XN (Iog %‘f)

where the last inequality comes from the two-dimensional sharper Hardy
inequality (1.12) and the Poindainequality on a balBz(0) c R?, both

applied tovz, and Theorem 1. Since

HvE Y " ju(r)N
f(slo l) sds:f N - sdr,
0 95 0 (r IogTe) (Iog IogTe)

oy R
L |(V2(S)) |ZSdS: LL)NfO %dr,

log =

r
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we have Theorem 5 (llI).
The proof of Theorem 5 is now complete. O

Proof of Corollary 7. Let v € W>*(0,R) and we consider the following
transformation

2.8) u(r):(logRTe)z v(r), for r=I|x€[0,R], xe B0),

whereBZ(0) ¢ R?is a 2-dimensional ball. Note thatife W2*(0, R), then it
holdsu € W.*(B2(0)). Indeed, by (2.8), we se£R) = (R) = 0. Moreover,

R Re R
f |u|2dx:w2f Iv(r)?r log —dr Sszf IV(r)[2dr < oo,
B2(0) 0 r 0
(2.9)

R 1 1 2
f |VU|2dX:w2f (|Og&a)2\/(r)—1'(|ogie) ’ m rdr
B2(0) 0 r 2 r r

R R . ,
= wzf V' (r)Pr log RTedr - wzf V(OV(r) dr + w2 f Iv(r)l dr
0 o .

4 rlog &e
R R 2
< 2 w2 f Iv(r)l
_szfO v (r)| dr+—4( M

3/ MR 3
dr) (j; |v(r)|2dr)
R s R 3/ AR 3
Sszf(; |\/(r)|2dr+z(4£ |\/(r)|2dr) (j(; |v(r)|2dr) < 0.

Here, we have used the fact®g RTe <Ron[OR], log RTe >1on[QR], and
the one-dimensional Hardy inequality

R 2 R
%f |V(rr2)| dr < f V(r)dr,  for ve W(0,R), v(0) = 0,
0 0

see [6].
Therefore, we can apply Theorem lue W2*(BZ(0)) to get
1 2
(2.10) | = f IVuPdx - —f LRedx
B(0) 4 Jezo) IX%(log )2

2
q

1-2 2 u|?
2w, CL20R | bz 0| -
%2 (log )

R
1




14 MEGUMI SANO AND FUTOSHI TAKAHASHI

Note thatg + 2+ L < 2 by the choice ofj, thus the assumption (1.5) in
Theorem 1 is satisfied. On the other hand, by (2.9), we have

(2.11)

R R X . ,
| = u)zf |\/(r)|2r |Og RTedr + %f Mdr _ % |U(r)| dr
0

4 Jo rlog¥Be 4 Jo r(logBe?
R

:a)zf |\/(r)|2rlog$dr.
0

From (2.10) and (2.11), we get

2
q

R R 2 q
a)zf IV (r)[°r log Rer> a); iC(L, 2, )4 f u A%
0 r O X2 (log )
2
2 R a ‘
:wZC(L,z,@q[ [ Ld] |
0 r (Iog ﬁ)
The proof of Corollary 7 is now complete. O

3. OPTIMALITY OF THE WEIGHT AND APPLICATION TO THE WEIGHTED EIGENVALUE
PROBLEM

In order to prove Theorem 9, we follow the argument in the proof of
Corollary 1.2. in [1].

Proof of Theorem 9. If f € Fy, then there exists € (a*, N] such that

. Re\”

lim supf (x)|x™ (Iog —) < o
-0 xeB, |X|

holds. Hence, for dticiently smalle > 0O, there exists a consta@t > 0

such that

f(X) < ﬁ
XN (log )
OutsideB,, both are bounded functions and heftean be chosen so that
this inequality holds in the whole @. Then, it is easy to check that (1.13)
follows from the improved Hardy inequality in a limiting case (1.6).
For the proof of the latter half part of Theorem, fe€ Gy. Then we can
find C > 0, b > 0 such thatf(x) > —CS— in 0 < | < 2¢ We may

|x|N(Iog %le)“

assume thaByz(0) c Q (c Bx(0)). Lets < N2 be a positive parameter and

in B,(0).
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we takeug just as in (4.1) in the proof of Proposition 16. Direct calculations,
as in the proof of Proposition 16, show that

N

a (s-M)g) @
(3.1) f Lwdx = (wN; (I g g) q] + 0O(1),
" i (0a) oo

(s-1)N+1
Ny — _ z
(3.2) fqusl dx = wy 5-DN+ 1(Iog b) + O(1),
3.3 f lug™ L S ' T o
(3.3) o 1 log o) “Ns—oN+1\ b +0olh)

ass — N1 By (3.1),(3.2), (3.3) ant% > 1, we have

fQIVuslNdx (52 1) fgﬁdx Joy IVugNdx - (N 1) fﬂ—mNNSl dx

(log & (log &)

- N

(f, f(x)|us|qu)q ( [ )

IXINIog‘
N_1
_C(—NNl— )q -0

ass — N1 Thus the inequality (1.6) does not hold fbas above. O

Lastly, we prove Theorem 10. In order to prove the Theorem 10, we need
the following lemmas.

Lemma 12. ([4] Theorem 2.1.) Lefun)>, c W,P(Q) be such that, as
m — oo, Uy — U weakly inW,P(Q) and satisfies

—ApUm = fn+0m  In D'(Q),
wheref,, —» 0in V\gl’p'(ﬂ) andgm is bounded inM(Q), the space of Radon
measures oK, i.e.
| < Om, ¢ > | < Cklidll

for all ¢ € D(Q) with suppg¢ c K. Then there exists a subsequence, say
Um,, Such that

Un = U in Wo7(Q) ("y < p).
Lemma 13. ([5]) For p € (0, +), let (gm)_; € LP(2, 1) be a sequence of
functions on a measurable spae, 1) such that

(i) lNlgmllLr@,y < C < oo for all me N, and
i) gm(X) — g(X) u-a.e.x € Qasm — oo.
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Then
1im (lgnllEoga) = 19 = GlEsayy) = 191Esq,.-
Note that we can apply Lemma 13 igdx) = f(X)dx, wheref is any
nonnegativet 1(Q) function.

Lemma 14. For any0 < q < N and anya > o, there exist€ > 0 such
that the inequality

N ul?
(3.4) LIVUI dx > CUQ —|x|N(|ogF”*—e)“dXJ

X

alz

1
holds true for allu € WyN(Q). Moreover, seff,(x) = —————. Then

XN (log %)
the embeddingVa™(Q) — LY(Q, f,) is compact.
Proof. By Holder inequality and the Hardy inequality (1.3), we have
1-§
q N
dengde f L dx
o [XN(log Ry o [XN(log RN o |XN(log &) w9

1 1

N-1\™N R 1 W
(—) fqulNdx) f ————dx| .
N Q Q |X|N(|og Re ﬁ(ﬁ_q)

|

q
N

IA

Sincep > a* = Rtq+ 1, the exponenﬁNTq(ﬁ— q) > 1, so the last integral is
finite. Thus we have (3.4).

The continuous embedding,™(Q) — L9, f,) comes from the in-
equality (3.4). To prove that this embedding is compact,{lg} be a
bounded sequence Wé’N(Q). Then we have a subsequerfeg, } such
that

Un — U weakly inW,N(Q) as k— o,

Un — U stronglyinL? (Q) as k— oo (1<y<oo).

Takep such thatr > 8 > o* and note that ling_o [x" (Iog %f)ﬁ f.(x) = 0.
Then for anys > 0 we can finds > 0 such that

~

N Re\’
suplx™ [log —] fo(X) < & and [|f,llLe@\s0) < 0.
Bs(0) X
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Thus

U, — ullﬁq(gym = f U, — Ul?f,(X)dX + f Um, — Ul?f,(X)dx
Q\B5(0) Bs(0)

U, — U4

< falls@eyoplitim = Ullygy + Ef ax

Q |xN (|og &3)'8

X
< ” fa”L""(Q\B(;(O))”um( - u”Eq(Q) + EC”V(um( - U)HEN(Q)
=0(1)+e0(1) ask— oo,

here the second inequality comes from (3.4). Finally, letiing> 0, we
obtain|juy, — u||‘ﬂq(Q’fn) — 0 and the proof is completed. O

Remarkl5. By using the test functions defined by (4.1) in Proposition 16,
we check that

[VuNdx
inf fg =0

UEW&’N(Q),U¢0 f |ujd d X
Q |xN(log Be)e*

Thus we cannot replaggin the inequality (3.4) byr*. By this reason, if
we define the class of weight functions

alz

f € Lige(\(0}) and lim supf (x)}x" (log &a) <o }

Fn = {f Q- R
|X|—0 |X|

then we do not know the solvability of the probleﬁ%)ﬁ for f € .

Proof of Theorem 10. We will use the methods similar to the proof of The-
orem 1.2. in [1]. Letp’ be Holder conjugate exponent pfandW-1F (Q) :=
(W) .

We look for a minimizer of the functional

N
J.(u) ::f|Vu|Ndx—,qu~Ndx ("ue WyN(Q)
Q Q(lxl |og&9)

X

over the manifoldM := {u € Wy™(Q) | [ [u9f(x)dx = 1}. Note that
J, is continuous, Gteaux diferentiable and coercive dNé’N(Q) for any

u € [O,(%)N) thanks to the Hardy inequality (1.3). Thus it is clear that
A,(f) ;== infuem J,(u) is positive. Let ()5, € M be minimizing sequence
of 4,(f). By Ekeland’s Variational Principle, we may assudjgun) — 0

in W;N'(Q) asm — oo without loss of generality. The coercivity o,
implies that ()., is a bounded sequence Wé’N(Q), hence we have a
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subsequenceug)”, andu € W2 (Q) such that
(35)  Un —u weaklyinW,N(Q) as k— o,
= N
. R
(3.6) Un — U weakly in LN [Q, (|x| log |7‘|3) ] as k— oo,

(3.7)  Um —u stronglyinl”(Q) as k— o (1 <"y <),
(3.8) Un — U ae.inQ as k- oo

for someu € Wé’N(Q). Note that the second convergence (3.6) comes from
the fact(LN (Q, (Ix/log FN‘—e)_N)) c W-N(Q), which is a consequence of the

I
Hardy inequality (1.3), and (3.5). Recall that fbe Fy, there exisC > 0
anda € (a*, N] such that

f<—S ino

N (Iog %f)a

ThusW:"(Q) is compactly embedded f(Q, f) by Lemma 14. Henc#/

is weakly closed iW,"(Q) andu € M.
Furthermore sincgJ, (Um)llw-1v ) — O, Uy Satisfies

= + AU T U f +

in O'(Q), wheref, — 0in WN(Q) and1, —» 1asm — oo. Putting

Om = #% + AmlUm/9?un f, one can check thag, is bounded inM(Q).
[
Thus we have

(3.9) Vun, — Vu a.e. inQ

from Lemma 12. By using Lemma 13, (3.5), (3.6), (3.8), (3.9), and the
Hardy inequality (1.3), we obtain

A,(f) = VU IN - ulluwllt‘N( +0(1)

Q(Ixlog %)7N)
||N R -N
LN(Q,(lxl log &) )

N-1\"
= (( N ) _’“‘] U, = “”E‘N(Q’(m ool " A,(f) +0(1)

B

= [[V (U, — WIIN = &llum, — u +[IVully —,uIIUIIE'N( +0(1)

Q,(lxl log %)_N)
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whereo(1l) —» 0 ask — co. Aspu < (%)N we conclude that
_ N
||UW u”LN(Q,(le log %)_N) -0 asko e
(3.10) IV(Un, — U)IIN — 0 ask — co.

Hence we have the strong convergencgugf} which impliesJ, (u) = 4,(f)
anda = 4,(f). SinceJ,(lu}) = J,(u) and the strong maximum principle
of Ay, we can takeu > 0 in Q. Then using Lemma 12 and (3.10), we
assure that is a distributional solution oﬂ'{)ﬁ corresponding ta = A,(f).
Moreoveru is a weak solution ofl?)ﬁ from density argument.

Finally, if f € Fy, Theorem 9 implies

Ny (M) [
. |, IVuNdx ( N ) ko |x|N(I09%)NdX
A0 > af) = inf

ueWé-N(Q\{O}) (jg‘) |U|q f (X)dX)%

N - 1\M
>Oas,u—>(—) .

N
This completes the proof. O

4. APPENDIX

Proposition 16. LetQ c RN be a smooth bounded domain witte Q and
R =sup, IX. Set

_ J5, IVuN dx
i = Ivr\]/fN(n) [, =L dx
ZUeWy —_—
o (loa )

ThenCy(Q) = (BN,

Proof. Let s < NT‘l be a positive parameter and take<Ob < 1 small

satisfyingB,zd0) c Q (c Bg(0)). We set

(logRe)" if 0 <x<Be
(4.1) us(X) ;= {smooth if 2 < |x < bRe

0 if bRe< |xl.
Then

Re\>t1 bR
s(log I—X‘f) m fO<IX< 7‘3~
IVus(X)| = { smooth if 22¢ < |x < bRe

0 if bRe< |X.
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Note thatus € W, N(Q) for s < 8L Direct calculations show that

f|Vus|Ndx:f |VuS|Ndx+f IVugN dx
Q Bz (0) ©\Bige(0)

bRe (s—l)N
_szNf ( Re) ﬂ+0(1)

(s-1)N+1
iy 1)N 11 (Iog B)
On the other hand, we have

f g dx—f g dx+f g dx
N - =~ AN 5 AN
b (on )" Vo0t log ) Vs ki g )

~ \(s-1)N
_ oy f i (IogRTe) ar, oq)
0

N-1
+0(1) ass— N

(s—l)N+1
= wNﬁ (Iog B) +0(1) ass— NT_l
Therefore
fglku;'Ndx — (N_l)N ass— -1
fQ XN Iosg N N

and we conclude th&(Q) = (%M.
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