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Abstract

In this paper, we investigate the nonlocal and nonlinear elliptic problem,{
−a
(∫

Ω
|∇u|2dx

)
∆u = λu+ up in Ω,

u = 0 on ∂Ω,
(P)

where N ≤ 3, Ω ⊂ RN is a bounded domain with smooth boundary ∂Ω, a is a
nondegenerate continuous function, p > 1 and λ ∈ R. We show several effects
of the nonlocal coefficient a on the structure of the solution set of (P). We first
introduce a scaling observation and describe the solution set by using that of
an associated semilinear problem. This allows us to get unbounded continua of
solutions (λ, u) of (P). A rich variety of new bifurcation and multiplicity results
are observed. We also prove that the nonlocal coefficient can induce up to
uncountably many solutions by a convenient way. Lastly, we give some remarks
from the variational point of view.
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1. Introduction

In this paper, we consider a nonlinear elliptic problem involving the Dirichlet
energy, {

−a
(∫

Ω
|∇u|2dx

)
∆u = λu+ up in Ω,

u = 0 on ∂Ω,
(P)
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where N ≤ 3 and Ω ⊂ RN is a bounded domain with smooth boundary ∂Ω. In
addition, assume a is a continuous function such that a ≥ a0 for some constant
a0 > 0, 1 < p < ∞ if N = 1, 2, 1 < p ≤ 5 if N = 3 and λ ∈ R is a parameter.
Our aim is to give one perspective how the nonlocal coefficient a works on the
solvability of (P). To do this, we study the structure of the solution set, the
bifurcation phenomena and the multiplicity of solutions of (P) by a convenient
way.

The nonlocal problems involving the Dirichlet energy are introduced by the
suitable ways in several stages of natural sciences. In the theory of the nonlinear
vibrations, it appears as a wave equation [19]. For the mathematical develop-
ment, see [1]. On the other hand, a parabolic problem is introduced as a model
equation for the dynamics of the population density of bacterias and also the
heat conduction, see [12] and [13]. In particular, in [13], they indicate that
it can admit several equilibria and has the energy structure. This motivates
them to investigate the asymptotic behavior of the solution. More recently, the
stationary and thus, elliptic problems with nonlinear reaction terms, such as
(P), attract much attentions [7][10][15][21]-[28][30][34]. Using the variational or
topological techniques, the authors investigate the existence of solutions. For
example, the 3-superlinear at infinity case is considered in [34] and some refer-
ences therein. That is, they consider (P) with a(t) = a0 + αt where a0, α > 0
and the nonlinearity f ∈ C(R) such that

lim
u→∞

f(u)

u3
= ∞.

This is a natural assumption in view of the mountain pass type geometry [4].
With the asymptotically linear condition at zero and some additional ones, they
get the existence of solutions. On the other hand, Perera-Zhang [30] and Liang-
Li-Shi [22] investigate a delicate problem including the asymptotically linearity
at zero and the asymptotically 3-linearity at infinity, say,

lim
u→∞

f(u)

u3
= Const.

It is worth remarking that this case has a close relation to the nonlinear eigen-
value problem, {

−
∫
Ω
|∇u|2dx ∆u = µu3 in Ω,

u = 0 on ∂Ω.

Some interesting studies on its eigenvalues and functions are observed in their
works. In addition, in [22], they indicate the difficulty caused by the lack of
the Ambrosetti-Rabinowitz type condition [4]. Applying the tool in [18] based
on the monotonicity trick [33], they get the solvability including a bifurcation
result. Notice that our nonlinearities λu+ up with p > 3 and p = 3 are typical
examples of these two assumptions above respectively. In addition, we deal with
the 3-sublinearity at infinity, 1 < p < 3 which has not been considered yet to
our best knowledge and the critical case, N = 3 and p = 5. Recently the critical
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case has been attacked by the author [25]. He solves the problem by utilizing the
pioneering argument by Brezis-Nirenberg [8] with the concentration compact-
ness result by Lions [23]. An interesting thing is that, he gets a solution which
attains the local minimum of the energy in addition to a mountain pass type
solution. See Theorem 5.1 there. Since if Ω is a ball, (P) with a(t) = 1 admits
at most one positive solution, see [5], we may conclude that this multiplicity is,
in fact, induced by the nonlocal coefficient. Now, this reminds us of the earlier
works by Chipot et al. in [12] and [13] stated in the beginning of this paragraph.
As in them, the author’s result implies that the nonlocal coefficient can induce
the multiplicity of stationary solutions even for the problem with the nonlinear
reaction term. Indeed, we can find a related result in [10], which says that the
concave-convex problem [3] may have the third positive solution. Readers can
refer to its introduction or Theorem 2.4. Our work is inspired by these results.
As noted in the first paragraph, one of the aims of this paper is to show how
the nonlocal coefficient can affect the multiplicity of solutions of (P). Actually,
we will see that (P) admits a rich variety of multiplicity results by the com-
bined effect of the nonlocal coefficient and the nonlinear reaction term. Before
beginning our main argument, we introduce a convenient observation below.

1.1. A scaling observation

Here, we introduce our basic idea throughout this paper. Let us reduce
our problem (P) to a semilinear problem. Suppose that a, p and λ are as in
the introduction and ∥ · ∥ is the usual H1

0 (Ω) norm. First, observe that for
any λ ∈ R, if u is a solution of (P), v := a(∥u∥2)1/(1−p)u is a solution of the
semilinear elliptic problem,{

−∆v = µv + vp in Ω,

v = 0 on ∂Ω,
(P0)

with µ = λ/a(∥u∥2). On the other hand, let λ ∈ R, t > 0 and v be a solution of
(P0) with µ = λ/a(t). Then u := a(t)1/(p−1)v is a solution of{

−a(t)∆u = λu+ up in Ω,

u = 0 on ∂Ω.

Thus, if t = ∥u∥2 = a(t)2/(p−1)∥v∥2, u is nothing but a solution of (P). As a
consequence, we conclude the following.

Proposition 1.1. For λ ∈ R, u is a solution of (P) if and only if there exists
a pair (t, v) ∈ R+ × C2,γ(Ω) such that u = a(t)1/(p−1)v and

t = a(t)
2

p−1 ∥v∥2

where v is a solution of (P0) with µ = λ/a(t).
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Using Proposition 1.1, we can construct up to uncountably many solutions
of (P) readily. See Section 4. Moreover, this observation allows us to obtain
certain informations on the structure of the solution set and the bifurcation
phenomena. We may expect that the nonlocal coefficient drastically affects
the bifurcation diagram on (P) and so the multiplicity. See Sections 2 and
3. We note that, up to now, very many authors have already investigated the
existence of solutions of (P) with several nonlinearities. But very few ones have
concerned with its bifurcation phenomena or their diagrams. Recently some
interests have begun to occur. See Theorem 1.2 and Remark 1.3 in [22], and,
for another problem, [10] where the result by mathematical computations are
shown. Furthermore, (after this work was finished) the author found [14] and
[16] where the bifurcation techniques are applied. In particular, by Theorem 1.1
in [14], one gets an alternative on the global bifurcation for the general setting.
It implies that (λ, u) = (λ∗, 0) is the bifurcation point of (P) and there may exist
an unbounded continuum of solutions of (P) which meets (λ∗, 0). In this paper,
we actually construct unbounded continua of solutions by a totally different idea
and give additional informations around the trivial solution and infinity. Lastly,
we remark that, although the variational method is very powerful on (P), it is
necessary and interesting to develop non-variational techniques to proceed the
analysis on the nonlocal problem. Actually, several authors now are developing
them. See [6], [20], [22] and for another functional elliptic problem, [11]. The
main argument in this paper is also non-variational. It is so helpful enough to
answer the question, by the convenient way, “What can happen on the typical
model problem (P) by the nonlocal coefficient?”. In fact, we observe several new
phenomena induced by the nonlocal coefficient here. In addition, our results can
add certain interpretations and informations on the previous results [34], [22]
and [14] etc.. We believe that it gives us good perspectives and motivations for
the problem in the future.

1.2. Organization and notations of this note

This paper is organized as the following. In Section 2, we show the structure
of the solution set of (P) using that of the semilinear problem (P0). Next, in
Section 3, we demonstrate the global bifurcation diagram of (P) for the simple
case, Ω is a ball. Lastly, in Section 4, we put several remarks on the multiplicity
results on (P). In particular, the former part, Subsection 4.1 is devoted to the
construction of up to uncountably many solutions. The latter one, Subsection
4.2, is to the remarks from the variational point of view.

We put ∥u∥ := (
∫
Ω
|∇u|2dx)1/2 as the usual H1

0 (Ω) norm and ∥u∥∞ :=

supx∈Ω |u(x)| as the L∞(Ω) norm. Furthermore, we define the norm in C2,γ(Ω)
with 0 < γ < 1 as

∥u∥2,γ := max
|l|≤2

sup
x∈Ω

∣∣∣Dlu(x)
∣∣∣+max

|l|=2
sup

x,y∈Ω

|Dlu(x)−Dlu(y)|
|x− y|γ

.

If X is a Banach space with its norm ∥ · ∥X , we consider the norm in R×X as

∥(λ, u)∥R×X :=
(
|λ|2 + ∥u∥2X

)1/2
. For the convergence of sequences {(λn, un)} ⊂
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R×X, we write (λn, un) → (λ0, u0) in R×X as n → ∞ for (λ0, u0) ∈ R×X.
Even when λ0 = ∞ or u0 = ∞, we write as above and regard it as λn → λ0

and un → u0 in X respectively. For p as in introduction, we define the usual
Sobolev constant,

Sp+1 := inf
u∈H1

0 (Ω)\{0}

∫
Ω
|∇u|2dx(∫

Ω
|u|p+1dx

)2/(p+1)
.

We write S := S6 when N = 3. Furthermore, note that we denote ϕ∗ as the
principle eigenfunction of −∆ on Ω which is normalized by Lp+1(Ω) norm, that
is, ∥ϕ∗∥p+1

p+1 =
∫
Ω
ϕp+1
∗ dx = 1. Finally, we use a same character C > 0 to denote

several positive values when there is no confusion.

2. The structure of the solution set

In this section, using Proposition 1.1 in Section 1, we show the structure of
the solution set of (P) with a(t) = 1 + αt and α > 0. This type of the nonlocal
coefficient is considered in many works [10][21]-[28][30][34] and the typical ex-
ample of the general settings in [6][7][14]-[16][20] and references therein. Here,
we define

S := {(λ, u) ∈ R× C2,γ(Ω) ; satisfies (P) and u ̸= 0}

and
T :=

{
(µ, v) ∈ R× C2,γ(Ω) ; satisfies (P0) and v ̸= 0

}
.

Furthermore, we often use the notation as,[
∥v∥2 < (=, >)c

]
:= {(µ, v) ∈ R× C2,γ(Ω) | ∥v∥2 < (=, >, resp.)c},

with some constants c ∈ R. Notice that the following result is divided to three
parts, i.e., the 3-superliner case; p > 3 [25][34], the asymptotically 3-linear case;
p = 3 [30][22] and the 3-sublinear case; 1 < p < 3 which has not been treated
yet to our best knowledge.

Theorem 2.1 (The structure of the solution set). Let a(t) = 1+αt with α > 0.
Then the next assertions are true.

(i) If p > 3, S ∪ {(λ∗, 0)} is homeomorphic to T ∪ {(λ∗, 0)}, write,

S ∪ {(λ∗, 0)} ≈ T ∪ {(λ∗, 0)}.

(ii) If p = 3, we have

S ∪ {(λ∗, 0)} ≈ (T ∪ {(λ∗, 0)}) ∩
[
∥v∥2 < α−1

]
.
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(iii) Suppose 1 < p < 3, then we get

(S ∪ {(λ∗, 0)}) ∩ [∥u∥2 < cp/α] ≈ (T ∪ {(λ∗, 0)}) ∩ [∥v∥2 < c′p/α],

S ∩ [∥u∥2 > cp/α] ≈ T ∩ [∥v∥2 < c′p/α]

and
S ∩ [∥u∥2 = cp] ≈ T ∩ [∥v∥2 = c′p/α]

where

cp =
p− 1

3− p
and c′p =

(
p− 1

2

)(
3− p

2

) 3−p
p−1

.

Remark 2.2. In this theorem, we regard both T ∪ {(λ∗, 0)} and S ∪ {(λ∗, 0)}
as subsets in R× C2,γ(Ω).

Remark 2.3. Using this theorem, we construct unbounded continua of solutions
of (P) in Section 3.

Proof. Set X := R × C2,γ(Ω). We first formally define a map F : X → X so
that

F (µ, v) =

{
(λ∗, 0) if (µ, v) = (λ∗, 0),(
µa(t), a(t)1/(p−1)v

)
if (µ, v) ∈ T

where t > 0 is a solution of an equation for τ > 0;

τ = a(τ)2/(p−1)β (1)

with β = ∥v∥2.
Proof for (i). Note that since p > 3, the equation (1) has the unique solution

for each β > 0. Thus F is well defined on T ∪{(λ∗, 0)}. In addition, Proposition
1.1 implies F (T ∪ {(λ∗, 0)}) = S ∪ {(λ∗, 0)}. Now we shall show that F is
a homeomorphism onto S ∪ {(λ∗, 0)}. To this end, we first claim that F is
continuous on T ∪ {(λ∗, 0)}. Fix (µ0, v0) ∈ T . For any ε > 0, take sufficiently
small δ > 0 which is determined later. For all (µ, v) ∈ T with ∥(µ0, v0) −
(µ, v)∥X < δ, we may assume ∥v0 − v∥ is small. This implies |t0 − t| is also
small, where t0, t > 0 are the unique solutions of (1) with β = ∥v0∥2, ∥v∥2
respectively. Thus, we can select δ > 0 sufficiently small so that

∥F (µ0, v0)− F (µ, v)∥X < ε.

Similarly we can conclude that F is continuous at (λ∗, 0). This proves the claim.
Next we show that F is one to one. To do this, assume

F (µ1, v1) = F (µ2, v2), (2)

for some (µi, vi) ∈ T with i = 1, 2. Then we get

t1 = a(t1)
2

p−1 ∥v1∥2 = a(t2)
2

p−1 ∥v2∥2 = t2
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where t1, t2 > 0 is the unique solutions of (1) with β = ∥v1∥2, ∥v2∥2 respectively.
Put t∗ := t1 = t2. Then (2) implies(

µ1a(t
∗), a(t∗)

1
p−1 v1

)
=
(
µ2a(t

∗), a(t∗)
1

p−1 v2

)
.

Since a(t) ≥ 1 > 0 for all t ≥ 0, we conclude (µ1, v1) = (µ2, v2). This con-
firms the claim. Lastly we show that the inverse F−1 of F is continuous. To
do this, fix (λ0, u0) ∈ S. For ε > 0, take δ > 0 which is determined later.
Consider any (λ, u) ∈ S with ∥(λ0, u0) − (λ, u)∥X < δ. Note F−1(λ0, u0) =
(λ0/a(t0), a(t0)

1/(1−p)u0) and F−1(λ, u) = (λ/a(t), a(t)1/(1−p)u)) where t0 =
∥u0∥2 and t = ∥u∥2. We may assume |λ0 − λ|, |t0 − t| and ∥u0 − u∥2,γ are small
if we take δ small enough. Thus we can select a constant δ > 0 so that

∥F−1(λ0, u0)− F−1(λ, u)∥X < ε.

Similarly we get the continuity of F−1 at (λ∗, 0). This completes the proof.
Proof for (ii). Assume p = 3. Notice that for all α > 0, there exists a

solution of (1) if and only if β < α−1 and it’s unique. Thus F is well-defined on
(T ∪ {(λ∗, 0)})∩

[
∥v∥2 < α−1

]
. Then similarly to the proof for (i), we conclude

that F is homeomorphism onto S ∪ {(λ∗, 0)}. This finishes the proof for (ii).
Proof for (iii). Let 1 < p < 3. Then, there exist just two solutions of (1)

if β < c′pα
−1, the unique one if β = c′pα

−1 and no solution for all β > c′pα
−1.

Noting this, we define three maps Fi : X → X for i = 1, 2, 3,

F1(µ, v) =

{
(λ∗, 0) if (µ, v) = (λ∗, 0),

(µa(tmin), a(tmin)
1/(p−1)v) if (µ, v) ∈ T ∩ [∥v∥2 < c′pα

−1],

F2(µ, v) = (µa(tmax), a(tmax)
1/(p−1)v) for all (µ, v) ∈ T ∩ [∥v∥2 < c′pα

−1]

and

F3(µ, v) = (µa(t0), a(t0)
1/(p−1)v) for all (µ, v) ∈ T ∩ [∥v∥2 = c′pα

−1]

where tmax = max{t > 0 | t = a(t)2/(p−1)∥v∥2}, tmin = min{t > 0 | t =
a(t)2/(p−1)∥v∥2} and t0 > 0 is the unique solution of (1) for β = ∥v∥2. Then,
from the facts stated above, Fi are well-defined for i = 1, 2, 3. It is not difficult to
conclude that Fi for i = 1, 2, 3 are homeomorphisms onto F1((T ∪ {(λ∗, 0)}) ∩
[∥v∥2 < c′p/α]) = (S ∪ {(λ∗, 0)}) ∩ [∥u∥2 < cp/α], F2(T ∩ [∥v∥2 < c′p/α]) =
S ∩ [∥u∥2 > cp/α] and F3(T ∩ [∥v∥2 = c′p/α]) = S ∩ [∥u∥2 = cp/α] respectively.
This proves the theorem.

3. The bifurcation results

In this section, we construct unbounded continua of positive solutions (λ, u)
of (P). To do this, we utilize Proposition 1.1, Theorem 2.1 and the unbounded
continuum of solutions of (P0) which meets the trivial solution (λ∗, 0) [31].
Note that, we mainly consider the very simple case, when Ω is a ball. Then, the
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solution set T ∪{(λ∗, 0)} is a simple curve since the positive solutions admit the
uniqueness and non-degeneracy assertions. See preliminaries below. This makes
our arguments and results much clearer and would be enough to demonstrate
how drastically the nonlocal coefficient affects the bifurcation phenomena on
(P). Although it is possible to apply our arguments and get some global results
on the general case, we leave it for interested readers for the simplicity of this
paper. We limit ourselves only to remarking that for the case, we need to be
much more careful about a priori bounds, the treatments of the continua and
so on. Throughout this section, we always consider the positive solutions. To
this aim, we define S+ := {(λ, u) ∈ S | u > 0 in Ω} and T+ := {(µ, v) ∈ T | v >
0 in Ω}. Since the relation between S+ and T+ is described as in Theorem 2.1,
we rewrite them as S and T again for the simplicity.

3.1. Preliminaries

We first put some preliminaries for the main argument later. Recall that
when Ω is a ball, every positive solution is radially symmetric [17], non-degenerate
and unique (see [2][5][29][32] and references therein). The implicit function the-
orem yields the following.

Proposition 3.1. Let 1 < p < ∞ if N = 1, 2, 1 < p < 5 if N = 3 and Ω be
a ball. Then there exists a continuous map f : (−∞, λ∗] → C2,γ(Ω) such that
T ∪ {(λ∗, 0)} = {(µ, f(µ)) | µ ∈ (−∞, λ∗]}. In particular, T ∪ {(λ∗, 0)} is a
simple curve in R× C2,γ(Ω).

In addition, we put the following a priori bound.

Lemma 3.2. Let 1 < p < ∞ if N = 1, 2, 1 < p < 5 if N = 3 and v be a
solution of (P0). Then we have

∥v∥2


> C1

(
1− µ

λ∗

) 2
p−1

if 0 < µ < λ∗

≥ C1 if µ = 0

> C1 if µ < 0

(3)

with a constant C1 = S
p+1
p−1

p+1 . In addition, suppose that v is the least energy
solution of the Brezis-Nirenberg type [8] of (P0), that is,

v = S(µ)
1

p−1wµ

where

S(µ) : = inf

{
∥w∥2 − µ

∫
Ω

w2dx
∣∣∣ ∫

Ω

|w|p+1dx = 1

}
= ∥wµ∥2 − µ

∫
Ω

w2
µdx
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with
∫
Ω
wp+1

µ dx = 1. Then, we obtain

∥v∥2


< C2

(
1− µ

λ∗

) 2
p−1

if 0 < µ < λ∗

≤ C3

(
1− µ

λ∗

) p+1
p−1

if µ ≤ 0

(4)

with constants C2 = ∥ϕ∗∥4/(p−1)(Sp+1 + λ∗|Ω|(p−1)/(p+1)) and C3 := ∥ϕ∗∥
2(p+1)
p−1

where |A| is the N -dimensional Lebesgue measure of A ⊂ RN and ϕ∗ > 0 in Ω
is the principle eigenfunction of −∆ on Ω with

∫
Ω
ϕp+1
∗ dx = 1.

Proof. Let v be a solution of (P0). Then the Poincaré and Sobolev inequalities
yield

0 = ∥v∥2 − µ

∫
Ω

v2dx−
∫
Ω

vp+1dx>
(
1− µ

λ∗

)
∥v∥2 − S

− p+1
2

p+1 ∥v∥p+1 if 0 < µ < λ∗,

≥ ∥v∥2 − S
− p+1

2
p+1 ∥v∥p+1dx if µ ≤ 0.

In addition, if µ < 0, the inequality is strict. Solving this with respect to ∥v∥2,
we obtain the first assertion. Next assume v := S(µ)1/(p−1)wµ. Then from the
definition, we get

∥v∥2 <

(
1− µ

λ∗

) 2
p−1

∥ϕ∗∥
4

p−1 ∥wµ∥2.

Here, the definition and the Hölder inequality imply,

∥wµ∥2 = S(µ) + µ

∫
Ω

w2
µdx< Sp+1 + λ∗|Ω|
p−1
p+1 if 0 < µ < λ∗,

≤ ∥ϕ∗∥2
(
1− µ

λ∗

)
if µ ≤ 0.

This completes the proof.

After this, assume that a(t) = 1 + αt with α > 0.

3.2. The 3-superlinear and subcritical case

First, we consider the 3-superlinear and subcritical case. For this case, we
may put α = 1 for the simplicity.

Theorem 3.3. Assume that a(t) = 1+ t, 3 < p < ∞ if N = 1, 2 and 3 < p < 5
if N = 3. Then we have a priori bound,

there exists a constant C > 0 such that ∥u∥ ≥ C for all (λ, u) ∈ S with
λ ≤ λ∗ where C is independent of λ.
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Figure 1: The global diagram for the case p > 3(subcritical)

Furthermore, assume that Ω is a ball. Then S ∪ {(λ∗, 0)} is an unbounded
simple curve in R × C2,γ(Ω) which starts from (λ∗, 0). More precisely, there
exists a homeomorphism F : (0, 1] → S ∪ {(λ∗, 0)}, put (λ(s), u(s)) := F(s)
for s ∈ (0, 1], such that S ∪ {(λ∗, 0)} = F((0, 1]), (λ(1), u(1)) = (λ∗, 0) and
lims→0 λ(s) = −∞.

From Theorem 3.3, the diagram looks as Figure 1-(i) (compare with that for
the semilinear case (ii)). Because of a priori bound in the theorem above, the
branch must emanate to the right, which is actually the effect of the nonlocal
coefficient. In view of the existence, we get the following.

Corollary 3.4. Let a, p and Ω be as in Theorem 3.3. Then there exists a
constant Λ > λ∗ such that the next assertions are true.

(i) (P) has at least one solution if λ ≤ λ∗,
(ii) (P) has at least two solutions if λ∗ < λ < Λ,
(iii) (P) poses at least one solution if λ = Λ,
(iv) (P) admits no solution if λ > Λ.

Recall that if a(t) = 1, there exists a positive solution if and only if λ < λ1.
Here we can observe that the nonlocal coefficient induces the existence of a
solution for all λ∗ ≤ λ < Λ and further, multiple solutions for all λ∗ < λ < Λ.
We will put an interpretation of this result from the variational point of view
in Section 4.

Proof of Theorem 3.3. We first prove a priori bound. If u is a solution of (P)
with λ ≤ λ∗, the Poincaré and Sobolev inequalities imply

0 = ∥u∥2 + ∥u∥4 − λ

∫
Ω

u2dx−
∫
Ω

up+1dx

≥
(
1− λ

λ∗

)
∥u∥2 + ∥u∥4 − C∥u∥p+1

≥ ∥u∥4 − C∥u∥p+1

for some constant C > 0. Since p > 3, we get the desired bound. Next
from Theorem 2.1, S ∪ {(λ∗, 0)} is homeomorphic to T ∪ {(λ∗, 0)}. Thus not-
ing Proposition 3.1, S ∪ {(λ∗, 0)} is a simple curve in R × C2,γ(Ω). Let F
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Figure 2: The global diagram for the case p = 3 (with small and large α > 0)

be the homeomorphism defined in the proof of Theorem 2.1. Put F(µ) :=
F (µ, f(µ)) and (λ(µ), u(µ)) := F(µ) for all µ ∈ (−∞, λ∗]. Then S ∪ {(λ∗, 0)} =
F((−∞, λ∗]). Furthermore, from the definition, (λ(λ∗), u(λ∗)) = (λ∗, 0). Since
λ(µ) = µa(∥u(µ)∥2) and a ≥ 1, λ(µ) → −∞ as µ → −∞. We trivially change
the parameter and conclude the proof.

3.3. Asymptotically 3-linear case; p = 3

Next we deal with the asymptotically 3-linear case. The related existence
result is given in [22] and [30]. We have the following.

Theorem 3.5. Assume a(t) = 1 + αt with α > 0, p = 3 and Ω is a ball. Then
there exists an unbounded simple curve C ⊂ S ∪ {(λ∗, 0)} in R×C2,γ(Ω) which
contains (λ∗, 0). More precisely, there exists a homeomorphism F : (0, 1] →
S ∪ {(λ∗, 0)} onto F((0, 1])(=: C), write (λ(s), u(s)) := F(s) for s ∈ (0, 1], such
that (λ(1), u(1)) = (λ∗, 0) and satisfies the following.

(i) There exists a constant α0 < S−2
4 (= C−1

1 ) such that if α < α0, λ < λ∗ for
all (λ, u) ∈ S and lims→0 λ(s) = −∞.

(ii) If α ≥ S−2
4 , λ > λ∗ for all (λ, u) ∈ S and further, if α > S−2

4 , (λ(s), u(s)) →
(∞,∞) in R×H1

0 (Ω) and also in R× L∞(Ω) as s → 0.

Remark 3.6. In view of the theorem above, the diagram looks as Figure 2.
When α > S−2

4 , the bifurcation diagram drastically different from the semilinear
case. Obviously, it ensures the existence of one solution for all λ > λ∗. The
related result on the general situation is Theorem 1.1 in [22].

In Theorem 3.5, we avoid the detail for the intermediate case; α0 < α ≤
S−2
4 . For this case, we have a variant which ensures, surprisingly enough, the

multiplicity of solutions. We put a remark on this phenomenon after the proof
of Theorem 3.5.

Proof of Theorem 3.5. Let f be as in Proposition 3.1 and take a value µ0 < λ∗
such that ∥f(µ0)∥2 = α−1 and ∥f(µ)∥2 < α−1 for all µ0 < µ ≤ λ∗. If ∥f(µ0)∥2 <
α−1 for all µ < λ∗, we regard µ0 = −∞. Clearly, {(µ, f(µ)) | µ ∈ (µ0, λ∗]} is
a simple curve in R × C2,γ(Ω). Let F be the homeomorphism defined in the
proof of Theorem 2.1. Put F(µ) := F (µ, f(µ)), write (λ(µ), u(µ)) := F(µ) for
µ ∈ (µ0, λ∗] and define C := F((µ0, λ∗]) ⊂ S ∪ {(λ∗, 0)}. Then from Theorem

11



2.1-(ii), C is a simple curve in R × C2,γ(Ω) and (λ(λ∗), u(λ∗)) = (λ∗, 0). If
µ0 > −∞, ∥f(µ)∥2 → α−1 as µ → µ0. This implies u(µ) → ∞ in H1

0 (Ω) and
also in L∞(Ω) as µ → µ0 by the definition. On the other hand, if µ0 = −∞,
λ(µ) → −∞ as µ → µ0 again from the definition. Thus C is unbounded.
Now we prove (i). To do this, assume (λ, u) ∈ S with λ ≥ λ∗. Then from
Proposition 1.1, there exists an element (µ, v) ∈ T such that λ = µa(∥u∥2) and
∥u∥2 = a(∥u∥2)∥v∥2. Noting the uniqueness and (4) in Lemma 3.2, we get

∥u∥2 < C2

(
α∥u∥2 + 1− λ

λ∗

)
≤ αC2∥u∥2

since λ ≥ λ∗. Thus we have a contradiction, if α > 0 is small enough. Fur-
thermore, we get µ0 < 0 if α > 0 is small enough again by (4). It follows that
λ(µ) → −∞ as µ → µ0 by the definition and the argument as above. This
concludes (i) with a appropriate change of the parameter. To prove (ii), we
assume α ≥ S−2

4 and there exists (λ, u) ∈ S with λ ≤ λ∗. Then by Proposition
1.1, we get (µ, v) ∈ T similarly to the one above. It follows from (3) that,

∥u∥2 = a(∥u∥2)∥v∥2{
> C1

(
α∥u∥2 + 1− λ

λ∗

)
if 0 < λ ≤ λ∗,

≥ C1(1 + α∥u∥2) if λ ≤ 0.

Noting λ ≤ λ∗ we clearly get a contradiction. Furthermore, if α > S−2
4 , (3)

implies that µ0 > 0. Recalling the definition and the argument above, we
conclude the proof.

Lastly, we put a remark on the intermediate case. To this aim, we give a
priori bound which determines the direction of the bifurcation from the trivial
solution (λ∗, 0).

Proposition 3.7. Let a, p, α and Ω be as in Theorem 3.5. Furthermore, assume
α > ∥ϕ∗∥−4. Then it follows that,

there exists a constant C ≥ 0 such that ∥(λ, u)− (λ∗, 0)∥R×H1
0 (Ω) ≥ C for

all (λ, u) ∈ S with λ ≤ λ1.

Remark 3.8. Because of this bound, the branch from the trivial solution (λ∗, 0)
emerges to the right.

Proof. If the assertion fails, we have a sequence (λn, un) ⊂ S such that λn ≤ λ∗
and (λn, un) → (λ∗, 0) in R ×H1

0 (Ω). Proposition 1.1 implies that there exits
an element (µn, vn) ∈ T such that (λn, un) = (µna(∥un∥2), a(∥un∥2)1/2vn). We
can put vn = S(µn)

1/2wµn as in Lemma 3.2 by the uniqueness. Then we have
by the definition, the Poincaré inequality and our choice λn ≤ λ∗,

∥un∥2 = a(∥un∥2)Sµ∥wµ∥2

≥
(
a
(
∥un∥2

)
− λn

λ∗

)
∥wn∥4

≥ α∥un∥2∥wn∥4.

12



Figure 3: p = 3, the intermediate case ∥ϕ∗∥−4 < α ≤ S−2
4

Here, from the assumption, we have a constant ε > 0 such that α = (∥ϕ∗∥4 −
ε)−1. Take 0 < ε′ < ε. Note that since λn → λ∗, ∥wn∥ → ∥ϕ∗∥ as n →
∞. Therefore, we may assume ∥wn∥4 > ∥ϕ∗∥4 − ε′. Consequently, noting the
inequality above, we get for large n,

0 ≤ (1− α∥wn∥4)∥un∥2

≤
(
1− ∥ϕ∗∥4 − ε′

∥ϕ∗∥4 − ε

)
∥un∥2

< 0,

a contradiction. This concludes the proof.

Now let us construct unbounded simple curves for this case. The construc-
tion is similar but we should be slightly more careful. First, if α < S−2

4 , take µ0

as in the proof of Theorem 3.5. In view of Lemma 3.2, we have two possibilities,
either µ0 < 0 or µ0 > 0. If µ0 < 0, F ({(µ, f(µ)) | µ ∈ (µ0, λ∗)}) is the desired
unbounded simple curve and the diagram looks as the solid line in Figure 3-
(i). The proofs of the bifurcation at (λ∗, 0) and infinity are by Proposition 3.7
and the similar argument in the proof of Theorem 3.5. On the other hand, if
µ0 > 0, we still have constants µ2 < 0 < µ1 < µ0 such that ∥f(µi)∥2 = α−1

for i = 1, 2 and ∥f(µ)∥2 < α−1 for all µ ∈ (µ2, µ1). Consequently, we can
construct two disjoint unbounded simple curves F ({(µ, f(µ)) | µ ∈ (µ0, λ∗]})
and F ({(µ, f(µ)) | µ ∈ (µ1, µ2)}). Put (λ(µ), u(µ)) := F (µ, f(µ)) for µ in
the regions above. Then, noting ∥u(µ)∥ → ∞ as µ → µi for i = 0, 1, 2 and
λ(µ) = µa(∥u(µ)∥2), we have λ(µ) → ∞ (and −∞) as µ → µ0, µ1 (and µ2

respectively). Therefore, the diagram looks as the dotted line in Figure 3-(i).
Notice that, for both cases, (P) admits at least two solutions for λ > λ∗ if λ
is not too large. Lastly, if α = S−2

4 , we have either µ0 = 0 or µ0 > 0. Then
similarly, F ({(µ, f(µ)) | µ ∈ (µ0, λ∗]}) is the desired simple curve. As above,
put (λ(µ), u(µ)) := F (µ, f(µ)) for µ ∈ (µ0, λ∗] and then λ(µ) = µa(∥u(µ)∥2).
Consequently, we get lim infµ→µ0

λ(µ) =: λ and lim supµ→µ0
λ(µ) → λ where

13



Figure 4: The global diagram for the case 1 < p < 3

λ∗ ≤ λ ≤ λ ≤ ∞ by Theorem 3.5-(ii). In particular, if µ0 > 0, λ = λ = ∞ and
if µ0 = 0, λ can be finite. Thus, one may expect the diagram as Figure 3-(ii).
For this case, (P) poses at least one solution if λ > λ∗ is not too large.

3.4. The 3-sublinear case; 1 < p < 3

In this subsection, we show the diagram for the 3-sublinear case. To our
best knowledge, there is no previous work on (P) for this case. We can observe
that the bifurcation diagram is different from all the previous cases and get the
new multiplicity results. We remark that for the concave-convex problem with
this nonlinearity, they prove the existence of three positive solutions [10].

Theorem 3.9. Suppose a(t) = 1 + αt with α > 0, 1 < p < 3 and Ω is a ball.
Then it follows that,

there exists a constant C > 0 which is independent of λ such that ∥u∥ ≥ C
for all (λ, u) ∈ S with λ ≥ λ∗.

Furthermore, if sup{∥v∥2 | (µ, v) ∈ T } > cpα
−1, there exists an unbounded

simple curve C ⊂ S ∪ {(λ∗, 0)} which meets (λ∗, 0). More precisely, there ex-
ists a homeomorphism F : (0, 1] → S ∪ {(λ∗, 0)} onto F((0, 1])(=: C), write
(λ(s), u(s)) := F(s) for s ∈ (0, 1], such that (λ(1), u(1)) = (λ∗, 0) and (λ(s), u(s))
→ (∞,∞) in R×H1

0 (Ω) as s → 0.

Remark 3.10. From a priori bound in the theorem, the branch from the trivial
solution (λ∗, 0) emerges to the left. But, it finally bends back to the right and
goes to (∞,∞). The diagram can be described by the solid line in Figure 4.

Remark 3.11. Notice that we do not consider the diagram for the case sup{∥v∥2
| (µ, v) ∈ T } ≤ cpα

−1 here. This may be the case if the solutions of (P0) is
uniformly bounded, i.e., sup{∥v∥2 | (µ, v) ∈ T } < ∞. In this case, in particular,
if the inequality is strict, there exist two disjoint continua like the dotted line in
Figure 4. The proof is similar to that for Theorem 3.9 and previous arguments.
For the simplicity, we omit the statement and its proof here.

Remark 3.12. As a consequence of the theorem and the remark above, we
observe the multiplicity of solutions for every λ < λ∗ which is sufficiently closed
to λ∗. In addition, we confirm the existence of a solution even for all λ ≥ λ∗
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which is impossible in the semilinear case. For these cases, we actually observe
a global minimum solution in addition to the usual mountain pass type solution
by the variational argument. See Section 4.

Proof of Theorem 3.9. First, we assume (λ, u) ∈ S and λ ≥ λ∗. Then noting
the uniqueness, we have the least energy solution v of (P0) with µ = λ/a(∥u∥2)
such that ∥u∥2 = a(∥u∥2)2/(p−1)∥v∥2. Then (4) in Lemma 3.2 implies

0 = ∥u∥2 − a(∥u∥2)
2

p−1 ∥v∥2

> ∥u∥2 − C2

(
α∥u∥2 − λ

λ∗
+ 1

) 2
p−1

≥ ∥u∥2 − α
2

p−1C2∥u∥
4

p−1 .

(5)

Since 1 < p < 3, this concludes the first assertion. Next, similarly to the proof
of Theorem 3.5, take −∞ < µ0 < λ∗ such that ∥f(µ0)∥2 = c′p/α and ∥f(µ)∥2 <
c′p/α for all µ0 < µ ≤ λ∗. Then define µ1(s) = 2(λ∗ − µ0)s + 2µ0 − λ∗ for all
s ∈ (1/2, 1], µ2(s) := −2(λ∗−µ0)s+λ∗ for s ∈ [0, 1/2) and the homeomorphism
F defined on (0, 1] onto C := F((0, 1]) ⊂ S ∪ {(λ∗, 0)} so that

F(s) :=


F1(µ1(s), f(µ1(s)) if s ∈ (1/2, 1],

F2(µ2(s), f(µ2(s)) if s ∈ (0, 1/2),

F3(µ0, f(µ0)) if s = 1/2,

where Fi for i = 1, 2, 3 are as in the proof of Theorem 2.1-(iii). Then by the
theorem, C is a simple curve in R × C2,γ(Ω). Put (λ(s), u(s)) := F(s) for
s ∈ (0, 1]. Then from the definition, clearly we have (λ(1), u(1)) = (λ∗, 0). In
addition, since (µ2(s), f(µ2(s))) → (λ∗, 0) in R × C2,γ(Ω) as s → 0, we get
(λ(s), u(s)) → (∞,∞) in R × H1

0 (Ω) as s → 0 again by the definition. This
concludes the proof.

Remark 3.13. We put a comment on the asymptotic behavior of C or S ∪
{(λ∗, 0)}. It is clear from (4) that µ0 = −∞ for small α > 0 or otherwise,
µ0 → −∞ as α → 0. This implies

inf{λ ∈ R | (λ, u) ∈ C}

{
= −∞ for small α > 0, or otherwise

≤ µ0a(cp/α) → −∞ as α → 0.

On the other hand, it follows that

λ∗ > inf{λ ∈ R | (λ, u) ∈ C} ≥ inf{λ ∈ R | (λ, u) ∈ S} → λ∗ as α → ∞.

In fact, if (λ, u) ∈ S with λ < λ∗, (µ, v) := (λ/a(t), a(t)1/(1−p)u) ∈ T where
t = ∥u∥2 as usual. Then we get from (3),

t = a(t)
2

p−1 ∥v∥2

≥ C1

(
αt+ 1− λ

λ∗

) 2
p−1

.
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Since 1 < p < 3, for every λ, we get a contradiction if α > 0 is large enough.
This proves the claim. In addition, we claim that the lower part of S∪{(λ∗, 0)},
i.e. S ∩ [∥u∥2 < cp/α], tends to the solution set T ∪ {(λ∗, 0)} of the semilinear
elliptic problem as α → 0, in the following sense. First, by the observation
above, for all λ < λ∗, there exists an element (λ, uα) ∈ S ∩ [∥u∥2 < cp/α]
if α > 0 is small enough. Then we can show that (λ, uα) → (λ, f(λ)) ∈ T
as α → 0 here f is as in Proposition 3.1. Actually, note that there exists
an element (µα, vα) = (µα, f(µα)) = (λa(∥uα∥2), a(∥uα∥2)1/(1−p)uα) ∈ T ∩
[∥v∥2 < c′p/α] by Proposition 1.1. Since ∥uα∥2 < cp/α, a(∥uα∥2) is uniformly
bounded from above with respect to α. Then so are µα and ∥vα∥2 = ∥f(µα)∥2.
Consequently, so is ∥uα∥2. This implies a(∥uα∥2) → 1 as α → 0. Therefore
µα = λa(∥uα∥2) → λ and then, uα = a(∥uα∥2)1/(1−p)f(µα) → f(λ) as α → 0.
This proves the claim. On the other hand, for the upper part, it clearly follows
that inf{∥u∥2 | (λ, u) ∈ S ∩ [∥u∥2 > cp/α]} ≥ cp/α → ∞ as α → 0.

3.5. The critical case; N = 3 and p = 5

Finally, we consider the critical case. An existence result via the variational
argument is in [25] (see Theorem 5.1). Define

λ := inf{λ ∈ R | (λ, u) ∈ S}

and
λ := sup{λ ∈ R | (λ, u) ∈ S}.

It is well known that if α = 0, (P) has a solution uλ if and only if λ∗/4 < λ < λ∗,
in particular, λ = λ∗/4 and λ = λ∗ [8]. Furthermore, uλ → ∞ in L∞(Ω) as
λ → λ∗/4 [9]. Our interest is in what happens for the case α > 0.

Theorem 3.14. Let a(t) = 1 + αt with α > 0, N = 3 and p = 5. Furthermore
assume Ω is a ball. Then we have the following.

(i) For all α > 0, λ > λ∗/4. In addition, if α > 0 is small enough, λ∗/4 <
λ < λ∗. On the other hand, if α > 0 is large enough, λ > λ∗ for all
(λ, u) ∈ S and λ = λ∗.

Furthermore, S ∪ {(λ∗, 0)} is a simple curve in R × C2,α(Ω), more precisely,
there exists a homeomorphism G : (0, 1] → R×C2,γ(Ω) such that S∪{(λ∗, 0)} =
G((0, 1]) and if we put (λ(s), u(s)) := G(s) for s ∈ (0, 1], the following assertions
are true.

(ii) (λ(1), u(1)) = (λ∗, 0).
(iii) u(s) → ∞ in L∞(Ω) as s → 0 and

λ∗

4
+ C−(α) ≤ lim inf

s→0
λ(s), lim sup

s→0
λ(s) ≤ λ∗

4
+ C+(α)

where

C±(α) :=
αλ∗

8

3αC2
i±

4
+

√
9α2C4

i±

16
+ 3C2

i±

 ,

with i− = 1 and i+ = 2.
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Figure 5: The global diagram for the critical case p = 5

Remark 3.15. In this case, a priori bound in Theorem 3.3 still holds. That
is, ∥u∥ ≥ C for all (λ, u) ∈ S with λ ≤ λ∗ where C > 0 is independent of
λ ≤ λ∗. Because of this bound, the branch from (λ∗, 0) must emanate to the
right. Consequently, we get λ > λ∗ for all α > 0.

Remark 3.16. Notice that C±(α) → 0 as α → 0 and C±(α) → ∞ as α → ∞.
In this point of view, we may say that the blow up point (or region) with respect
to λ shifts from λ = λ∗/4 and goes up to infinity depending on α > 0.

Remark 3.17. The diagram looks as Figure 5. But notice that, in view of the
theorem above, there still remain possibilities of additional multiplicities around
the blow up region (λ∗/4 + C−(α), λ∗/4 + C+(α)).

Proof of Theorem 3.14. First, note the following. Similarly to Proposition 3.1,
from the non-degeneracy and the uniqueness of the solutions [32], we get a
continuous map g : (λ∗/4, λ∗] → C2,γ(Ω) such that

T ∪ {(λ∗, 0)} = {(µ, g(µ)) ∈ R× C2,γ(Ω) | µ ∈ (λ∗/4, λ∗]}.

In particular, T ∪ {(λ∗, 0)} is a simple curve in R× C2,γ(Ω). In addition, from
Theorem 2.1-(i), S ∪ {(λ1, 0)} is also a simple curve in R × C2,γ(Ω). Now we
confirm (i). We first claim that for all α > 0, λ > λ∗/4. For this, consider a set
for every λ ∈ R,

Cλ :=
{(

t, a(t)1/2∥g(λ/a(t))∥2
) ∣∣ λ/a(t) ∈ (λ∗/4, λ∗]

}
.

Notice that Cλ is the graph of the continuous function βλ(t) := a(t)1/2∥g(λ/a(t))∥2
defined on the interval, [

1

α

(
λ

λ∗
− 1

)
,
4

α

(
λ

λ∗
− 1

4

))
. (6)

In view of Proposition 1.1, we only have to show that Cλ ∩ {(t, t) ∈ R2 | t >
0} = ∅ if λ > λ∗/4 is sufficiently closed to λ∗/4. Actually, set λ∗/4 < λ < λ∗
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which is determined later so as to |λ∗/4 − λ| is sufficiently small. Note that,
similarly to Lemma 3.2, we get

C1

(
1− µ

λ∗

) 1
2

< ∥g(µ)∥2 < C2

(
1− µ

λ∗

) 1
2

, (7)

for all µ ∈ (λ∗/4, λ∗). Then, we obtain

t− a(t)
1
2 ∥g (λ/a(t))∥2 < t− C1

(
αt+ 1− λ

λ∗

) 1
2

.

Notice that the right hand side is strictly less than 0 for all

0 < t <
1

2

(
αS3 +

√
α2S6 + 4S3

(
1− λ

λ∗

))
.

Moreover, for all α > 0, we have

4

α

(
λ

λ∗
− 1

4

)
<

1

2

(
αS3 +

√
α2S6 + 4S3

(
1− λ

λ∗

))
if |λ− λ∗/4| is sufficiently small. Therefore, (6) shows the conclusion. Further-
more, if α > 0 is large enough, we get the same inequality above for all λ ≤ λ∗.
This concludes that λ > λ∗ for all (λ, u) ∈ S and λ = λ∗ if α > 0 is sufficiently
large. It will be proved by (iii) that λ < λ∗ for sufficiently small α > 0. Thus
we proceed to the proof of (ii) and (iii). To show them, we take the homeomor-
phism F as in the proof of Theorem 2.1. As usual, define a homeomorphism
G(µ) := F (µ, g(µ)) and put (λ(µ), u(µ)) := G(µ) for µ ∈ (λ∗/4, λ∗]. Note that
(λ(µ), u(µ)) = (µa(t(µ)), a(t(µ))1/(p−1)g(µ)) where t(µ) > 0 is the unique so-
lution of (1) with β = ∥g(µ)∥2 for µ ∈ (λ∗/4, λ∗) and (λ(λ∗), u(λ∗)) = (λ∗, 0).
Since g(µ) → ∞ in L∞(Ω) as µ → λ∗/4 (see Theorem 3 in [9]) and a ≥ 1, we
have u(µ) → ∞ in L∞(Ω) as µ → λ∗/4. Finally, (7) implies

√
3C1

2
≤ lim inf

µ→λ∗
4

∥g(µ)∥2 and lim sup
µ→λ∗

4

∥g(µ)∥2 ≤
√
3C2

2
.

In addition, as ∥u(µ)∥2 = a(∥u(µ)∥2)1/2∥g(µ)∥2, we get

∥u(µ)∥2 =
1

2

{
α∥g(µ)∥4 +

√
α2∥g(µ)∥8 + 4∥g(µ)∥4

}
.

Consequently, we have

λ∗

4
+ C−(α) ≤ lim inf

µ→λ∗/4

(
µa(∥u(µ)∥2)

)
= lim inf

µ→λ∗/4
λ(µ)

and

lim sup
µ→λ∗/4

λ(µ) = lim sup
µ→λ∗/4

(
µa(∥u(µ)∥2)

)
≤ λ∗

4
+ C+(α),

where C±(α) > 0 is defined as in the statement of the theorem. We can trivially
perform a change of parameter and conclude the proof.

18



4. Remarks on the multiplicity

In this last section, we put some remarks on the multiplicity of solutions
induced by the nonlocal coefficient. As we see in the previous sections, the
nonlocal coefficient can induce the multiplicity of positive solutions even if Ω is
a ball where the uniqueness assertion holds for the semilinear problem. This is
the important and typical effect of the nonlocal coefficient as observed in the
homogeneous case in [12], [13] and references therein. Actually, it can induce
up to uncountably many solutions also for our nonlinear problem (P).

4.1. Construction of infinitely many solutions

There would be several ways to construct infinitely many solutions using
Proposition 1.1. Here, as in the previous section, we first consider the simple
case, Ω is a ball and give the following.

Proposition 4.1. Let Ω be a ball. In addition, we assume 1 < p < ∞ if
N = 1, 2 and 1 < p < 5 if N = 3. Then there exists a continuous function
a : R+ ∪ {0} → R+ such that (P) has infinitely many solutions for all λ ≤ λ1.

Proof. In view of Proposition 1.1, for every λ ≤ λ∗, it is enough if we get the
infinitely many solutions for the equation for t > 0,

t = a(t)
2

p−1 ∥f (λ/a(t))∥2 (8)

where f is chosen from Proposition 3.1. We put the right hand side as βλ(t) for

t > 0. Take a(t) = 1 + (t| sin t|/C1)
(p−1)/2

for instance. Then for sk := kπ, it
follows that

sk − βλ(sk) > 0

if k ∈ N is sufficiently large. For this k ∈ N, put tk := (k + 1/2)π. Then we get
from (3),

tk − βλ(tk) < 0.

Since βλ is continuous, the intermediate value theorem implies that there exists
a solution sk < τk < tk of (8). As this holds for any sufficiently large k ∈ N, we
conclude the proof.

Remark 4.2. With this choice of the nonlocal coefficient, for every λ ≤ λ∗,
we have a sequence of positive solutions (uk) such that uk → ∞ in H1

0 (Ω) as
k → ∞.

Lastly we remark that if λ = 0, (P) with an appropriate nonlocal coefficient
may have a continuum of solutions. Set 1 < p < ∞ if N = 1, 2 and 1 < p < 5 if
N = 3. For example, take,

a(t) :=


1 if 0 ≤ t ≤ S

p+1
p−1

p+1 ,(
S
− p+1

p−1

p+1 t

) p−1
2

if t > S
p+1
p−1

p+1 .
(9)

19



Then, choose (0, v0) ∈ T with v0 = S
1/(p−1)
p+1 w0 where ∥w0∥2 = Sp+1 with∫

Ω
wp+1

0 dx = 1. Clearly, ∥v0∥2 = S
p+1
p−1

p+1 . Then, there exists a continuum of

solutions t ≥ S
(p+1)/(p−1)
p+1 of the equation for τ > 0,

τ = a(τ)
2

p−1 ∥v0∥2.

This completes the claim. The nonlocal coefficient can induce an arbitrary
number of solutions.

4.2. Comments from the variational point of view

Finally, we give some remarks from the variational point of view. This
will give us natural interpretations for the results in previous sections. Note
that since the proof is standard, we only put the observations here. Let Ω be a
bounded domain with smooth boundary. We define the C1 functional onH1

0 (Ω),

I(u) :=
1

2
A
(
∥u∥2

)
− λ

2

∫
Ω

u2dx− 1

p+ 1

∫
Ω

|u|p+1dx

where A(t) :=
∫ t

0
a(s)ds. As is well-known, every critical point of I corresponds

to a solution of (P) [7].

4.2.1. The 3-superlinear and subcritical case

As in Subsection 3.2, assume a(t) = 1 + t and p > 3 is subcritical. The
existence result is already given by Corollary 3.4 for a ball. For the general
bounded domain, using the variational argument, we get the following.

(i) (P) has at least one solution for all λ ≤ λ∗.

(ii) There exists a constant Λ0 > λ∗ such that (P) admits at least two solutions
for all λ∗ < λ < Λ0.

(i) is proved by using the Poincaré inequality and the mountain pass theorem.
Note that it is valid even for λ = λ∗ thanks to the nonlocal effect. For the proof,
see [34]. Here, let us see the new case, λ > λ∗. In order to understand the energy
structure, for every u ∈ H1

0 (Ω), we define the fibering map fu(t) := I(tu) for
t > 0. Then we get the next lemma.

Lemma 4.3. There exists a constant Λ0 > λ∗ such that for all λ∗ < λ < Λ0,
the next assertions are true.

(i) For all u ∈ H1
0 (Ω) \ {0}, there exists a unique maximum point tmax > 0

of fu such that f ′′
u (tmax) < 0.

(ii) If ∥u∥2 − λ
∫
Ω
u2dx < 0, there exists a unique local minimum point 0 <

tmin < tmax of fu such that f ′′
u (tmin) > 0.

The proof is easy. Actually, (ii) is the case when we choose u := ϕ∗. This
structure is induced by the nonlocal term and allows us to obtain two solutions.
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In fact, for example, the proof is given by the method of the Nehari manifold
[35]. Define

N := {u ∈ H1
0 (Ω) | f ′

u(1) = 0}
and split it into three parts,

N+ := {u ∈ N | f ′′
u (1) > 0},

N 0 := {u ∈ N | f ′′
u (1) = 0},

N− := {u ∈ N | f ′′
u (1) < 0}.

Similarly to the original argument in [35], we get the critical points u± of I
which attains the minimums on N± respectively. We can also refer to the proof
for the critical case in [25]. Note that u+ attains the local minimum of I on
H1

0 (Ω) and I(u+) < 0.

Remark 4.4. The local minimum solutions bifurcate from the trivial solution
at λ = λ∗ and the branch emanates to the right. In fact, from the argument
above, we have a solution uλ ∈ N+ with I(uλ) < 0 for all λ ∈ (λ∗,Λ0). Then
we get by the Poincaré inequality,

0 > I(uλ)−
1

p+ 1
⟨I ′(uλ), uλ⟩

= −
(
1

2
− 1

p+ 1

)(
λ

λ∗
− 1

)
∥uλ∥2 +

(
1

4
− 1

p+ 1

)
∥uλ∥4.

Since p > 3, it follows that

∥uλ∥2 < C

(
λ

λ∗
− 1

)
,

where C > 0 is some constant which is independent of λ. Thus we have uλ → 0
in H1

0 (Ω) as λ → λ∗. This concludes the claim.

These observations support the validity of Figure 1-(i). It seems that the
lower branch corresponds to the local minimum solution and the upper branch
does the mountain pass type solution.

4.2.2. The asymptotically 3-linear case

Let a as above and p = 3. We mainly put a remark on the existence results
related to Theorem 3.5. If α < S−2

4 , we have a mountain pass solution for all
λ < λ1. For the proof, readers can refer to the proof of Theorem 1.2 in [22] or
also that of Theorem 1.2 in [26]. (Notice that the boundedness of PS sequences
are obtained as usual for our nonlinearity.) On the other hand, if α > S−2

4 , we
easily get that I is coercive i.e., I(u) → ∞ as ∥u∥ → ∞, by using the Poincaré
and Sobolev inequality. Furthermore, I(tϕ∗) < 0 for sufficiently small t > 0 if
λ > λ∗. This leads us to get a global minimum critical point of I for all λ > λ1.
The multiplicity result on the case ∥ϕ∗∥−4 < α ≤ S−2

4 (see the last paragraph
in Subsection 3.3) is more delicate. We leave it for the paper in preparation
[27].
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4.2.3. The 3-sublinear case

Assume 1 < p < 3. For this case (recall Remark 3.12), we have the following.

Lemma 4.5. Let a(t) = 1 + αt with α > 0 and 1 < p < 3. Then I is coercive,
i.e. I(u) → ∞ as ∥u∥ → ∞. Furthermore, there exits a constant λ0 < λ∗ such
that the next assertions are true.

(i) If λ < λ∗, there exist constants d, ρ > 0 such that I(u) ≥ d for all u ∈
H1

0 (Ω) with ∥u∥ = ρ. In addition, if λ0 < λ < λ∗, there exists a function
u0 ∈ H1

0 (Ω) such that ∥u0∥ > ρ and I(u0) < 0.

(ii) If λ ≥ λ∗, infu∈H1
0 (Ω) I(u) < 0.

Proof. Noting the Poincaré inequality, the first assertion in (i) clearly follows.
In particular, note that 0 ∈ H1

0 (Ω) is the local minimum of I if λ < λ∗. For the
rest of the assertions, it is easy to show

inf
t>0

I(tϕ∗) < 0

for all λ > λ0 if we take λ0 < λ∗ so that |λ∗ − λ0| is sufficiently small. This
completes the proof.

Consequently, we get both a mountain pass type solution with the positive
energy and a global minimum solution with the negative energy for all λ0 < λ <
λ∗ and a global minimum one for all λ ≥ λ∗. This is consistent with the result
in Subsection 3.4. For the related challenging problem, see the critical problem
in high dimension [28].

4.2.4. On the infinitely many solutions

Lastly, we put comments on the infinitely many solutions obtained in the for-

mer part of this section. First, we consider the case a(t) = 1+(|t sin t|/C1)
(p−1)/2

where C1 := S
(p+1)/(p−1)
p+1 . Put fu(t) := I(tu). Take any nontrivial function u

and set λ ≤ λ∗. Then the direct calculation shows

f ′
u(t) :=

{
1 +

(
|∥tu∥2 sin ∥tu∥2|

C1

) p−1
2

}
t∥u∥2 − tλ

∫
Ω

u2dx− tp
∫
Ω

|u|p+1dx.

Thus if t =
√
kπ/∥u∥ =: τk where k ∈ N, we have

f ′
u(τk) = τk

(
∥u∥2 − λ

∫
Ω

u2dx

)
− τpk

∫
Ω

|u|p+1dx.

This implies f ′
u(τk) < 0 for sufficiently large k ∈ N. Fix this k ∈ N. Then, the

Poincaré and Sobolev inequalities imply

f ′
u(t) >

((
|∥tu∥2 sin ∥tu∥2|

)(p−1)/2
t∥u∥2 − tp∥u∥p+1

)
S
− p+1

2
p+1 .

Thus if t =
√
(k + 1/2)π/∥u∥ =: τ ′k, we get

f ′(τ ′k) > 0.
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The intermediate value theorem suggests that there exists a constant τk < τ0k <
τ ′k such that f ′(τ0k ) = 0. This confirms that fu has infinitely many critical
points. Next, choose λ = 0 and set a as in (9). Now let v0 be as in Subsection

4.1. Then, for all t ≥ S
(p+1)(p−1)
p+1 , we get

f ′
v0
(t) =

(
S
− p+1

p−1

p+1 t2∥v0∥2
) p−1

2

t∥v0∥2 − tp
∫
Ω

vp+1
0 dx = 0.

In this situation, the fibering map fv0 has a continuum of critical points.
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