IMPROVED RELLICH TYPE INEQUALITIES IN RN

MEGUMI SANO AND FUTOSHI TAKAHASHI

Asstract. We consider the second or higher-order Rellich inequalities
on the whole spac&N. In spite of the lack of Poincarinequality on

the whole space, we show that the higher-order Rellich inequalities with
optimal constants can be improved, by adding explicit remainder terms
to the inequalities.

1. INTRODUCTION

LetN > 2,1 < p< N, and letQ be a bounded domain N with 0 € Q,
or Q = RN, The classical Hardy inequality

_n\P p
(1.1) f|Vulpdx2(N p) f&dx
Q p o IXP

holds for allu € W;P(Q), or u € D*P(RN) whenQ = RN. (1.1) gives an
expression to the embedding

(1.2) Wi P(Q) — LP(Q; x| "PdX),

whereW,P(Q) (resp.DP(RN)) is the completion o€ (Q2) (resp.CP(RN))

with respect to the normiVv - [|Leq) (resp. IV - llLegn). It is known that

for 1 < p < N, the best constanfﬁg")IO is never attained iNVé’p(Q), orin
DP(RN). Therefore, one can expect the existence of remainder terms on the
right-hand side of the inequality (1.1). Indeed, there are many papers that
deal with remainder terms for (1.1) whé&his a smooth bounded domain
(see [1], [8], [9], [12], [13], [20], to name a few). For example, Brezis and
Vazquez [8] showed that the inequality

N—2\2 [ |u_ won |
1.3 fVuzdxz(—) f—dx+ (—N) fuzdx
(1.3) Ql | 2 a IX? 2 1€ Q| |

holds true for allu € W)?(Q) wherezy = 2.4048- - - is the first zero of the
Bessel function of the first kind. Chaudhuri and Ramaswamy [9] improved
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the Brezis-\Azquez's result by proving that for any<08 < 2 and 1< q <

2(N-p) - :
N » there exists a consta@t> 0 depending oM, 5, g andQ2 such that

_2\2 2 q \24d
(1.4) f|Vu|2dxz(N 2) P C( de)
Q

2 o X2 o IXP

holds for allu € W>*(Q). This improved inequality (1.4) gives an expres-
sion to the embedding (1.2) and

(1.5) W2A(Q) — LYQ; [X#dx).

Wheng = 0, (1.5) is the well-known Sobolev embedding.
On the other hand, whe@ = RN, Ghoussoub and Moradifam [14]
showed that there is no strictly positive € C*((0, +o0)) such that the in-

equality
) N-2\° [ |u? )
[Vu“dx > —de+ V(IX)u[“dx
RN 2 RN |X| RN

holds for allu € W*?(RN). Therefore we cannot expect the same type of
remainder terms as in (1.3) would exist in the whole space.

In spite of this fact, the authors of the paper recently showed the fol-
lowing result [22] : Let 2< p < N andq > 2. Seta = a(p,q,N) =
3@ -2)- &+ 2. Then there exist® = D(p,q,N) > 0 such that the
inequality

2

N - p\° p LU Z xedx )72
(1.6) f IVUPdx > (—p) f UP 4 ey p S DTAX
RN p = [X[P o IU7IPIX2P
holds for allu € WXP(RN), u £ 0. Hereu” denotes the Schwartz sym-

metrization of a functiom onRN:

u?(x) = u*(Ix)) = inf {/l >0

[ix e RN | u(x) > )| < |Bx|(0)|},

where|A| denotes the measure of a get RN (see e.g., [17]). We observe
that (1.6) gives a new embedding

WEPRNY s LZ(RN: [x7dX)  if @ <0,

since wherw < 0, we assure that” in (1.6) can be replaced hyand also
the integralfRN |u¥|P|x|?-Pd x is finite for anyu € WXP(RN).

In this paper, we focus on the higher-order case. A higher-order general-
ization of (1.1) was first proved by Rellich [21]: it holds

_M\2 2
f AURdX > (M) U™ 4
Q

4 o X4
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for all u e W>*(Q), whereQ is a domain irRN, N > 5. More generally, let
k,me N andk < kp < N. Define

P I, 1A™ufP dx if k=2m,
kp = [, IV(A™)Pdx if k=2m+1, and

c P2 11, (N-2p)){N(p-1)+2p(j - 1)}  if k=2m
07 | XECany if k= 2m+ 1.

We putCyp =1,Cyp, = N—;p for the convenience of description. Then the
inequality

ue
(L7) g, > CF, [ asdx

holds for allu Wc'j’p(Q). Itis also known tha@l'zp is optimal (see [10], [18],

Proposition 7 in Appendix) and never attained by functionﬁlgﬁ(ﬂ). Fur-
thermore, Gazzola-Grunau-Mitidieri [13] provided the following inequality
on a smooth bounded domain: there exist positive consfards> 0 such
that the inequality

|ui? |ul?

u, > C2, —4dx Af—zdx+ Bflulzdx
alX a X 0

holds for allu € WS’Z(Q), whereN > 5. In addition to this, there are many
papers that deal with various types of Rellich inequalities with remainder
terms on bounded domains (see [2], [3], [4], [5], [6], [7], [11], [15], [19],
[24], [25] etc.).

However, wher2 = RN case, it seems flicult to get a remainder term
for the inequality (1.7) even in the cake= p = 2, due to the lack of
appropriate Poincérinequality on the whole space. Main aim of this paper
is to obtain remainder terms for the inequality (1.7) wkea RN. Note that
the inequalities (1.1) and (1.7) have the scale invariance under the scaling

(1.8) u(x) = /I‘N%ﬁju(;)

for 1 > 0 whenQ = RN. Therefore the possible remainder term to (1.7)
should be invariant under the scaling (1.8) wisgs RN. In the following,
wn Will denote an area of the unit sphereRifi and|| - [l = || - l|Lr@v)-

Our main results are as follows:

Theorem 1. (Radial case) Lek > 2 be an integerk < kp < N andqg > 2.
Setay = Y(q-2)- 29+ 2. Then there exist& = Ex(p, g, N) > 0such that
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the inequality

2
b uP o (e Z i dx |2
(1.9) uP, > o
’ T fRN |ulP|x2-kP d
holds for all radial functionu € WSP(RN), u # 0. The constantg, are
explicitly given as

4on(p-1)
w2p

whereC(q) is the positive constant in the Gagliardo-Nirenberg inequality
(2.5) below.

Ey = CrezpClLIC(0) 72,

In the non-radial case, we obtain only partial resultskfer2, 3.

Theorem 2. (Non-radial case) Fok = 2 or k = 3, letk < kp < N and
q> 2 Setw = §(q-2)-H+2andr = i (i.e. 2 = - Z). Then there

N+2p
existsFy = Fe(p,g,N) >0 such that the mequality

2
u U 2 X dx)
(1.10) lUlep = Cp f || ° (fR )

2
X Julg AU,

holds for allu € W<P(RN) with Au € L"(RN), u # 0. The constant$,

2(p-1)

(k = 2,3) are explicitly given ag = E.C, q 2 H#2 whereH is the positive
constant in the Hardy-Littlewood- Sobolev inequality (2.10) below.

Remark3. The remainder term of the inequality (1.9) is scale invariant un-

der the scaling (1.8) oRN: u,(x) = /l‘N_Tkpu(y), y = %,x € RN. Indeed, for
a, b e R, we have

(1.11) f U OIPIXPdx = 47N fR u@)Fiydy.

Thus by takinga = %‘ andb = @, ora= pandb = 2-kpin (1.11), we
have

f (1 ™= 2 f U Zlyredy.
RN N
f'uﬂ(x)|p|x|2—kpdxz/12f Ju(y)[Plyl-*Pdy.
RN N

Therefore the remainder term in the inequality (1.9) has the scale invariance.

Remark4. If a, < 0 in Theorem 2, thew” in the RHS of (1.10) can be
replaced byu thanks to the Hardy-Littlewood inequalityf; , gh* > [ , gh

(see e.g., [17]), and the fagki()* = |x|.
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2. ProoFs oF M AIN RESULTS

Next simple lemma is used to prove Theorem 1.

Lemmab. Letp > 1anda,b € R. Then it holds

la—DblP - |alP > —plal®2ab.

Proof of Lemma 5. First, we assuma > 0. We use the mean value theo-
rem for the functionf (t) = (a—t)P, which is defined fot < a. Whenb < a,
we have

f(b) — f(0) = (a—b)P —a = pc®*(~b) > —pa*b,

wherec € R satisfiesO<c a-b<c<aifb>0,or0<a<c<a-bif
b < 0. Whenb > a, then & - b < aand we have

f(2a-b) - f(0) = (b-a)® — a” = pc® (b - 2a) > —paP b,

wherec € R satisfiesdca<c<b-aifb-2a>0,or0<b-a<c<a
if b—2a < 0. This implies the result whem> 0. N
_ The case whea < 0 follows by considering = -3, @ > 0 andb = -b,
b e R. |

Proof of Theorem 1. We show the inequality (1.9) for all radial function
u € WEP(RN). By density argument, we may assume<Ou € Cg(RV)
without loss of generality.

First, note that the inequality

o 0 |AulP
(2.1) Uhcp = 1AUk 2 = Cizp | iz

holds from Rellich’s inequality (1.7). Actually whek = 2, this is the
equality. Thus, in order to prove Theorem, it is enough to show the RHS of
(2.1) is bounded from below by the RHS of (1.9).

Sinceu is radial, u can be written asi(x) = TU(x]) where 0< T €
C; ([0, +00)). We define the new functionas follows:

W) =r 7 G0r), ref0,0), and  V(y)=W(y), yeR2
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Note thatv{0) = 0 and also/(+o0) = O since the support af is compact.
We claim that ifu € W*P(RN), thenv € LP(R?). Indeed, we have

[, woyray=wz [ wprar

<. _ w? ulP
= wzf [a(r)|PrNkPlgr = —f |k| 5 dX
0 wN Jrn [X[<P-

0 kp-2 2

w u kp kp

< —z(f %dx) (f |u|'°dx)
wN \Jgn [X*P RN

2
3

a)z 2-kp kp-2 p
(2.2) <—C_ " |u|, X uPdx| < oo,
kp "kp
(L)N ? ? RN

here we have useddttler’s inequality, Rellich’s inequality (1.7), and the
assumptionu € WSP(RN). Therefore we have checked: LP(R?).
Fork > 2,k e Nandk < kp < N, put

O = O(K. N, p) = 2k + N(pp_ 2 and

Ok

_1f’(r)

Do f = 170+ =

for smooth radial function$ = f(r). Define

_ (N-kpi(k-2)p+(p- HIN]

Ap 2

Then a direct calculation shows that
—AT = 128 (AU(r) — r2Ag3(r)).
Now applying Lemma 5 with the choice

a=A,Yr) and b=rA,(r),
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and using the facj;o [U[P-2%7dr = 0 sinceV{0) = ¥(+0) = 0, we have

AP [
M o XD

= wy f [—AT()P NP dr — APy f G(r)Pr- et
0 ’ 0

= wN f (|Ak,p\7(r) - rerkv(r)|p - (AKPv(r))p) rhdr
0

—prAE;l fo [WP~20Ag ¥ 1 dr
p-1 [ 2o L Oc— 1o
:—prAk’p V[P0 | V" + . V| rdr
0

(2.3) :—prAE‘plf VP24 r dr.
0

Moreover we observe that

—f |\“/|F’2\7\”/’rdr:(p—1)f |\”/|'°2(\”/)2rdr+f VP27 dr
0 0 0
:4("’1) f (%9 P di

2.2) 4(" 1 f VM V) dy.

Now, we apply the Gagliardo-Nirenberg inequality\n(pfzv € L%(R?): there
exists a constar@(qg) > 0 such that it holds

2
(2.5) B ey < O IME s VOV 2V

Combining (2.3), (2.4) and (2.5), we obtain

_ p-1 a2
§ 4(p - DwnAy, Q- ( oo VIZ dy]
pw2 [ v(y)IPdy

B 4(p—1)wNA£;1C(q) ( Jon IUIZ X7dx ) E

2.6
(20) pwz Jo IuPIXPoclx
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Consequently, from (2.1), the definition df (2.6) andCy_2,Axp = Ckp,
we obtain

p
|u| > CP H
kp = “k-2p RN |x|(k-2)p

|ul
_Ckpr(AE, de+J)

2

p LUz ) dx )2
op [P gy g [k
P Jrn [X|KP Lo lUPIX2 kP
where
4on(p- DAL
P P -5
Ek—Ckzp 02D C(g) @
= MC ke pcp 1C(C])_W.
w2pP
This proves Theorem 1. O

Proof of Theorem 2. First, we treat the cade= 2. We show the inequality

2
|ulP dx+F (fRN |Ui'tlpqux|"2dx)“
an X2 IAUIE AU,

for all u € W2P(RN) n D2"(RN). Setf = —Au € LP(RN) andw(x) =
#
e Ixfy(lk?_z dy. Sincew(OX) = w(x) for any O € O(N), the group
of orthogonal matrices iRN, we seew is a radial function. Also since
# € LP(RN), the Calderon-Zygmund inequality (see [16] Theorem 9.9.)
implies thatw € D>P(RN) and satisfies-Aw = f# a.e. inRN. Therefore we

have
(2.8) IAW|p = [|AUl]p.

(2.7) f |AUPdx > C

By Talenti’s comparison principle [23], we know > u* > 0. Hence we
have

(2.9) f|w|ﬁ|x|7dxzf IWPIx” dx if >0,
RN RN

> f luP|x” dx if B> O0andy < 0.
RN

where the second inequality comes from the Hardy-Littlewood inequality.
Furthermore there exists a constiht- 0 such that the inequality

(2.10) Wl < HIFAle = HI(=AUWl = HII(-AU)
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holds from the Hardy-Littlewood-Sobolev inequality, Wh%e: -2
From (2.8), Theorem 1, (2.9) and (2.10), we obtain

f|Au|pdx:f |AW|P dx
RN RN

2

W7 |22 dx )2
[ Jon|
> C —zpdx+ E, =
zn X Ja IWIPIXIZ-2P dlx
2
#129) o q-2
U’z |x*2d
[ Jon|
> P
_C | |2p ax+ E, l—p A
ol wilh" ||W||p
2
f dx+F, o U %' [x172 dx ) -2
X+
Iwl2p
|X|<P AUl YAul,

2(p-1) _
whereF, = EZCZ"‘F;Z HFzz, which concludes (2.7).
Next, We treat the cade= 3. As before, sef = —Au € W-P(RN) and
W) = s o leyf dy. Again we obtairw € D2P(RN) and—Aw = f#

a.e. inRN. By Polya-Szeg inequality (see e.g., [17]), we have

|U|§p:f IVAulpdx:f IVprdxzf IV Pdx = g .
s RN RN RN ’

This inequality corresponds to (2.8). The rest of the proof will be done by
the same argument as above. O

Remark6. Up to now, we do not obtain the result foer> 4 in Theorem 2.
For example, puf = —Au € WZP(RN) for u ¢ WAP(RN). Since we do not
know the validity of the inequality

flAﬂpdxzf IAfHP dx,
RN RN

the argument of the proof of Theorem 2 does not workkfer 4 case. In
stead, if we defind = (-A)%u € LP(RN) andw(x) = Cy [, D:;% dy, then
we obtain £A)?w = f#in RN and|u|f1”p = |W|Zp. However in this case, we
do not know whether the comparisafhi< w hold or not, which violates the
proof of Theorem 2.

3. APPENDIX

Davies-Hinz [10] showed that the constﬂf’[ID in the inequality (1.7) is

optimal whenQ = RN. In this Appendix, we will show the fact whe@ is a
general bounded domain.
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Proposition 7. Letk € N, k < kp < N and letQ be a bounded domain with
0e€ QinRN. Then the constartil‘:lf’p in the inequality (1.7) is optimal. That
is

- Ul .

in — 0 = :

oruews?(@) [ B dx “p

Proof of Proposition 7. By the scaling (1.8) and zero extension, we may
assumeB;(0) cc Q without loss of generality. First, we show the optimal-
ity of CE,p in the even cask = 2m, me N. For 0< ¢ <« 1, we define the

functionu, € W,™P(Q) as follows:

N-2mp

g » logl, ifO<|X<e
_ _ N-2mp 1 ;
U:(X) =qIx 7 log &, if e<Ix <1,
o) if xeQ\ B(0).

Leta = "=TF. By using the formula
Ar* = x(x = N+ 2)r "2,

1 1
A(r"‘ log F) = X(x— N+ 2)r*?|og -+ (2x— N + 2)r %2,

we compute that

0, if 0 <|X <e,
AU, = { Ag|x|~@r2m Iogﬁ + By x|"@+2m) if e<|x <1,
0, if xe Q\ By(0),

whereA,, andB,, are determined by the iterative formula:

A; = a(a - N+ 2),

Ajr=(@+2))(@+2(j+1)-N)A;, j=12,...,

B, = 20 — N + 2,
Bii=(@+2))(@+2(j+1)-N)Bj+2«+2(2j+1)-N j=12,....

Thus we have

m-1
Am:IIW+2Dm+20+1}4®,|AM:Cmp

=0
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We compute

1
f IA™U, ()P dX = wy f
Q &

1 Bm+Anmlog 1
=wy [— [t|P dt
§ (Am)fam

(3.1) =wn (m)( Bm + Ammg%

On the other hand, we have

U (X)|P
o |x@@me

1 p & 1 1 p
= wN g‘“p(log —) f rN=2"P-1dr + wy f ri (Iog —) dr
& 0 e r
gN-2mp 1\P logl
= ——(log—-| + tPdt
wNN—Zmp( gs) wao

gN—-2mp 1 p 1 1 p+1
(32) = W\ N——Zmp(log ;) + wnN D+ 1 (log ;) .

p
A,nlog% + Bm‘ r—(a+2m)p+N—1dr

P 1
(Bm + Anlog ;) - |Bm|me) .

By (3.1), (3.2) and the fa¢fy| = Conp, We obtain

Jo,0) 1A U(X)IP X
B1(0) p_ P
QP gy VPl = Camp 858 = 0,
B1(0) [x2™P

which implies the optimality o€} .
Next, in the odd cas&k = 2m+ 1, m € N, we consider the function
u, € W.™P(B,(0)) as follows:

_ N-(2m+1)p

g » IOQ%, if 0 <|X <e,
U0 = {Ix= log, ife<iM<l,
0, if xe Q\ By(0).

Letp = "0 Note that

0, fO<|Xx<e,

X B2y |~ An(B + 2m) log & — (An + (B + 2M)By)} ,
if e<|X <1,

0, if xeQ\ By(0).

V(A™u,) =
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If we make a calculation similar to the even case, we obtain

I, IV(A™u,)(x)|P dx
u-0P_ g

0 |X|(2m+l)p

— |AnP(B + 2mM)P ase — 0,

which implies the optimality oC5 ., ) by 5+ 2m = N—;p andCj ., =

—p\P
(%52)" Chp = 1ARIP(B + 2m)P. O
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