Volume polynomials and duality algebras of multi-fans
Anton Ayzenberg and Mikiya Masuda

ABSTRACT. We introduce a theory of volume polynomials and corresponding
duality algebras of multi-fans. Any complete simplicial multi-fan A determines
a volume polynomial VA whose values are the volumes of multi-polytopes
based on A. This homogeneous polynomial is further used to construct a
Poincare duality algebra A*(A). We study the structure and properties of Va
and A*(A) and give applications and connections to other subjects, such as
Macaulay duality, Novik—Swartz theory of face rings of simplicial manifolds,
generalizations of Minkowski’s theorem on convex polytopes, cohomology of
torus manifolds, computations of volumes, and linear relations on the powers
of linear forms. In particular, we prove that the analogue of the g-theorem
does not hold for multi-polytopes.
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1. Introduction

There is a fundamental correspondence in algebraic geometry [6]:

{ Toric varieties

<~ i i n
of complex dimension n } {Rational fans in R"}.

One can read the information about toric variety from its fan. Complete toric
varieties correspond to complete fans, non-singular varieties correspond to non-
singular fans, and projective toric varieties correspond to normal fans of convex
polytopes. Combinatorics of a fan and geometry of a toric variety are closely
connected. In particular, the rays of a fan correspond to the divisors on toric
variety and higher dimensional cones correspond to the intersections of divisors.

In the work [7] Hattori and the second named author expanded this setting
to topological category and generalized the above-mentioned correspondence in the
following way:

(1.1) { Torus manifolds

. ) v~ {Nonsingular multi-fans in R™}
of real dimension 2n

which will be explained in a minute.

Let X be a smooth closed oriented 2n-manifold with an effective action of an
n-dimensional compact torus T and at least one fixed point. A closed, connected,
codimension two submanifold of X will be called characteristic if it is a connected
component of the fixed point set of a certain circle subgroup S of T, and if it
contains at least one T-fixed point. The manifold X together with a preferred
orientation of each characteristic submanifold is called a torus manifold. Charac-
teristic submanifolds are the analogues of divisors on a toric variety.

Note, that there is no one-to-one correspondence in (1.1): there may be different
(in any sense) torus manifolds producing the same multi-fan. Nevertheless, multi-
fans provide a convenient tool to study such manifolds.

A multi-fan is the central object of this paper. We recall the precise definition
later. Informally, a multi-fan is a collection of cones in V' =~ R" with apex at the
origin, coming with multiplicities and satisfying certain geometrical restrictions.
Sometimes it is convenient to assume that there is a fixed lattice N < V, and the
rays of A are rational with respect to N. The cones of a multi-fan may overlap
nontrivially, which makes a multi-fan more general and flexible object than an
ordinary fan, and provides many nontrivial examples.

A multi-polytope is defined as follows. Let A be a simplicial multi-fan in
V =~ R". For each ray [; € A, we specify an affine hyperplane H; c V* orthogonal
to the linear span of l;. A tuple P = (A, Hq,...,Hp,,) is called a simple multi-
polytope based on A. The relation of the multi-polytope to the multi-fan on which
it is based, is exactly the same as the relation of a polytope to its normal fan.

For any multi-polytope P < V* there is a function DHp: V*\|J H; — Z (the
notation stands for Duistermaat—Heckman, see [7]). Informally, for a generic point
x € V* the value DHp(x) indicates how many times the “boundary” of P wraps
around x. The precise definition is given in Section 3. For an ordinary simple
convex polytope this function takes value 1 inside the polytope, and 0 outside.

A multi-fan A is called complete if it satisfies certain mild conditions (see [7]
or Definition 2.5 below). For multi-polytopes based on complete simplicial multi-
fans, the function DHp is compactly supported. We can define the volume of a
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multi-polytope P as an integral

Vol(P) := J DHp du
V¥
(the measure p is chosen such that the volume of a fundamental domain of the dual
lattice N* is 1).

For a given simplicial multi-fan A consider the space Poly(A) of all multi-
polytopes based on A. Following [20] we call it the space of analogous multi-
polytopes. To specify an affine hyperplane orthogonal to a line {/;) = V one needs
a single real number ¢;, the normalized distance from H; to the origin taken with
sign. This number is called the support parameter. Thus the space Poly(A) is
isomorphic to R™, where m is the number of rays of A. Support parameters
(c1,...,¢m) provide the canonical coordinates on Poly(A).

If A is complete, the volume gives a function on the space of analogous poly-
topes: Poly(A) —» R, P +— Vol(P). Similarly to the case of actual convex polytopes,
studied by Pukhlikov—Khovanskii [14] and Timorin [20], this function is a homo-
geneous polynomial in the support parameters.

THEOREM 1.1 ([7]). Let A be a complete simplicial multi-fan in R™ with m rays.
There exists a homogeneous polynomial Va € Rlecy,...,cn] of degree n such that
Va(el, ...y em) = Vol(P) for a multi-polytope P € Poly(A) with support parameters
(Cl, . 7Cm).

Following Timorin’s approach [20], we proceed as follows. Consider the ring
D of differential operators with constant coefficients, acting on R[cy, ..., ¢yn]. We
have D = R[04, ...,0n], where ¢; = a% It is convenient to double the degree,
so we assume that degd; = 2. Given any nonzero homogeneous polynomial ¥ €
Rle1, ..., cm] of degree m, consider the subspace Ann(¥) ¢ D, Ann(¥) = {D €
D | DV = 0}. It is easily seen, that Ann(¥) is a graded ideal, and the quotient
algebra D/ Ann(¥) is finite-dimensional and vanishes in degrees > 2n. Moreover,
D/ Ann(T) is a commutative Poincare duality algebra of formal dimension 2n [20,
Prop.2.5.1].

Now consider a complete simplicial multi-fan A and apply this construction
to the volume polynomial Va. In result we obtain a Poincare duality algebra
A*(A) := D/ Ann(Va) associated with a multi-fan A. The main goal of this work
is to study the volume polynomials and investigate the structure of the correspond-
ing algebras and to show their relation to other topics in combinatorics, convex
geometry, commutative algebra, and topology.

The work has the following structure. In Sections 2 and 3 we review the basic
notions of the theory of multi-fans and in Section 4 we review the notion of the
index map which is the key ingredient in the construction of the volume polynomial.
In the work [7], introducing multi-fans, the existence of a lattice N = Z" < V was
assumed, so that multi-fans are non-singular (or at least rational) with respect to
this lattice. In our paper we consider general multi-fans, probably non-rational.
Instead of a lattice we assume that the ambient space V has a fixed inner product.
This allows, in particular, to define and compute volumes of multi-polytopes in
V* = V of dimensions smaller than n (dealing with lattices, only unimodular
volumes make sense). The exposition of the multi-fan theory is built to comply with
this continuous setting. Nevertheless, all statements in the introductory sections
follow from their lattice analogues discussed in [7].
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In Section 5 we prove the basic enumerative properties of the volume polyno-
mial. While the values of VA are the volumes of multi-polytopes, the values of its
partial derivatives are the volumes of proper faces of these multi-polytopes up to
certain constants. These relations will be used further in Section 9.

In Section 6 we prove a general formula (actually, a family of formulas) for the
volume polynomial, and indicate a geometrical procedure which allows to find non-
trivial linear identities on the powers of linear forms. For actual convex polytopes
our formula coincides with the Lawrence’s formula [8], which is well known in
computational geometry.

In Section 7 we review the general correspondence between homogeneous poly-
nomials and Poincare duality algebras, known as the Macaulay duality. Using this
correspondence we obtain an algebra A*(A) as a Poincare duality algebra corre-
sponding to the volume polynomial VAo. One way to obtain this algebra is via
differential operators as in Timorin’s approach. Another way involves the index
map of a multi-fan.

The structure of multi-fan algebras in some particular cases is described in Sec-
tion 8. Every (complete simplicial) multi-fan has an underlying simplicial cycle. If
this cycle is a homology sphere K, then A*(A) is the quotient of Stanley—Reisner
algebra of K by a linear system of parameters, and the dimensions of its graded
components are the h-numbers of K. This is similar to ordinary fans. If the under-
lying simplicial cycle is a homology manifold, the algebra A*(A) is the quotient of
the Stanley—Reisner algebra by the linear system of parameters and by the certain
ideal introduced and studied by Novik—Swartz [12, 13]. In this case the dimensions
of the graded components of A*(A) are the h”-numbers of K. A short exposition
of the Novik—Swartz theory is provided.

Section 9 aims to generalize a classical Minkowski theorem on convex polytopes
to multi-polytopes. The direct Minkowski theorem has a straightforward general-
ization which can be used to obtain linear relations in the algebra A*(A). On the
other hand, the inverse Minkowski theorem, properly formulated, is controlled by
the power map A?(A) —» A?""2(A), a— a" L.

In Section 10 we answer the question which polynomials are volume polynomials
of multi-fans, and which Poincare duality algebras are algebras of multi-fans. We
prove that every Poincare duality algebra generated in degree 2 is isomorphic to
A*(A) for some complete simplicial multi-fan A.

The basic operations on multi-fans, such as flips and connected sums, and their
effects to multi-fan algebras are described in Section 11. In particular, we prove
that, under flips, the dimensions of graded components of A*(A) change similarly
to h-numbers of simplicial complexes.

Finally, in Section 12 we discuss the relation of A*(A) to the cohomology of
torus manifolds. It is known that, for complete smooth toric variety X, the co-
homology ring H*(X;R) coincides with the algebra A*(Ax) of the corresponding
fan. Situation with general torus manifolds and their multi-fans is more compli-
cated. Nevertheless, in a certain sense, the multi-fan algebra A* (A x) gives a “lower
bound” for the cohomology of a torus manifold.

2. Definitions: multi-fans

2.1. Multi-fans as parametrized collections of cones. Let us recall the
definition and basic properties of multi-fans. This exposition follows the lines of [7].
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Consider an oriented vector space V =~ R" with a lattice N < V, N > Z". A
subset of the form xk = {ryvy + -+ rpvE | 7; = 0} for given vy, ..., v, € V is called
a cone in V. Dimension of x is the dimension of the linear hull of k. A cone is
called strongly convex if it contains no line through the origin. In the following all
cones are assumed strongly convex.

Using classical construction of supporting hyperplane one can define the faces
of K, which are also the cones of smaller dimensions. If the generating set v1, ..., vg
may be chosen linearly independent (resp. rational, the part of basis of the lattice
N), k is called simplicial (resp. rational, unimodular). Let Cone(V') denote the set
of all cones in V. This set obtains a partial order: ki < k9 whenever k1 is a face
of KRo.

Let ¥ be a finite partially ordered set with the minimal element *. Suppose
there is a map C': ¥ — Cone(V') such that

(1) C(x) = {0};

(2) If I < J for I,J € S, then C(I) < C(J);

(3) For any J € X the map C restricted on {I € S | I < J} is an isomorphism
of ordered sets onto {x € Cone(V) | k < C(J)}.

The image C'(X) is a finite set of cones in V. We may think of a pair (X, C) as
a set of cones in V labeled by the ordered set 3.

The poset ¥ obtains a rank function: rk(I) := dim C(I). The set of elements
in ¥ having maximal rank n is denoted X<

Consider an arbitrary function o: ¢ — {—1, +1} called a sign function.

DEFINITION 2.1 (Old definition). The triple A := (2, C, o) is called a multi-fan
in V. The number n = dim V' is called the dimension of A.

Multi-fan A is called simplicial (resp. rational, non-singular) if the values of C'
are simplicial (resp. rational, unimodular) cones. In the following we will always
assume that A is simplicial. Then every cone of A is simplicial and property (3)
of the map C implies that X is a simplicial poset. Recall that a poset ¥ is called
simplicial if any lower order ideal S¢y := {I € S | I < J} is isomorphic to the poset
of faces of a simplex (i.e. a boolean lattice).

2.2. Multi-fans as pairs of weight and characteristic functions. Note
that definition 2.1 of a multi-fan slightly differs from the definition of multi-fan
given in [7]. To establish the correspondence consider the following construction.
Let [m] = {1,...,m} denote the set of vertices of 3.

The signs of maximal simplices in ¥ determine two functions on ([7::]), the set

of all n-subsets of [m]:
w: <[m]) — Lo,
n

where wt ({i1,...,in}) (resp. w™({i1,...,in})) equals the number of simplices I €
<™ on the vertices {iy,...,4,} having sign +1 (resp. —1). Although both functions
w™,w™ are important by topological reasons (see [7]), only their difference w :=
wt — w™ is relevant to our work. So far w is a function which assigns an integral
number to each n-subset of [m]. Let us consider a pure simplicial complex K on the
set [m] whose maximal simplices K< are the subsets I < [m] satisfying w(I) # 0.
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To reach greater generality we allow w to take real values, thus

w: <[7:]> —R.

Each vertex i € [m] corresponds to a ray (i.e. 1-dimensional cone) of A. We
choose a generator in each ray. This gives a so called characteristic map A: [m] —
V, such that the ray C(i) is generated by A(i) for every ¢ € [m]. It satisfies the
following property:

if {i1,...,4x} € K, then A(i1),...,A(ix) € V are linearly independent.

This condition is called %-condition.

Note that in [7] all multi-fans were assumed rational. In this case the genera-
tor A(i) can be chosen canonically as a unique primitive integral vector contained
in C(7). Since we want to include non-rational simplicial multi-fans in our con-
sideration, we should specify the generators somehow in order for the subsequent
calculations to make sense.

Finally we get to the following definition

DEFINITION 2.2 (New definition). A triple (K, w, \) is called a simplicial multi-
fan in V. Here w: ([ZL]) — R is a weight function, K is a simplicial complex which
is the support of w, and A: [m] — V is a characteristic function. Characteristic
function satisfies #-condition with respect to K: if I = {iy,...,ix} € K, then the
vectors A(%1), ..., A(ig) are linearly independent in V.

Here K may have ghost vertices, i.e. ¢ € [m] such that {i} ¢ K. The value
of characteristic function in such vertices may be arbitrary (even zero). In the
following we will not pay too much attention to ghost vertices since their presence
does not affect the calculations.

Strictly speaking, the new definition is not equivalent to the old one, since we
cannot restore the poset ¥ and the sign function o: X — {+1} when w takes
non-integral values. Even in the integral case we cannot restore ¥ uniquely. On
the other hand, as was shown above, every multi-fan in the sense of old definition
determines a multi-fan in the sense of new definition. We will work with the new
definition most of the time.

REMARK 2.3. When passing from the old definition to the new one, we may
lose an important information. For example consider the multi-fan in R? = (eq, es)
whose maximal cones are two copies of the non-negative cone (i.e. the cone gen-
erated by basis vectors ej, es), and two rays are generated by e; and e;. One of
the maximal cones is taken with the sign +1 and the other with the sign —1. We
remark that such multi-fan corresponds to the torus manifold S* [7]. We have
wt({1,2}) = w({1,2}) = 1, therefore w({1,2}) = 0. Thus K is empty (equiva-
lently, w: ( " ) — R vanishes).

One way to avoid such situations is to assume in the beginning that X itself is a
simplicial complex rather than a general simplicial poset. In this case K coincides
with ¥ and the weight function w on K coincides with the sign function o. In
particular, w takes the value +1 on each maximal simplex of K (see Example 2.9).

2.3. Underlying simplicial chain. Let A[,,] denote an abstract simplex on

the vertex set [m], and let AEZJD be its (n — 1)-skeleton. Every subset I < [m],
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|I| = n may be considered as a maximal simplex of AEZJD. If I € K then we
can orient I as follows: we say that the order of vertices (i1, ...,4,) of I is positive
if and only if the basis (A(41), ..., A(i,)) determines the positive orientation of V.

DEFINITION 2.4. The element
Wep = Z w(I e Cp—1(K;R) C Cn—l(AE:il);R)
Ic K<

is called the underlying chain of a multi-fan A. Here Cyp,—1(K;R) denotes the group
of simplicial chains of K.

2.4. Complete multi-fans. Let us briefly recall the notion of projected multi-
fan. We give the construction in terms of new definition of multi-fan although the
similar construction may be given in terms of simplicial posets and sign functions.

Let A = (K,w,\) be a simplicial multi-fan in the space V, and let I =
{i1,...,ix} € K be asimplex. Let V; denote the quotient vector space V /(A (i), ..., A(ix))-
Consider the multi-fan Ay = (kg I, wyr, A7) in V defined as follows:

o Ik I:={Jc[m]\I|IuJe K} is the link of the simplex I in K.

o wi(J):=w( uJ) for every J elkg I, |J| =n—|I].

e )\;(j) is the image of A\(j) € V under the natural projection V. — V; =
V/(A(i1), ...y A(ig)). Tt is easily seen that \; satisfies #-condition.

If we choose some orientation of a simplex I € K, the space V; obtains an orientation

induced from V. To be precise, let us say that the basis ([v1],. .., [Un—k]) determines
a positive orientation of V7 if the basis (v1,...,Un—g, A(i1),..., A(ig)) is a positive
basis of V' for a chosen positive order (i1, ..., i) of vertices of I.

We call Aj the projected multi-fan of A. The construction satisfies the heredi-
tary relation (Ayp, ), = Ay, 1, whenever it makes sense, and there holds Ay = A.
Let us call a vector v € V' generic with respect to A if it is not contained in
the vector subspaces spanned by the cones of A of dimensions < n. For any such
v define the number d, = > w(I) € R, where the sum is taken over all subsets
I ={i1,...,in} < [m] such that the cone generated by A(i1),...,A(i,) contains v.

DEFINITION 2.5. The multi-fan A is called pre-complete if d,, does not depend
on a generic vector v € V. In this case d, is called the degree of A. The multi-fan
A is called complete if the projected multi-fan Aj is pre-complete for any simplex
IeK.

REMARK 2.6. Note that this definition allows w to be constantly zero. We
call a multi-fan zero if its weight function constantly zero. A zero multi-fan is
pre-complete and therefore complete.

PROPOSITION 2.7. A multi-fan A is complete if and only if its underlying sim-

plicial chain wep, € C’n_l(AgEl);R) is a cycle, that is dwep, = 0 for the standard
simplicial differential d: Cn,l(AE:Jl); R) — Cn,Q(AE:Jl); R) (if n = 1, we assume

that d: CO(AE:EU;R) — R is the augmentation map).

PROOF. In the case when w takes only integral values, the statement is proved
in [7, Sec.6]. If w takes only rational values, scaling the values of w by a common
denominator reduces the task to the integral case. It remains to prove the statement
for real-valued w. Both conditions “A is complete” and “dw., = 0” determine
rational vector subspaces in the space of all possible weight functions (it is not
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difficult to define the pre-completeness condition in terms of the “wall-crossing
relations”, which are linear relations on w(I) with integral coefficients). Thus the
rational case implies the real case. O

For convenience we summarize the discussion by the following definition.

DEFINITION 2.8 (Complete simplicial multi-fan). A complete simplicial multi-
fan is a pair (wen, A), where wen = 351 ), 1j=n W) € Zn_l(AEZJl)) is a simpli-
cial cycle on m vertices, and \: [m] — V is any function satisfying the condition:
{A(9)}ier is a basis of V' if |I| = n and w(I) # 0.

For a complete multi-fan A the corresponding homology class [wep] € H,_1 (K;R) <
ﬁn,l(A%ZJU;R) will be denoted [A] and called the underlying homology class

of A. Since Cu(A[717";R) = 0, the groups Zu (A7) and Hya (A7) may

be identified. Thus w.;, and [A] are just two different notations for the same object.

EXAMPLE 2.9. One obvious way to obtain a complete multi-fan is to start with
any oriented pseudomanifold K of dimension n — 1 on the set of vertices [m], and
take any characteristic function A: [m] — V. Since K is oriented, every maximal
simplex I of K becomes oriented, but this orientation may be different from the
one determined by characteristic function (see subsection 2.3). Let w(I) be +1 or
—1 depending on whether these two orientations agree or not. Let us extend the
weight function by zeroes to non-simplices of K. The corresponding simplicial chain

Wep, = Y w()I € Cn—1(AE:El);R) is closed, since it is exactly the fundamental

chain of K in A%Zﬂl). Therefore, (wep, A) is a complete simplicial fan.

ExAMPLE 2.10. The previous example may be restricted to the case when K
is a homology sphere or homology manifold. We will study these two cases in more
detail in Section 8.

We say that A is based on an orientable simplicial pseudomanifold K if the
corresponding simplicial cycle is given by K.

There is one interesting feature of (complete) multi-fans revealed by Definitions
2.2 and 2.8. The multi-fans with the given set of vertices [m] and the given charac-
teristic function A form a vector space: we may add them by adding their weights
and multiply by real numbers by scaling their weights. Let MultiFans) denote
the vector space of complete multi-fans with the given characteristic function .
This space may be identified with certain vector subspace of Zn,l(AE:Jl); R). We
will discuss this subspace in detail in subsection 10.3. The set of multi-fans with
integral weights forms a lattice inside MultiFans) which is a certain sublattice of

Zn (D),

3. Definitions: multi-polytopes

3.1. Multi-polytopes. Let A be a simplicial multi-fan with characteristic
function A: [m] — V. Let HP(V*) denote the set of all affine hyperplanes in the
dual vector space V*.

For each i € [m] choose an affine hyperplane H(i) < V* in the dual space which
is orthogonal to the linear hull of the i-th cone. In other words, H(4) is defined
by equation H(i) = {u € V* | {u, \(i)) = ¢;} for some constant ¢; € R called the
support parameter of H(7).
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DEFINITION 3.1. A multi-polytope P is a pair (A, H), where A is a multi-fan,
and H: [m] — HP(V*) is a function such that #(¢) is orthogonal to A(i) for any
i € [m]. We say that P is based on the multi-fan A.

Although the definition may be stated in general, we restrict to simplicial multi-
fans A, in which case P is called a simple multi-polytope.

Let us denote the set of all multi-polytopes based on A by Poly(A). Every
such multi-polytope is completely determined by its support parameters c1, ..., Cp,.
Thus Poly(A) has natural coordinates (cy, ..., ¢;,) and may be identified with R™.
This space is called the space of analogous polytopes based on A.

To simplify notation, we denote H(i) by H; and set

H; = ﬂiel H, for [ € K.

Hfy is a codimension |I| affine subspace in V*, since the normals of the hyperplanes
H;, i € I are linearly independent by #-condition. In particular, when I is a maximal
simplex, I € K H; is a point in V* which is called the vertex of P.

DEFINITION 3.2. Let A be a simplicial multi-fan in V' with the underlying
simplicial complex K and let P be a simple multi-polytope based on A. Let I € K.
Consider a simple multi-polytope F; = (Aj,H;) in the space Hr < V*. Note
that the projected multi-fan Ay is defined in the space V; (see subsection 2.4), so
the multi-polytope based on A; should formally lie in V;*. Nevertheless, we may
identify H; with V;*. The supporting hyperplanes of F; are defined as follows:
Hi(j) = Hr n Hj for any vertex j of lkx I. The multi-polytope F7 is called the
face of P dual to I.

3.2. Duistermaat—Heckman function of a multi-polytope. Suppose I €
K<, Then the set {\(i) | i € I} is a basis of V. Denote its dual basis of V* by
{ul | i e I}, ie. (ul,\(j)) = d;; where §;; denotes the Kronecker delta. Take a
generic vector v € V. Then (u!,v) # 0 for all T € K and i € I. Set

. Fif ul vy > 0
1 I = (=1 t{iel|(ul ,v)>0} d I+ = u; 1 i )
(=1) (=1) an () —ul if (ul,v) < 0.

We denote by C*(I)* the cone in V* spanned by (u!)*’s (i € I) with apex at a
vertex H; of a multi-polytope P, and by ¢; the function on V* which takes value
1 inside C*(I)* and 0 outside (this is just a characteristic function of a subset but
we want to avoid this term since it is already reserved for the function \).

DEFINITION 3.3. A function DHp on V*\J;~, H; defined by
D (=D w()ér

Te K<
is called a Duistermaat-Heckman function associated with P.

The summands in the definition depend on the choice of a generic vector v € V.
Nevertheless, the function itself is independent of v when A is complete (we refer
to [7] when w is integral-valued and note that the same argument works for real
weights).

The function DHp for a simple multi-polytope P based on a complete multi-
fan has the following geometrical interpretation. Let S be the realization of first
barycentric subdivision of K and let G; < S be the dual face of I € K, I # @, i.e.
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a realization of the set {{I < I; <--- < Iz} € K'}. If I € K, then G is a point.
For a given multi-polytope P based on A there exists a continuous map 9: S — V*
such that ¢(Gy) < Hy for any I € K, I # & (in particular, when I € K< this
map sends the point G; € S to the vertex Hy of a multi-polytope P). This map is
unique up to homotopy preserving the stratifications.

Let us take any point u € V*\ I, H;. Then u is not contained in the image of

=

1 by the construction of ¢). Thus we may consider the induced map in homology:
Gu: Hy1(S;R) — Hyy (VF\{u}; R).
The underlying simplicial cycle [A] may be considered as an element of the group

H,_1(S;R). Since V* is oriented, we have the fundamental class [V*\{u}] €
H,_1(V¥\{u};R). Thus
Vs ([A]) = WNp(u) - [VF\{u}],
for some number WNp(u) € R. This number has a natural meaning of winding
number of cycle [A] around u. It happens that this number is exactly the value of
DHp at the point u € V* (see details in [7, Sec.6]).
It is easily seen from the above consideration that DHp has a compact support

when A is complete. Thus in the case of complete multi-fan we may define the
volume of a multi-polytope P as

(3.1) Vol(P) = J DHp(u)du
vk
with respect to some euclidean measure on V* (in a presence of a lattice N < V the
measure is normalized so that the fundamental domain of N* < V* has volume 1).
Finally, we may consider the volume as a function on the space Poly(A) ~ R™
of analogous multi-polytopes. We have a function Va: R™ — R whose value at
(c1,...,¢m) equals Vol(P) for the multi-polytope P with the support parameters
C1,-..,¢m. The goal of the next section is to study this function using equivariant
localization ideas and prove Theorem 1.1.

REMARK 3.4. Needless to say that in case of actual simple convex polytopes the
notions introduced above coincide with the classical ones. If P is a simple convex
polytope and A is its normal fan, then DHp takes the value 1 inside P and 0 outside.
The volume of P is just the usual volume. Note that even if A is an actual fan,
not all multi-polytopes based on A are actual convex polytopes. Nevertheless, the
notion of volume and Duistermaat—Heckman function have transparent geometrical
meanings for all of them.

ExAMPLE 3.5. Consider the two-dimensional multi-fan A with m =5and V =
R? depicted on Fig.1, left. Its characteristic function is the following: A(1) = (1,0),
A(2) = (=2,1), A(3) = (1,-2), A(4) = (0,1), A(5) = (=1, —1). The weight function
takes the value 1 on the subsets {1,2}, {2,3}, {3,4}, {4,5}, {1,5} and the value 0
on all other subsets. Geometrically this indicates the fact that in the multi-fan we
have the cones generated by {A(1), A(2)}, {A\(2),A(3)}, etc. with multiplicity one,
and do not have the cones generated by {A\(1),A(3)}, {A\(1),A(4)}, and so on. It
can be seen that every generic point of V = R? is covered by exactly two cones,
therefore A is pre-complete of degree 2. Moreover, a simple check shows that all its
projected multi-fans are complete. Hence A is complete. The underlying chain of
A has the form (1,2)+(2,3) +(3,4) +(4,5)+ (5,1) € Cl(Ag]); R) which is obviously
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a simplicial cycle. The underlying complex K of A is a circle made of 5 segments,
and [A] is its fundamental class.

H,

Hy

FIGURE 1. Example of a multi-fan A and a multi-polytope P
based on it.

An example of a multi-polytope P based on A is shown at Fig.1, right. Each
hyperplane H; is orthogonal to the linear span of the corresponding ray A(i) of A,
i € [5]. The Duistermaat—Heckman function of P is shown on Fig.2. The function
is constant on the chambers: it takes value 2 in the middle pentagon since the
multi-polytope “winds” around the points of this region twice, and takes value
1 on triangles adjacent to the central pentagon. The value of DHp in all other
chambers is 0. The volume of a multi-polytope is therefore not just the volume of
the five-point star: the points in the central region contribute to the volume twice.

4. Volume polynomial from the index map

4.1. Index map. Let A = (wep, A) be a simplicial multi-fan in V' =~ R™ with
m rays. The characteristic function A: [m] — V may be considered as a linear map
A: R™ — V which sends the basis vector e; € R™, i € [m] to A(i). Let {x;}ic[m]
be the basis of (R™)* dual to {e;}iepm], so that (R™)* = (x1,...,2,). Let us
also consider the adjoint map A\": V* — (R™)*. By definition it sends the vector

ueV* to
m

Z(u, A(8))x;.

i=1
For any maximal simplex I = {iy,...,i,} € K< the vectors {\(i)};c; form a basis
of V according to #-condition, defined in subsection 2.2. Let {uzf }ier be the dual
basis of V*. Let ¢7: (R™)* — V* be the linear map defined by

ulifiel,
(4.1) er(z)) =< " .
0, if1 ¢ K.
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/

H,

FIGURE 2. Duistermaat—Heckman function of the multi-polytope P.

Consider R[zq,..., %], the algebra of polynomials on (R™)*. Also let R[V*]
denote the algebra of polynomials on V*. Both polynomial algebras are graded,
where we set the degrees of the generating spaces (R™)* and V* to 2. The linear
map ¢; induces the graded algebra homomorphism

tr: Rlzy, .o om] — RVF,

denoted by the same letter. In the following, if A is a graded algebra, we denote
by A; its homogeneous part of degree j.

Let STIR[V*] denote the ring of rational functions over R[V*] graded in a
natural way. Given a weight function w: K< — R we can define the linear map
2 Rz, ..., 2m] — STIR[V*] as the following weighted sum:

w(ler(x)
(4.2) (@) =
PIR o) ey
for x € R[z1,...,%,]. We assume that an inner product is fixed on V, so that

|det A;| = | det(A(4):er)| is well-defined even if there is no lattice in V. The inner
product on V induces a euclidean measure on V* and |det Af| is the volume of
the parallelepiped spanned by {A(i)};c;. The translation invariant measure on
V* is assumed the same as in (3.1). The map 7 is well-defined since \; are
isomorphisms. It can be seen that 7TIA is homogeneous of degree —2n. It is called
the index map of multi-fan A = (K, w, \).

THEOREM 4.1. The following properties of A are equivalent:
(1) The image of ©2 lies in R[V*] < STIR[V*];
(2) The underlying chain wep, = Y e jeny w(I)1 is closed;
(3) The multi-fan A = (wep, A) is complete.

PrOOF. Equivalence of (2) and (3) was already shown in Proposition 2.7. The
implication (2) = (1), in case when \ takes values in the lattice and w is integer-
valued, is proved in [7, Lm.8.4]. It should be noted that in this case |det A;|
appearing in the denominator is nothing but the order of the finite group G; =
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N/Ny, where N c V is the lattice and Ny is a sublattice generated by {A(7)}icr. The
situation when A and w are rational is reduced to the integral case by multiplying
all values of A and w by a common denominator (both conditions (1) and (2) are
invariant under rescaling). The real case follows by continuity. Indeed, the subset
of simplicial cycles with rational coefficients, Z,,_1 (K;Q), is dense in Z,,_1 (K;R);
the right hand side of (4.2) is continuous with respect to A and w; and the subset
R[V*] is closed in ST'R[V*]. Therefore, arbitrary complete multi-fan (w, \) can be
approximated by a sequence of rational complete multi-fans A, = (w4, Ao) which
implies that the values of 7> are approximated by the values of 7T!A «. Since the
values of 7T!A°‘ are polynomials, so are the values of 7T!A.

Let us prove that (1) implies (2). Take any simplex J € K such that |J| =n—1
and consider the monomial z; = [[,_; z; of degree 2(n —1) lying in R[z1, ..., zpn].
The map 7 lowers the degree by 2n thus we have deg 7 (z;) = —2. Condition
(1) implies that 7 (z7) is a polynomial, thus 7 (z ;) = 0. By definition, we have

T!A(IJ) _ Z w(I)[’I(‘rJ)

TeK<{n ‘ det )\I| HiEI lr (‘/L.Z)

Note that ¢ is a ring homomorphism and ¢7(z;) = 0 if i ¢ I by (4.1). Therefore,

v W) [Ty er(@i) 3 w(l)

A = = _—
() = (et Ar| [ Ley er(ar) [det Arir(z)

TeK<m> JcI Felm\J,I:=Ju{j}e K<™

Recall that ¢7(z;) = ul, where {ul};c; is the basis of V* dual to the basis {\(i)}ier
of V. Consider the linear functional g € V* taking the value g(v) = det((A(%)):es,v)
for any v € V. It can be seen that |det A\f|cr(z;) € V*, where I = J U {j}, coincides
with o up to sign. More precisely |det Ar|er(z;) = [1:J]o, where [I:J] is the
incidence sign of two simplices of K (it appears because we need to permute the
vectors ((A(%))ieg, A(7)) in order to get the positive determinant). Therefore,

1
O=nf(zy) == > [I:Jjw()
IeK<{w JcI

It remains to notice that the sum in this expression is exactly the coeflicient of J
in the simplicial chain dw.p, € C,,—2(K;R). This calculation applies to any J € K,
|J| = n — 2, therefore dw,;, = 0. O

The map AT: V* — (R™)*, the adjoint of )\, induces the ring homomorphism
R[V*] - R[z1,...,2,]. Hence R[zy,...,x,,] obtains the structure of R[V*]-
module. It can be checked that AT is the right inverse of each ¢7: (R™)* —
V*, therefore all ring homomorphisms ¢y: R[z1,...,z,] — R[V*] are the R[V*]-
module homomorphisms. Thus 7 is also a homomorphism of R[V*]-modules (even
in the case wey, is not closed).

REMARK 4.2. Note that conditions (1) and (2) in Theorem 4.1 make sense over
an arbitrary field k. We may start with a k-valued chain w.;, € C,,—1(K;k) and a
characteristic function valued in k™. These data allow to define the maps ¢; and
72 absolutely similar to the real case.

PROBLEM 4.3. Does equivalence of (1) and (2) in Theorem 4.1 hold for arbi-
trary fields?
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For general fields we cannot reduce the task to the integral case but it is likely
that there exists a straightforward algebraical proof.

4.2. Stanley—Reisner rings. Let us recall the definition of the Stanley—
Reisner ring.

DEFINITION 4.4. Let K be a simplicial complex on the vertex set [m] and k
be a ground ring (either Z or a field). The Stanley—Reisner ring is the quotient of
a polynomial ring by the Stanley—Reisner ideal:

k[K] :=Kk[z1,...,2m]/Isr, where Isgp = (ziy - ... x| {i1,...,ix} & K),

endowed with the grading deg z; = 2 and the natural structure of graded k[z1, . .., T ]-
module.

For now let us concentrate on the case k = R. Given a characteristic function
A on K we may define a certain ideal in R[K] generated by linear forms. As before,
let AT: V* — (R™)* = (z1,...,2,,) denote the adjoint map of \: R™ — V. Let
© denote the ideal of R[z1,...,x,,] generated by the image of AT. By abuse of
notation we denote the corresponding ideal in R[K ] with the same letter ©.

Let us state things in the coordinate form. Fix a basis f1,..., f, of V. Then
every characteristic value A(7), ¢ € [m] is written as a row-vector (A;1,...,Ain),
where ); ; € R. The #-condition for A\ (see subsection 2.2) states that the square
matrix formed by row-vectors (A; 1, ..., Ain)ier is non-degenerate for any I € K ),

If we consider the dual basis fi,..., f, in the dual space V*, then its image
under AT: V* — (R™)* = (z1,...,2,,) has the form

0; = )\T(fj) = A1 %1+ A2 T2 + 0+ AT

for j = 1,...,n. Thus © (as an ideal either in R[zy,...,2,,] or R[K]) is gen-
erated by the elements 61, ...,6,. In particular, if A is integer-valued, then © =
(01,...,0,) may be considered as a well-defined ideal in Z[K] or Z[z1,...,Tm].

It is known that the Krull dimension of R[K] equals dim K + 1 = n (see e.g.
[16]), and 61, ...,0, is a linear system of parameters in R[K] for any characteristic
function A and every choice of a basis in V (e.g. [4, Lm.3.3.2]). Thus R[K]/O
has Krull dimension 0, which in our case is equivalent to saying that R[K]/0O is a
finite-dimensional vector space. Moreover, it is known (see e.g. [7, Lm.8.1] or [1,

Lm.3.5]) that the classes of monomials ; = x;, - ... x;, taken for each simplex
I = {i1,...,ix} € K linearly span R[K]/O (however there exist relations on these
classes!).

We introduce the following notation to make the exposition consistent with
that of [7]:
(4.3) HE(AK) = K[K],  H*(Ak) = K[K]/O,
and, for short, H3(A) := HF(A;R) and H*(A) := H*(A;R).

4.3. Evaluation on fundamental class. Let x = lel . xf: be a monomial
whose index set {i1,...,i} is not a simplex of K. Then ¢;(x) = 0 for any I € K<™,
according to (4.1). Therefore 7 (x) = 0. Hence 7 vanishes on the Stanley—Reisner

ideal Iggr and descends to the map

7P R[K] — R[V*].
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Since 72 is a map of R[V*]-modules, we may apply ®grpv#1R to 7. This gives a
linear map

L; H?™(A) - R = R[V*]/R[V*]*

DEFINITION 4.5. Let A = (K,w, \) be a complete simplicial multi-fan. The
map §,: H*"(A) — R is called “the evaluation on the fundamental class of A”.

We denote the composite map R[x1, ..., 2] - H?"(A) —> R by SA R[m]"

4.4. Chern class of a multi-polytope. Let P be a multi-polytope based on
a complete simplicial multi-fan A = (K, w, \) of dimension n, and let ¢, ..., ¢, € R
be the support parameters of P. The element

ca(P):=c1x1+ -+ cmTm € HQ(A)
is called the first Chern class of P.

PROPOSITION 4.6.

(4.4) Vol(P) = i'f 1 (P)".
n! Ja

ProOOF. If A and w are integral, the statement is proved in [7, Lm.8.6]. The
rational case follows from the integral case by the following arguments. (1) In the
rational case we may choose a refined lattice such that A becomes integral with
respect to this lattice (this would change the euclidean measure on V*, but this
change affects both sides of (4.4) in the same way). (2) A rational weight w may
be turned into an integral weight by rescaling (both sides of (4.4) depend linearly
on w, thus rescaling of w preserves (4.4)). Real case follows by continuity, since

both sides of (4.4) depend continuously on A and w. O
It is easily seen that, for a given A, the expression on the right hand side of
(4.4) is a homogeneous polynomial of degree n in the variables c1, ..., ¢p:
1
Va(er, .o em) = *,f (1w + - 4 cn@m)"™.
n:Ja

Thus Proposition 4.6 implies Theorem 1.1.

5. Basic properties of volume polynomials

5.1. Partial derivatives of volume polynomial. We continue to assume
that there is a fixed inner product in V' which makes the integral lattice in V'
unnecessary. The inner product allows to identify V and V* and to introduce a
measure on each affine subspace of V or V*. Consider the space A*V of exterior
forms on V. Given an inner product in V' we obtain an inner product on A*V.

Suppose that every simplex I € K is oriented somehow. For a characteristic
function A: [m] > V on K and I = {iy,...,ir} € K let \(I) denote the skew form
(i) A oo A Mix) € ARV, where (i1, ...,i;) is the positive order of vertices of I.
Denote the norm of A(I) by covol(]):

covol() = [AD)] = [AGi1) A -+~ A Al

Recall from Section 3 the notion of a face of a multi-polytope. If P is a multi-
polytope of dimension n and I € K then F7 is a multi-polytope of dimension n — |I|
sitting in the affine subspace H;y c V*. There is a measure on H; determined by
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the inner product, hence we may define the volume of F;. The following lemma
shows that we can compute the volumes of faces from the volume polynomial.

LEMMA 5.1 (cf.[20, Thm.2.4.3]). Let J < [m]. Consider the homogeneous
polynomial 0;Va of degree n — |J|. Then

(1) Let 6, denote the linear differential operator Y. {u, X(¢))0; for u € V*.
Then 6,VA = 0.
(2) If J ¢ K, then 0,Va = 0;
(3) If J € K, then the value of the polynomial 0;Va at a point (¢1,...,Cm) €
R™ is equal to
Vol F'y

.1 —
(5-1) covol(J)
when |J| <n and

wd)  w(J)
covol(J)  |det Ay

(5.2)
when |J| = n. Here & are the support parameters of a multi-polytope P
and Fj are its faces.

PrOOF. (1) We have

0uVa — %J (i(u,)\(i)>£>(clx1 +ot oman)"
- ﬁ f ( i(u,)\(i»xi) (11 + e o) = 0,
since 2,1 (u, A(i)yx; = 0 in H¥*(A).

(2) The proof of second statement is completely similar to (1). We have

0jVA = —J clxl + ot )"

= o |J| J H:v (1) + - 4 ema)" 1 =0,

e

since x7 = [[,c;2; = 0in H*(A) for J ¢ K.
(3) The second claim requires some technical work. At first, let |J| = n, i.e.
J e K. We have

1
07Va = 5(1*,‘[
n:

(Clxl + -+ mem,)n = J Ty = 7TIA(‘IJ)7
A A

where x; = [ [,.; ;. By the definition of the index map (4.2) we have

A w()er(zy)
C(z) Ie;"> |det Ar| [ T,ep er(zi)

If I # J, the corresponding summand vanishes, since ¢7(z;) = 0 for j ¢ I by (4.1).

The summand corresponding to I = J contributes mﬂi‘;l which proves the state-
ment.
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Let us prove the case |J| < m. Recall that the projected multi-fan A; =
(kg J,wy, Ay) is the multi-fan in the vector space Vy = V/(A(4) | j € J). There
exists a “restriction” map

ey H*(A) — H*(A),
defined as follows:
xj, if j € lkg J;
pi(z;) = _Ziele Jp%],jm’h if j e J;
0, otherwise

Here the constants p;{ ;j for j € J and i € lkg J are defined by

(5.3) proj; A(i) = Y 5 A0),
jeJ
where proj ; A(¢) is the orthogonal projection of the vector A(7) to the linear subspace
spanned by A(j) (j € J).
The homomorphism ¢ ; is now defined on the level of polynomial algebras.

CLAIM 5.2. ¢y is a well-defined ring homomorphism from H*(A) = R[K]/O©
to H*(AJ) = R[lk]( J]/@J

PrOOF. The proof is a routine check. First let us prove that Stanley—Reisner
relations in A are mapped to the Stanley—Reisner ideal of A;. Let I be a non-
simplex of K. The definition of ¢; implies that ¢ (x;) = 0 unless I < J U
Vert(lkg J). If I < J u Vert(lkg J), we have that I n Vert(lkg J) is a non-simplex
of Ik J (otherwise we would have I € K contradicting the assumption). Then the
element ¢ (zr) = ‘PJ(HieImvert(le J) xz) : 90~1(Hielmei) = HiEImVert(le J) Ti
goJ( Hie]m] Cﬂl) lies in the Stanley—Reisner ideal of lkg J.

Let us check that linear relations in H*(A) are mapped into linear relations
of H*(Ay). A general linear relation in H*(A) has the form >}, (u, A(i))z; for
some u € V*. The map ¢, sends it to the element

Y (@AG) = X Pl AG))

ieVert (kg J) jeJ

- ) <u7)\(i)—2p;{j)\(j)>xi= N i)
i€Vert(lkg J) jeJ ieVert(lkg J)

(note that A(i) — Zjer;{j)\(j) = A(i) — proj; A(4) = A;(4) is the projection of A(7)

to the plane orthogonal to (A(j))jes). The last expression is zero in H*(A;). O

Next we show that restriction homomorphism is compatible with the first Chern
classes of the multi-polytopes.

CLAIM 5.3. ¢y sends c1(P) to c1(Fy).

PROOF. Recall that H; denotes the ambient space of the face F; of the multi-
polytope P. The supporting hyperplanes of F; are given by intersections H; n H;,
where H; is the supporting hyperplane of P for i € lkg J.

Let us denote by U the subspace spanned by A(j)’s (j € J) so that V; = V /U ;.
By the definition (see subsection 2.4), A;(7) is the projection image of A(7) on Vy if
1 is the vertex of kg J. As in the proof of previous claim we identify the quotient
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space V; = V/U; with the orthogonal complement U+ 7 of Uj. The projected vector
A (i) can be considered as the element in V' and we have
(5.4) A(@) = Ay (i) + proj; A(4)
with respect to the orthogonal decomposition V = U+ 7@U;.

The affine hyperplane H; is given by {u € V* | (u, A(i)) = ¢;}. The affine plane
Hj is given by {u e V* | (u, A(j)) = ¢;, for all j € J}. By using (5.3) and (5.4) we
may write the intersection H; n H; as

{we Hy | Cu, Ay (i) + proj; Ai)y = e} = {we Hy | <“’W) * D) = e
jeJ
:{ueH;|<u Ag(i Epucﬂ}
jeJ

Therefore the i-th support parameter of Fj is ¢; — Zjer;{jcj for i € kg J.
Now it remains to note that the coefficient of z; in the projected class ¢ ;(c1(P))

is exactly ¢; — Zjer%],jCj~ Thus ps(c1(P)) = c1(Fy). O
Now we prove the following
CLAIM 5.4.
=— H*(A).
f y] [z COVOI %) JAJ ei(y) for anyye H*(A)

jeJ

PROOF. Let us denote by Vol S the volume of the parallelepiped formed by a
set of vectors S. Then covol(J) = Vol{A(7)}ies and the index map can be written
as

1ur()
(55) )= X VoG i wenen)

Let I € lkg J and, therefore, I L J € K. Then
Vol{A(#)},e7., 7 = V(i) bics - VOI{A (i)} ,e; = covol(J) - VO{As(4)}, 7.

This together with (5.5) implies the lemma. O
Applying claim 5.4 to y = ¢;(P)" /! and using claim 5.3, we obtain
1 1
05Va = 7J I 25 = J e (Fp)Hl,
(n—|J)! Jel_[] / covol (J) (n—[J)! Ja,

Vol(Fy)
covol(J)

which finishes the proof of Lemma 5.1.
O

Expression at the right evaluates to

COROLLARY 5.5. Let A = (wen, A) be a complete multi-fan. Then Vo = 0
implies wep, = 0.

PROOF. If VAo = 0, then 0;Va = 0 for any J € K<, This implies we, = 0. O

REMARK 5.6. Of course, according to Proposition 7.2 the polynomial Va is
non-zero if and only if the map §, is non-zero. The fact that §, is non-zero for
every non-zero wey, is proved by applying this map to all monomials x7, I € K<™
(recall that these monomials span H?"(A)). This procedure is essentially the same
as applying differential operators d; to Va.
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COROLLARY 5.7. Let dp denote the linear differential operator Zle [m] ¢;0; where
¢; are the support parameters of a multi-polytope P. Then
1
—|6}§VA = Vol(P),
n!
1 —|1| VOI(F[)
7(9 orV, .
(n— [1])! P& ™ Covol(I)
ProOOF. Both formulas follow from Lemma 5.1 and a simple observation: if
U € Rley, ..., em]k is a homogeneous polynomial of degree k, then
k
) = k(& ;
(Zie[m] cl(?l) U = ElW(é,...,6m)-
(evaluation at a point coincides with the result of differentiation up to k!). O

2. Recovering multi-fans from volume polynomials. When we asso-
ciate a volume polynomial to a complete simplicial multi-fan, the numbering of the
one-dimensional cones by [m] is incorporated in the data of the multi-fan. We call
a multi-fan with the numbering a based multi-fan. Two based multi-fans A and A’
are said to be equivalent if there is an automorphism of V' which induces an iso-
morphism between A and A’ preserving the numbering. In the presence of a lattice
N c V there should be an automorphism of the lattice with this property. Equiv-
alent complete simplicial based multi-fans have the same volume polynomial. We
will see that the converse holds for complete simplicial based multi-fans A whose
underlying simplicial complexes are oriented strongly connected pseudo-manifolds.
Strong connectedness of K means that for any two maximal simplices I, I’ € K<™
there exists a sequence of maximal simplices I = Iy, Iy,...,I; = I' such that
[Is nIgiq]=n—1for0<s<k—1

We assume that the volume polynomial VA associated to A is non-zero. Then
the class [A] is non-zero. Since K is assumed to be a pseudo-manifold, w(I) # 0
for any I € K<, Then Lemma 5.1 shows that Va recovers K.

Remember that

m
(5.6) D, Mi)ywi =0 in H*(A) for any ue V*.
i=1
Let J € K, |J| = n— 1. Since K is assumed to be a pseudo-manifold, there are

exactly two elements ; and iy in [m] such that J U {i;} and J U {ip} are in K.
Multiplying 7 = [ [,c; i to the both sides in (5.6), we obtain

Z(u, Ag)zjxy + {u, Aix)yxi, x g + (u, A(ig)yz,xy =0 for allue V*.

jeJ
Applying § A to the above identity, we have

< 2 J zjz ) A(j) + (J Ty ) A(ir) + (f xizx_j))\(ig)> =0.
ey A A
Since this holds for all u € V*, one can conclude
(5.7) Z (f xij))\(j) + (J xilzJ))\(il) + (J mi2$J))\(i2) =0.
ey Ja A A

Note that the numbers SA i,z and SA 2,y are non-zero. Identity (5.7) shows
that once basis vectors {\(i)}ic; for some I € K< are determined, then the other
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vectors A(k)’s will be determined by the intersection numbers § , 27 where Z consists
of elements in [m] with |Z| = n (an element in Z may appear more than once). On
the other hand, since

1
Va - f,J (11 + -+ )™
n:Ja

the coefficient of ¢* agrees with § A Tz up to some non-zero constant independent
of A. These show that VA determines A up to equivalence.

PRrROPOSITION 5.8. Two complete simplicial toric varieties are isomorphic if
and only if their volume polynomials agree up to permutations of variables. Here it
is assumed that all A\(i)’s are the primitive generators of the rays.

PRrOOF. This follows from the above observation and the fact that two toric
varieties are isomorphic if and only if their fans are isomorphic [3] 1. a

6. A formula for the volume polynomial

We say that the set S of n + 1 vectors in V' =~ R" is in general position,
if any n of them are linearly independent. Any such set determines a multi-fan
whose underlying simplicial complex is a boundary of a simplex K = dA,11}. The
weights of all maximal simplices are the same up to sign due to closedness condition
dwep, = 0. Thus without loss of generality we may assume that all weights are +1
depending on the orientations. We call such multi-fan an elementary multi-fan and
denote it A°(S).

LEMMA 6.1. Let A be an elementary multi-fan determined by the vectors A(1), ...

1)eV. Let0 # (ay,...,ans1) € R* L be a nonzero linear relation on these vectors,
ie. Y agA(i) = 0. Then

(6.1) Val(er, ..y cnt1) = const-(ager + -+ + @p16ns1)"-
for some constant const.
We postpone the proof to subsection 8.3.

REMARK 6.2. It is not difficult to compute the constant: just apply the differ-
ential operator d; for J < [n+1], |J| = n to both sides of (6.1) and use Lemma 5.1.
However, we do not need this constant at the moment and ignore it to simplify the
exposition.

THEOREM 6.3. Let A = (wep, A) be a complete multi-fan. Let v € V be a
generic vector. Then

(6.2)
1 w(l)
Valer,em) = o (araci, + -+ arnc,)",
n! 1—{1'1,;1"}61( | det A H;}:l ar 1
where oy 1, ..., 01, are the coordinates of v in the basis (A(i1), ..., A(in)), and w(I)

is the weight.

We are grateful to Ivan Arzhantsev from whom we learned this fact
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PROOF. We derive a more general family of formulas, and (6.2) will be a par-
ticular case. Let [m/] be a set containing [m] and let

Zen =, 2(J)J € Cp(ApwpR)

se(td)

be a simplicial chain such that dz., = wep, (it exists since w.p, considered as an
element in Cy,(A[,1; R), is closed hence exact). Consider any function n: [m'] — V'
which extends A: [m] — V and satisfies the condition: for any J = {j1,...,jn+1}
with z(J) # 0 the vectors 1(j1),...,n(jnt+1) are in general position. Thus for any
such J we can construct an elementary multi-fan A% (n(J)).

In the group of multi-fans we have a relation A = ZJE(E:TE) 2(J)A (), if

A is considered as a multi-fan on [m’]. Volume polynomial is additive, thus we get

(6.3) Va= > 2()Vaauy-

ge(trh)

Therefore, any simplicial chain whose boundary is w.j gives a formula for the
volume polynomial. Now let us consider the particular case, namely, the cone over
Wep. Let [m'] = [m] u {r} and set n(r) = v, for a generic vector v € V. So the
phrase “v is a generic vector” means that the set A\(I) L {v} is in general position
for any I < [m] such that |I| = n and w(I) # 0. The function z on the cone is
defined in an obvious way: z(I u {r}) := w(I).

Relation (6.3) and Lemma 6.1 imply

(6.4) Va = > const -w(l) - (arici, + -+ araci, + Bres)"
I={i1,....in}[m]

The tuple (ar1,-..,0rn,5r) is a linear relation on the vectors A(i1), ..., A(in),v.

Therefore we may assume that 8y = —1 and (ay1,...,ar,) are the coordinates of

v in the basis A(i1), ..., A(in).
Left hand side of (6.4) does not depend on ¢, (it is a redundant support pa-
rameter), therefore we may put ¢, = 0:

(65) Va = Z Aj w(I) . (Oé[JCil + -+ Oé],ncin)n.

To compute the constants A; take any J = {ji1,...,jn} € K and apply the
differential operator 0; = FL S a% to the identity (6.5). On the left we have
4 Jin

Ci1
0;Va = %, according to Lemma 5.1. On the right side all summands with
I # J vanish, and the one with I = J contributes n!- Ay - w(J)[]; as;. Thus
Ay = %W and the statement follows. O

REMARK 6.4. Note that the formula (6.2) can be applied to compute the volume
of a simple convex polytope in the case when the polytope is described as the
intersection of half-spaces with the given equations. In this case the formula is
known as Lawrence’s formula [8]. It has found applications in explicit volumes’
calculations.

EXAMPLE 6.5. Consider the standard fan A of CP?, generated by the vectors
A1) = (1,0), A(2) = (0,1), A(3) = (—1,—1). Take the generic vector v = (1,2).
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We have
v=A(1) 4+ 2X\(2) = A(2) — A(3) = =2A(3) — A(D).
Theorem 6.3 implies

1/1 1
Va = 3 (2(01 +2¢2)% — (c3 — ¢3)* + 5(—01 — 203)2) )

This expression equals %(01 +co+c3)?. The same expression is given by Lemma 6.1.

ExAMPLE 6.6. Consider the normal fan of the standard m-cube. The un-
derlying simplicial complex is isomorphic to the boundary of cross-polytope. Let
{1,...,mn,—1,...,—n} be its set of vertices, so the maximal simplices have the form
{£1,...,£n}. We have \(£i) = *e;. Take the generic vector v = e; + -+ + e,,.
Then Theorem 6.3 implies

1 1
VA = ﬁ Z T(Elcql + -+ Ence”n)n.
! (€1,eeeren)E{+,—}" i=1 €i

On the other hand, we have VA = [ [,(c; + ¢—;) by geometrical reasons. Indeed, the
polytope dual to A is the brick with sides {c¢; + c¢_;}ie[]- By setting c_; = 0 for
each 7 we get the identity

(6.6) [Tei= o 3 (-1,

i=1 =

where ¢; = >)._; ¢;. This identity is well known as discrete polarization identity.

iel

REMARK 6.7. The proof of Theorem 6.3 implies the following consideration.
Take two simplicial n-chains zen1,2cn2 € Cn(Apn);R) endowed with functions
M1, M2 [m] — R™ such that n.(J) is in general position for any simplex J of the
chain zcpe, € = 1,2. Assume that dzep1 = dzen,2 and the functions 7y, 7. agree
on the vertices of the boundary. Then the volume polynomial of the multi-fan
A = (dzen,1,m) = (dzch2,m2) can be expressed by two formulas:

Z const -z1(J)(asi¢, + -+ agnt16,.,)" = Va
.]=(j1 ..... jn+1)C[ml]
= Z const -zo(J)(as1cj, + -+ agng1¢,, )"
J=(j1,...,jn+1)C[m’]
We may take a difference of the left and right parts and summarize as follows. Let
us take any closed simplicial n-chain z.,, dz., = 0, on the vertex set [m'], and
endow it with a function n: [m’] — R™ which is in general position on any simplex
J of the chain. Then we get an identity
Z const -z(J) (g1, + -+ @yni16j,,,)" =0

J=(j15--dn+1)<=[m/]
(the constants may be computed by the same method as we used previously). This
seems to be a quite general way to construct algebraical identities from geometrical

data.
This idea can be illustrated by a simple identity obtained in Example 6.5:

1 1
5(01 + 262 — 64)2 — (CQ — C3 — 04)2 + 5(761 — 263 — 64)2 = (Cl + C2 + 03)2.

This identity is induced by the schematic picture shown on Fig.3. Note that the
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2 2(0,1) 2 2(0,1)

3 1 3 1
(—1,—1) (1,0) (-1,—1) (1,0)

FI1GURE 3. Two simplicial chains with vector functions having the
same boundary

last step in the proof of Theorem 6.3 was to specialize ¢4 = 0, but even without
this specialization the identity holds true.

7. Poincare duality algebra of a multi-fan
7.1. Poincare duality algebras.

DEFINITION 7.1. Let k be a field. Let A* = (—B?:O A% be a finite-dimensional
graded commutative k-algebra such that

e there exists an isomorphism § ,: A*" — k;
e the pairing A’ ® A2""?? -k, a®@b — SA(a - b) is non-degenerate.
Then A is called a Poincare duality algebra of formal dimension 2n.

Let 0; = a%j, 1 € [m] be the differential operator acting on the ring of poly-
nomials R[cy, ..., ¢m] in a standard way. For a subset I < [m] let @; denote the
product [ [, ; 0;.

Consider the algebra of differential operators with constant coefficients D :=
R[0y, ..., 0m]- It will be convenient to double the degree, so we assume deg d; = 2,
i € [m] (while still assuming that degc; = 1). For any non-zero homogeneous
polynomial ¥ € R[ey, ..., ¢,] of degree n we may consider the following ideal in D:

Amn VU :={DeD| DV = 0}.

It is not difficult to check that the quotient D/ Ann ¥ is a Poincare duality algebra
of formal dimension 2n (see [20, Prop.2.5.1]), where the “integration map” assigns
the number DV € R to any differential operator of rank n (i.e. of formal degree 2n
in our setting).

It happens that every Poincare duality algebra generated by degree two can be
obtained by this construction as the following proposition shows.

PROPOSITION 7.2. Suppose chark = 0 and let k[m] = k[z1,...,2Zn] be a poly-
nomial ring, where degx; = 2. Then the following three sets of objects are naturally
equivalent:

(1) Poincare duality algebras A* of formal dimension 2n which are the quo-
tients of the polynomial ring k[m];

(2) Non-zero homogeneous polynomials ¥ € K[c1,...,cm] of degree n (where
degc; = 1) up to multiplication by a non-zero constant;

(3) Non-zero linear maps §: k[m]a, — k up to multiplication by a non-zero
constant.
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PrOOF. We give a very brief sketch of the proof. For details the reader is
referred to the monograph [11] which, among other things, describes the case
chark # 0 (for general fields instead of a polynomial ¥ one should take an ele-
ment of divided power algebra). Also we would like to mention that an equivalence
of (1) and (2) is a manifestation of the well-known phenomenon called Macaulay
duality (or its extended version, Matlis duality).

(1)=(3). Let A* =~ k[m]/Z be a Poincare duality quotient of the ring of
polynomials. Then we have a linear isomorphism { e A?" — k. The composite

k[m]a, — A" -k

is the required linear map.

(3)=(1). Given a linear map {: k[m]2, — k we may define a pairing k[m]s, ®
k[m]an—2p — k by a®b — {a-b. This pairing is degenerate and we define its
kernel:

W= @ WP, W = {zeklml, | Jx K[m]an_2p = O}.

It is easy to check that W* < k[m] is an ideal and k[m]/W* is a Poincare duality
algebra.
(3)=(2). We construct a polynomial ¥ in cy,..., ¢y, by

1 n
\Il::af(clx1+~--+cmxm) .

This polynomial is non-zero. Indeed, k[m]s, is additively generated by the mono-
mials of degree n in the variables x;. Each monomial can be expressed as a linear
combination of expressions of the form (ci1x1 + -+ + ¢ay,)™ for some constants ¢;
as follows from the polarization identity (see (6.6) in Example 6.6 below). Thus
expressions of the form (c121 + -+ + ¢pam)™ linearly span k[m]s, and therefore,
since § is non-zero, the polynomial ¥ is not a constant zero as well.

(2)=(1). Given a homogeneous polynomial ¥ in the variables cy,...,¢p, we
may construct a Poincare duality quotient k[01,. .., 0p]/ Ann ¥, where the action
of 0; = aici on polynomials is defined formally in the usual way.

The consistency of all these constructions is a routine check. O

The same arguments can be used to prove that there is a one-to-one correspon-
dence between Poincare duality quotients of formal dimension 2n of an algebra B*
and the non-zero linear functionals on the linear space B2". For this correspondence
we do not need the assumptions that B is generated by degree 2 and chark = 0.
This motivates the following definition.

DEFINITION 7.3. Let B* = @j B% be a graded commutative k-algebra and
suppose that for some n > 0 a non-zero linear map §: B?>" — k is given. The
corresponding Poincare duality quotient of B*, i.e. the algebra

B /W*, W — (be B | Jb B2 _ ().

is denoted by PD(B*, {) and called Poincare dualization of B¥ (w.r.t. §).

LEMMA 7.4. Consider two algebras Bf, BY with the given non-zero linear maps
§,: BI" =k, §,: B3" — k. Let p: Bf — Bj be an epimorphism of algebras con-
sistent with the integration maps: Sz O(p|B%n = Sl. Then @ induces an isomorphism
PD(B},§,) = PD(B3,§,).
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PRrROOF. From the surjectivity of ¢ it easily follows that the kernel W7 of the
intersection pairing in the first algebra maps to the kernel W3 of the second algebra.
Thus the homomorphism &: PD(BF,§,) — PD(B3,{,) is well defined. Obviously
it is surjective. Let us prove that @ is injective. The map @ is an isomorphism in
degree 2n. Suppose that $(a) = 0 for some 0 # a € PD(BY, {,)2,. By the definition
of Poincare duality algebra, there exists b € PD(BF, §,)2n—2p such that ab # 0. But
then we have @(ab) = $(a)@(b) = 0 which gives a contradiction. O

In the following let A*(¥) = D/ Ann ¥ denote the Poincare duality algebra
corresponding to the homogeneous polynomial ¥ of degree n.

7.2. Algebras associated with multi-fans. The linear maps §, : H*"(A) —

R and SA R[m]* R[z1,...,Zm]2n — R are consistent with the natural projection
R[z1,...,%m] — H*(A). Thus Lemma 7.4 implies an isomorphism
PD(H*(A),J )~ PD(R[mLJ .
A A,R[m]

According to the constructions mentioned in the proof of Proposition 7.2, this
Poincare duality algebra is also isomorphic to A*(Va) = D/ Ann VA, where Va is
the volume polynomial.

DEFINITION 7.5. Let A be a complete simplicial multi-fan of dimension n with
m rays. Then the algebra

A*(A) := D/ Ann Va = PD(H*(A),J
A

) = PD(m], |

A,R[m]

is called a multi-fan algebra of A.

REMARK 7.6. The constructions above show that there is a ring epimorphism
from H*(A) =~ R[K]/© to A*(A) = PD(H*(A),{,), sending x; to ¢; for each
i € [m]. Therefore A*(A) can be considered as a quotient of H*(A), and all the
relations in R[K]/O are inherited by A*(A). We have

0;jVa =0for J ¢ K (Stanley—Reisner relations),

( Z Xij0i)Va=0forj=1,....,n (Linear relations).
i€[m]

This proves points 1 and 2 of Lemma 5.1 in a more conceptual way.

8. Structure of multi-fan algebra in particular cases

8.1. Ordinary fans. As was mentioned in the introduction, when A is a
normal fan of a simple convex polytope P, the construction of the algebra A*(A) =
D/ Ann VA was introduced by Timorin in [20]. In this case the underlying simplicial
complex of A is a sphere and the weight function takes value +1 on all maximal
simplices of K. Using purely combinatorial and geometrical considerations Timorin
proved that A*(A) =~ R[K]/O. This means, in particular, that the dimension
d; = dim A% (A) is equal to h;, the h-number of K (see the definition below). The
developed technique is applied to prove that A*(A) is a Lefschetz algebra, meaning
that there exists an element w € A?(A) such that

Xwn72k2A2k—>.A2n72k
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is an isomorphism for each k& = 0,...,[n/2]. In particular this implies that the
distribution of A-numbers of convex simplicial spheres is unimodal, i.e.

hO < hl SRR h[n/Q] = hnf[n/Q] = 2 hn—l = hn~

According to Timorin’s result, Lefschetz element w may be chosen in the form
c1(P) = ¢101 + -+ + ¢0Om € A%(A) where P is any convex simple polytope with
the normal fan A and ¢4, ..., ¢, are its support parameters.

For complete non-singular fans the algebra A*[A] = R[K]/© coincides with
the cohomology algebra H*(Xa;R) of the corresponding toric variety. It was the
original observation of Stanley [18], that in the case when a fan A is polytopal,
the corresponding complete toric variety Xa is projective, therefore there exists a
Lefschetz element in its cohomology ring according to hard Lefschetz theorem.

After Stanley’s work, several approaches were developed to prove the existence
of Lefschetz elements in elementary terms, i.e. without referring to hard Lefschetz
theorem. These approaches include in particular McMullen’s construction of the
polytope algebra [9], the approach based on continuous piece-wise polynomial func-
tions [2], and Timorin’s construction based on the volume polynomial and differ-
ential operators [20].

We will see that ordinary fans are not the only examples of multi-fans for which
the structure of A*(A) can be explicitly described. On the other hand, A*(A) is
always a Poincare duality algebra, so it is natural to ask if it is Lefschetz (or at
least if the dimension vector (dp,dy, ..., d,) is unimodal). Later we will show that
this is not true in general, see Theorem 10.1.

8.2. Combinatorial preliminaries. For now we concentrate on multi-fans
based on oriented pseudomanifolds as described in Example 2.9. Let K be a pure
simplicial complex of dimension n — 1 on the vertex set [m].

Let f; denote the number of j-dimensional simplices of K for j = —1,0,...,n—
1, in particular we assume that f_; = 1 (this reflects the fact that the empty simplex
formally has dimension —1). The h-numbers of K are defined by the formula:

(8.1) i hit" ™7 = i fima(t =1,
=0 =0

where t is a formal variable. Let ﬁj (K) denote the reduced Betti number dim H G (K)
of K. The h'- and h"-numbers of K are defined by the formulas

(8.2) h; = hj + <7;> (2(—1)j_3‘1ﬁ~8_1(K)> for 0 < j <m;

s=1

83 1=t (") B = b+ (1) @(—1)1‘-8—1&_1@))

for 0 <j<n—1,and h! = h!,. The sum over an empty set is assumed zero.
8.3. Homology spheres.

DEFINITION 8.1. K is called Cohen—Macaulay (over k), if ﬁj(le I;k) =0 for
any I € K and j < dimlkg I = n—1—|I|. If, moreover, ﬁn_1_|1|(1kK I;k) ~ k for
any I € K, then K is called Gorenstein® or (generalized) homology sphere.
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The famous theorems of Reisner and Stanley (the reader is referred to the
monograph [16]) tell that whenever K is Cohen-Macaulay (resp. Gorenstein®), its
Stanley—Reisner algebra k[K] is Cohen—Macaulay (resp. Gorenstein).

Given a characteristic function A: [m] — V =~ R™ we obtain a linear system of
parameters 61, . ..,0, € R[K]. It generates an ideal which we denoted by © < R[K]
in subsection 4.2. In Cohen—Macaulay case every linear system of parameters is a
regular sequence. This implies [16]:

dlm(R[K]/@)Qj = hj.

If K is a homology sphere, then R[K] is Gorenstein. Thus its quotient by a linear
system of parameters R[K]/O is a Gorenstein algebra of Krull dimension zero. This
implies that R[K]/O is a Poincare duality algebra [11, Part 1].

Now let A be a complete multi-fan based on a homology sphere K. We have the
ring epimorphism R[K]/© — A*(A) (see Remark 7.6). Since both algebras have
Poincare duality, it is an isomorphism (see Lemma 7.4). This proves the following

THEOREM 8.2. Let A be a complete multi-fan based on a homology sphere K.
Then A*(A) = R[K]/O. It follows that dim A%/ (A) = h;, the h-number of K.

Note that Poincare duality implies the well-known Dehn-Sommerville relations
for homology spheres: hj = h,_;.
We are in position to prove Lemma 6.1 which states that the volume polynomial

of an elementary multi-fan A on the vectors A(i) e V (i = 1,...,n+1), is equal, up
to multiplicative constant, to (Z?:Jrll a;c;)™, where (aq, ..., an41) is a linear relation
on A(%)’s.

ProOF OF LEMMA 6.1. The underlying simplicial complex of A is the bound-
ary of a simplex, which is a sphere. Therefore, by Theorem 8.2 we have A*(A) ~
R[0A[;,411]/©. Hence the ideal Ann VA < R[01,...,0nq1] is generated by H;fll 0;
(Stanley—Reisner relation) and linear differential operators 6; = Z?:ll Ai,j0; for
j =1,...,n. Here (\;;)j_; are the coordinates of the vector A(i) for each i =
1,...,n+ 1. Since Y77 a;A(i) = 0 we have a linear relation ' ;A\ ; = 0 for
each j = 1,...,n. Now it is easy to check that the differential operators 1—[?:11 0; and
0; = Z?jll Xi;j0i, j =1,...,n annihilate the polynomial (aqc1 + -+ + nyicn1)™
Thus, according to Proposition 7.2, Va coincides with (ajc; + -+ + apt16n41)™ up
to constant. O

8.4. Homology manifolds.

DEFINITION 8.3. K is called Buchsbaum (over k), if ﬁIj(le I;k) = 0 for any
IeK,I+#@andj<dimlkg I =n—1-|I]. If, moreover, H, ;| (lkg I;k) = k
for any I € K, I # @, then K is called a homology manifold. K is called an
orientable homology manifold if I?n,l(K; Z)~7.

The difference from the Cohen—Macaulay case is that there are no restrictions
on the topology of K = lkgx & itself. Similar to Cohen—Macaulay property, the
term “Buchsbaum” indicates that the corresponding algebra k[K] is Buchsbaum
(the result of Schenzel [15]). In Buchsbaum case linear system of parameters is
no longer a regular sequence. Nevertheless, Buchsbaum complexes are extensively
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studied. First, Schenzel’s theorem [15] tells that if K is a Buchsbaum complex,
then

for j =0,...,n and the h'-numbers determined by (8.2). Second, there is a theory
of socles of Buchsbaum complexes introduced by Novik and Swartz [12] which we
briefly review next.

Let M be a module over the graded polynomial ring k[m] := k[z1,...,Tn].
The socle of M is the following subspace

Soc M :={ae M|a-klm]; = 0}.

which is obviously a k[m]-submodule of M.
If K is Buchsbaum, then there exists a submodule Inygs = Soc(k[K]/©) such
that

(Ing)a; = (’;) HY(K;k),

where the right hand side means the direct sum of ( ) copies of Hi=1(K;k). More-
over, the result of [13] tells that whenever K is an orlentable connected homology
manifold, then Ing coincides with Soc(k[K]/O) and the quotient

(k[K]/0)/I5%"

is a Gorenstein algebra (thus Poincare duality algebra). Here I5%" is the part of
Ins taken in all degrees except the top one, 2n. The definition of A”-numbers (8.3)
implies that

dim((k[K]/©)/I5E")2; = b for 0 < j <n.
Now let A be a complete multi-fan based on an orientable connected homology

manifold K. Recall from Definition 7.3 that W* denotes the subspace of H*(A) =
R[K]/© whose graded components are

(8.4) W = {a€ RIK)/O); | [a- (RIK]/O)ars; = 0)

- {a€ (RIKYO)y | |- Rimlan-a; = 0.

By definition, A*(A) = PD(R[K]/O) = (R[K]/0)/W*. The socle Soc(R[K]/O)
lies in W* in all degrees except the top one since it is killed by R[m].. Therefore
we have a well-defined ring epimorphism

(RIK]/©)/IFE" — A*(A).
Again, since both algebras have Poincare duality, there holds

THEOREM 8.4. Let A be a complete multi-fan based on oriented connected ho-
mology manifold K. Then A*(A) =~ (R[K]/©)/Ix%". It follows that dim A% (A) =
b7, the " -number of K.

In this case Poincare duality implies the well-known generalized Dehn—Sommeruville
relations for oriented homology manifolds: h7j = hy_, (see [12] and references
therein).
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8.5. General situation. Let A be an arbitrary complete multi-fan. In the
largest generality we do not have a combinatorial description for the dimensions of
graded components of the multi-fan algebra.

CONJECTURE 8.5. Let wep, be a simplicial cycle, A\: [m] — V a characteristic
map, and A = (wep, A) the corresponding complete multi-fan. The numbers d; =

dim A% (A) do not depend on \.

9. Geometry of multi-polytopes and Minkowski relations

Here we give another proof of Theorem 8.4 which shows the geometrical nature
of the elements lying in the socle of R[K]/© when K is an oriented homology man-
ifold. It relates on explicit computations in coordinates but reveals an interesting
connection with the Minkowski type relations, appearing in convex geometry. Recall
the basic Minkowski theorem on convex polytopes.

THEOREM (Minkowski). (1) (Direct) Let P be a convez full-dimensional poly-
tope in euclidian space R™. Let Vi,...,Vy, be the (n — 1)-volumes of facets of P
and ny,...,ny, be the outward unit normal vectors to facets. Then ), Vin; = 0
(the Minkowski relation).

(2) (Inverse). Let ny,...,n,, be the vectors of unit lengths, spanning R™, and
let Vi,...,Vy, be positive numbers satisfying the Minkowski relation. Then there
exists a convex polytope P whose facets have outward normal vectors n; and volumes
Vi. Such polytope is unique up to parallel shifts.

Usually only part (2) is called Minkowski theorem, since part (1) is fairly simple.
The direct Minkowski theorem has a straightforward generalization.

THEOREM 9.1. Let Y} asQs be a collection of k-dimensional multi-polytopes in
euclidian space R™, forming a closed orientable cycle. Let Vol(Qs) be the k-volume,
and vy € A""FR™ be the unit normal skew form of the multi-polytope Q5. Then
there holds a relation Y,  as Vol(Qs)vs = 0 in A"FR™,

In the next subsection we explain the precise meaning of the terms used in the
statement and give the proof.

9.1. Cycles of multi-polytopes. As before, V* =~ R™ denotes the ambient
affine space of n-dimensional polytopes, coming with fixed orientation. Let k < n
and let IT be an oriented k-dimensional affine subspace of V*. Let @ be a k-
dimensional multi-polytope in II. Then @ will be called a k-dimensional multi-
polytope in V*.

First let & > 0. Denote by GMPy, the group (or a vector space over R)
freely generated by all k-dimensional multi-polytopes in V*, where we identify the
element @ (i.e. @ with reversed orientation of the underlying subspace) and —@Q.
If £ = 0, the multi-polytope is just a point with weight. In this case let GMPy
denote the group of formal sums of points whose weights sum to zero. Formally set
GMP_; = 0. Define the differential d: GMP — GMPj_1 by setting

dQ := > R,
F;: facet of @

and extending by linearity. Note that each facet comes with the canonical orienta-
tion: we say that the hyperplane H; containing F; is positively oriented if

(a positive basis of H;, \(7))
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is a positive basis of V. Thus the expression above is well defined.

DEFINITION 9.2. An element A = ) a,Q, € GMP;, which satisfies dA = 0 is
called a cycle of k-dimensional multi-polytopes.

As in Section 5, assume that there is a fixed inner product in V. This allows to
define the inner product on the skew forms. In particular, if II is an oriented affine
k-subspace in V* =~ V, we may define its unit normal skew form vy € A" FV as
the unique element of A FII+ ~ R which corresponds to the positive orientation
of TI*+ and satisfies |vp|| = 1. It is easy to see that if dim IT = n — 1, the form vy is
just the positive unit normal vector to II.

Let us prove Theorem 9.1.

PROOF. The idea of proof is straightforward and quite similar to the proof of
classical Minkowski theorem: at first we prove the case k& = n, then reduce the
general case to the case k = n by projecting >} as Vol(Qs)vs to all possible k-
subspaces. Note that the case n = 0 should be treated separately, but in this case
the statement is trivial.

(1) Suppose k = n. Then all multi-polytopes @ are full-dimensional. Their
underlying subspaces Il coincide with V' up to orientation. Without loss of gener-
ality assume that all orientations coincide with that of V. Normal skew forms lie
in A°V =~ R and are equal to 1. Hence we need to prove that > as Vol(Q4) = 0 for
any cycle of n-multi-polytopes. Recall the wall-crossing formula [7, Lemma 5.3]:

LEMMA 9.3. Let P be a multi-polytope and H = H; be one of the supporting
hyperplanes: H = H;. Let u, and ug be elements in V*\U?ll H; such that the
segment from uq to ug intersects the wall H transversely at u, and does not intersect
any other H; # H. Then

DHp(uq) — DHp(ug) = Z sgnug — tg, (i)Y DHp, (1),
’i:Hi:H
where F; is the facet of P, and DHp,: H; — R is its Duistermaat-Heckman func-
tion.

Consider a cycle of multi-polytopes A = le=1 asQs. Let H denote the set of
all supporting hyperplanes of all polytopes Qg, s = 1,...,l. We have a function

l
DH,: V¥\ | )] H—R, DHu:= ) a,DHg,.
HeH s=1

Let us choose a hyperplane H € H and two points u, and ug in V*\ |y H such
that the segment from u, to ug intersects the wall H transversely at ;1 and does not
intersect any other wall from . Let us sum the differences DHp(uo) — DHp(ug)
taken with coefficients as over all multi-polytopes @, for which H is a supporting
hyperplane. Since dA = 0, Lemma 9.3 implies that this sum is zero. Obviously,
this sum equals DH 4 (uq) — DHA(ug).

This argument shows that crossing of any wall does not change the value of
DH4. Therefore, DH, is constant (where it is defined). Since DH4 has compact
support, it must be constantly zero. Thus

D a,Vol(Qs) = j DH,4 = 0.
vk
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(2) Let us prove the theorem for general k. Consider a generic oriented k-
subspace II ¢ V* and let v € A"~*V* be its normal skew form. Let I': V* — II
be the orthogonal projection. Then the image of Q5 under I' is a full-dimensional
multi-polytope in II, which we denote by I'(Q;). The sum Zizl asT'(Qs) is a cycle
of k-dimensional multi-polytopes in II. Therefore, step (1) implies

l
> a,Vol(T'(Qy)) = 0.
s=1

By the standard property of orthogonal projections we have

Vol(D(Q4)) = Vol(Qs) - (e, v).

l
<;1as Vol(Qs)vs, z/> =0,

and this holds for any generic skew form v. Thus Zi:l as Vol(Qs)vs = 0 which was
to be proved. [

Hence

9.2. Relations in A*(A) as Minkowski relations. Let K be an oriented
homology (n — 1)-manifold and A be a multi-fan based on K. Suppose that every
simplex I € K is oriented somehow. This defines an orientation of each subspace
Hp =(,e; Hi (for example, by the rule “positive orientation of H;”@®M(i1) @ - -- @
A(ix) is a positive orientation of V' if (i1,. .., i) is a positive order of vertices of I).
Recall from Section 5 that A(I) denotes the skew form /\;.; A(i) and covol(I) =
|A(I)|. Consider an arbitrary skew form pu e A*¥V* and let

AD) = D).,

Let C¥(K;R), 0 < k < n—1 denote the group of cochains on K and §: C*(K;R) —
Ck*1(K;R) be the standard cochain differential. We also need to augment the
cochain complex in the top degree, so we formally set C"(K;R) := R and let
§: C"Y(K;R) —» C"(K;R) be the evaluation of a cochain on the fundamental
chain of K.

An element a € C*1(K;R), k < n will be called a (coaugmented) cocycle if
da = 0. Then, since K is an oriented manifold, the Poincare dual >’ 5 a(!)Fr
of a is a cycle of (n — k)-dimensional multi-polytopes in V*. (Notice that in the
case k = n we get a formal sum of points whose weights sum is zero. If we do
not require that a is coaugmented, then we do not get a cycle of 0-dimensional
multi-polytopes).

PROPOSITION 9.4. For any coaugmented cocycle a € C¥~Y(K;R) and any p €
A*V there exists a relation

DT a0 =0
I:|I|=k
in A*(A) = (R[K]/©)/I5%"
PrROOF. Let us apply thzk a(I)X(I),0r to the volume polynomial VA and
evaluate the result at a point ¢ = (c1,...,¢n):

Z a(I))\(I)Mé’IVME: Z a([)/\([)um

I:|I|=k I:|I|=k
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Here we used Lemma 5.1. Note that the skew form A(I)/covol(I) is by definition
a unit normal skew form to the ambient subspace of a multi-polytope F;. Since
Zl:III:k a(I)Fr is a cycle of multi-polytopes, Theorem 9.1 implies
AU)
I)Vol(Fj)——= =
Z all) Vol( I)covol(l)
I:|I|=k
Taking inner product with p implies

VOl(FI)
D), —————= =
Z (DX )“covol(I)
I:|T|=k
Hence the polynomial >/, ) a(I)A(1).0rVa evaluates to zero at any point c.
Therefore it vanishes as a polynomial. Thus .., a(I)A(I),0r € AnnVa which
proves the statement. [

We see that Minkowski theorem allows to construct linear relations in A*(A).
Actually these relations exhaust all relations in A*(A). Let us state the result of
[1] in terms of Minkowski relations:

PROPOSITION 9.5 ([1]). Let K be an oriented homology manifold.

(1) There is an isomorphism of vector spaces

(RIK)/@)or = Gy | Te K, |1 = 1/ Y] alDANDar )

I:|I|=k

where a runs over all exact (k — 1)-cochains on K and pu runs over AFV.
(2) There is an isomorphism of vector spaces

(RIK)/O)/T5%" ok = (o | Te KT = ky/ Y alDADar )
| I|=k

where a runs over all coaugmented closed (k — 1)-cochains on K and u
runs over AFV.

Recall that (Ins)or = (3)H" '(K;R). From Proposition 9.5 it can be seen
that the difference between the vector spaces R[K]/© and (R[K]/©)/I5%" arises
from the difference between closed cochains on K and exact cochains. This explains
how the cohomology H*~!(K) appears in the description of Iyg. The multiple (Z)
comes from the choice of the skew form p € A¥V on which we project the Minkowski
relation.

PROBLEM 9.6. Let A be a general complete simplicial multi-fan. Is it true that
A*(A) is isomorphic, as a vector space, to the quotient of {xr | I € K) by linear
relations arising from Minkowski relations? What are these Minkowski relations?

9.3. Inverse Minkowski theorem. It is tempting to formulate and prove
the inverse Minkowski theorem for multi-polytopes. First, we need to modify the
statement. The original formulation tells that there exists a convex polytope with
the given normal vectors and the volumes of facets, but it tells nothing about the
combinatorics of the polytope. We may ask a more specific question, namely

QUESTION 9.7. For a given complete simplicial multi-fan A with the rays gen-
erated by unit vectors ny,...,n,, and a given m-tuple of real numbers Vi, ...,V
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satisfying >, Vin; = 0, does there exist a multi-polytope based on A whose facets
have (n — 1)-volumes Vi, ..., Vi, ¢ If yes, is it unique?

A simple example shows that the answer, even for the question of existence,
may be negative.

ExAMPLE 9.8. Let A be the normal fan of a 3-dimensional cube. A is an ordi-
nary fan supported by a simplicial complex K, which is the boundary of an octa-
hedron. Let {1,2,3, —1,—2, —3} be the set of vertices of K and A\(£1) = (+1,0,0),
A(£2) = (0,+1,0), A(£3) = (0,0, £1) be the generators of the corresponding rays of
A (see Example 6.6). The multi-polytopes based on A are the bricks with sides par-
allel to coordinate axes. Minkowski relations can be written as Vol(F;) = Vol(F_;)
for i = 1,2,3. Let us take the numbers Vi1 = 0, Vio = Vi3 = 1. These numbers
satisfy Minkowski relations, but we cannot find a brick whose facets have volumes
Vi1, Vig, Vis. Indeed, Vi = 0 implies that one of the sides of a brick has length
0, but this would imply that either V1o =0 or Vi3 = 0.

Nevertheless, the answer to Question 9.7 is completely controlled by the multi-
fan algebra. Recall that A*(A) may be interpreted as the algebra of differential
operators D up to Ann(Va). Therefore, for every a € A% (A), there is a well-defined
homogeneous polynomial aVa of degree n — j. In particular, each element a €
A?"=2(A) determines a linear homogeneous polynomial aVa = Vicy + -+ Ve €

Rleq, ... ¢m]1-  This linear polynomial is annihilated by 6; = Zie[m] Xij0; €
AnnVa, j=1,...,n, see Lemma 5.1 or Remark 7.6. This means
(9.1) >} ViA(i) = 0,

i€[m]

which can be considered as a Minkowski relation. Let Mink denote the vector space
of all m-tuples (V1,...,V,,) satisfying (9.1). Thus we obtain a natural monomor-
phism 7n: A?"2(A) — Mink, a — (Vi,..., V), where aVa = Viey + -+ + Ve,

THEOREM 9.9. Let A be a complete simplicial multi-fan with characteristic
function X\ and assume that |\(i)| = 1 for each i € [m]. Let V = (Vi,..., Vi) €
Mink. Let P € Poly(A) be a multi-polytope and dp = 101 + ++ + cyOm € A%(A)
be its first Chern class. Then the polytope P has facet volumes Vi,...,V,, if and
only if n(d% ) = (n— 1V,

PROOF. Assume that 7(d% ") = (n—1)!V. Then 0% 'Va = (n—1){(Vies +-- -+
VinCm). Hence 0;0% 'Va = (n—1)!V; for i € [m]. On the other hand, Corollary 5.7
implies

0; 0% *Va = (n — 1) Vol(F};)/ covol(i) = (n — 1)! Vol(F};)/|\(i)| = (n — 1)! VOI(F}).
Thus V; = Vol(F;). The other direction is proved similarly. O

Note that dim Mink = m — n.

COROLLARY 9.10. Ezistence in Question 9.7 holds for a given multi-fan A and
all m-tuples (V1,...,V,,) € Mink if and only if the following two conditions hold:

(1) dim A%(A) = dim A" 2(A) = m — n;
(2) the power map A%(A) — A*"2(A), 0 — 0" is surjective.

Uniqueness holds if the power map is bijective.
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REMARK 9.11. Note that even the condition dim A%(A) = m — n may fail
to hold. As an example, consider a multi-fan having a ghost vertex, say 1. As
in general, we have n relations #1,...,0,, lying in the kernel of the linear map
(O1y...,0my — A%(A). But the element ¢, corresponding to the ghost vertex, also
vanishes in A?(A). Thus dim A%*(A) < m —n.

There exist more nontrivial examples. For example, if the underlying simpli-
cial complex K is disconnected, with connected components K1, ..., K, on disjoint
vertex sets [m1],...,[m,], r > 1, then each connected component contributes at
most my — n in the total dimension of A%(A) (see the operation of connected sum
of Poincare duality algebras introduced in subsection 11.1). Thus in the discon-
nected case dim A%(A) < m — rn. Nevertheless, the inverse Minkowski theorem
can be refined in an obvious way: we should consider Minkowski relations on each
connected component.

REMARK 9.12. The power map A2?(A) — A*"~2(A) is a polynomial map of
degree n — 1 between real vector spaces of equal dimensions. It is a complicated
object which may be interesting on its own. One of the consequences from Corollary
9.10 is that the existence in the inverse Minkowski theorem holds for a multi-fan A
whenever dim A2(A) = m —n and n is even.

10. Recognizing volume polynomials and multi-fan algebras

A natural question is: which homogeneous polynomials are the volume polyno-
mials, and which Poincare duality algebras appear as A*(A)? The answer to the
second question seems quite unexpected.

THEOREM 10.1. For every Poincare duality algebra A* generated in degree 2
there exists a complete simplicial multi-fan A such that A* =~ A*(A).

Recall that the symmetric array of nonnegative integers (do,d1,...,dy), d; =
dp—j, is called unimodal, if
do < di <+ < dpa-
COROLLARY 10.2. There exist multi-fans A, for which the array
(dim A%(A), dim A%(A),...,dim A% (A))
is not unimodal.

PROOF. An example of Poincare duality algebra generated in degree 2, for
which dimensions of graded components are not unimodal was given by Stanley
in [19]. Theorem 10.1 implies that there exists a multi-fan, which produces this
algebra. O

The construction of the volume polynomial is additive with respect to weights.
Let MultiFansy denote the vector space of all multi-fans with the given character-
istic function A: [m] — V. Then we obtain a linear map

(10.1) Qy: MultiFansy — R[e, ..., emln,

which maps A to its volume polynomial Va.

Before giving the proof of Theorem 10.1 we characterize volume polynomials of
general position, in the sense explained below. For this goal we study the properties
of the map .
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10.1. Characterization of volume polynomials in general position.
There is a necessary condition on Va. If A is a characteristic function and 6; =
Zie[m] Xij0i € (01,...,0m), j = 1,...,n are the corresponding linear forms, then
0;Va = 0, see Remark 7.6. Thus the subspace

Ann?Va = {D € {01,...,0m) | DVA = 0}

has dimension at least n. It happens that in most situations this is also a sufficient
condition for a polynomial to be a volume polynomial.

At first let us consider the situation of general position to demonstrate the
argument. Assume that all characteristic vectors A(1),...,A(m) € R™ are in general
position, which means that every m of them are linearly independent. Given a
fixed characteristic function A: [m] — V in general position, we may pick up any
simplicial cycle we, € Z (AE:&H; R), consider a complete multi-fan A = (w, \) and
take its volume polynomial. This defines a map which we previously denoted by 2:

Ox: Z(A0TYR) > Rlex, el

from the (n — 1)-simplicial cycles on m vertices to homogeneous polynomials of
degree n. This map is linear and injective by Corollary 5.5. As before, let 0,
j =1,...,n be the linear differential operators associated with A\ (i.e. a basis of
the image of the map AT: V* — (R™)*). Let

Ann" O ={¥ e Rleci,...,cm]n | 0;¥ =0 for each j =1,...,n}

be the vector subspace of polynomials annihilated by differential operators © =
(01,...,6,). As we have seen, if A has a characteristic function A, then Va €
Ann" ©. Thus the image of 2 lies in Ann" ©.

LEMMA 10.3. If X is in general position, then 1y : Zn_l(AEZJl);R) — Ann" ©
is an tsomorphism.

PRrROOF. Let us compute the dimensions of domain and target. There are no
n-simplices in ALV, thus Z, 3 (A1) = Hy_i (A "), All Betti numbers of
AE:&I) between the top and the bottom vanish, thus via Euler characteristic we

get

(10.2)  dim H,_y (A7) = (7:) - (n”_l1> + <n”_12> g (21 <7g)

Now let us compute dim Ann" ©. Take a linear change of variables cy, ..., ¢, v
ch, ..., ¢, such that §; becomes the partial derivative % for j =1,...,n. Thus,
J

after the change of variables, Ann" © becomes the set {¥ € R[c],...,c,]n %\II =

0,j = 1,...,n} which is the same as R[¢/,,...,c}]n,. Thus dimAnn” ©
(mmmim=t) = (™-1). This number coincides with (10.2).

n n

oo

Let G, , denote the Grassmann manifold of all (unoriented) n-planes in (R™)*.
We can introduce the standard Pliicker coordinates on G,y ;. If

(10.3) {9j - i Amxi}jzl
1=1

is a basis in L € Gy, p, then the Pliicker coordinates of L are all maximal minors
of the m x n matrix (A, ;).
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Any n-plane L € G4, 5, determines an m-tuple of vectors in V' =~ R" as follows:
the basis (10.3) determines the tuple {A(i) = (Ai1,. .., Ain)}iem]. The base change
in L induces the natural action of GL(n,R) on the m-tuples. By abuse of termi-
nology we call A: [m] — V the characteristic function corresponding to L € Gy, p,
although this characteristic function is determined only up to automorphism of V.

PROPOSITION 10.4. Let ¥ € R[cq, ..., ¢m]n be a homogeneous polynomial. Sup-
pose that the vector subspace Ann*> W = {D € (0y,...,0,,) | D¥ = 0} contains an
n-dimensional subspace L € Gy, , with all Pliicker coordinates non-zero. Then ¥
s a volume polynomial of some multi-fan.

PRrROOF. Let us pick a basis {#; = >, i jxi}j=1,.» in L arbitrarily. Non-
vanishing of all Pliicker coordinates means that the corresponding characteristic
function A is in general position. By assumption, ¥ € Ann" ©. Thus ¥ is a volume
polynomial of some multi-fan based on A according to Lemma 10.3. ]

10.2. Proof of Theorem 10.1. Let A* be an arbitrary Poincare duality
algebra over R generated by A2. Let 2n be the formal dimension of A and p =

dim A2. Take any p + n elements z1,...,T,1, € A% in general position (i.e. every
p of them are linearly independent). There are n linear relations on 1, ..., Zp4y in
A? of the form DuAijxi =0,7=1,...,n. Since x; are in general position, every

maximal minor of the (p + n) X n-matrix |A; ;| is non-zero.
As in the proof of Proposition 7.2, consider the polynomial

1
Va1, oy Cm) = ] J(Clml + ot )",

where {: A 5 R s any isomorphism. The linear differential operator 6; =
>3 Ai,j0; annihilates W 4 for j = 1,...,n. Indeed:

m a 1 1 m _
(;1 Aij 6702) ] J(clxﬁ—' At emTy) = Enf (; /\iijz) (crz1+ - +emzm)" = 0.

Since 6; are in general position, Proposition 10.4 implies that ¥ 4 = VA for some
multi-fan A. Therefore the corresponding Poincare duality algebras A* and A*(A)
are isomorphic by Proposition 7.2.

10.3. Non-general position. Now we want to study which polynomials are
volume polynomials without the assumption of general position.

Let I < [m] and let a;: R — R™ be the inclusion of the coordinate subspace.
Then o : (R™)* = (01,...,0m) — (RT)* is a projection map. For a linear subspace
IT ¢ (R™)* of dimension at least n consider the following collection of subsets of
[m]:

dep(IT) := {I < [m] | |I| <n and of|g: IT — (RT)* is not surjective}.

LEMMA 10.5. Let II < (R™)* and dimII > n. Then there exists a subspace
L c 11 such that dim L = n and dep(L) = dep(II).

PrOOF. When dim IT = n the statement is trivial so we assume dim IT > n. The
proof follows from the general position argument. If ¢: II — U is an epimorphism,
and dimII > n > dim U, then the set of all n-planes in II which map surjectively
to U is a complement to a subvariety of positive codimension inside the set of all
n-subspaces of II. This argument applied to all maps a¥|r: IT — (R?)* proves that
any generic n-plane L in IT satisfies dep(L) = dep(II). a
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Let ¥ be a homogeneous polynomial of degree n and Ann? ¥ < (0y,...,0p) =
(R™)* be its annihilator subspace.

THEOREM 10.6. A homogeneous polynomial ¥ € Rlecy,...,¢m]n is a volume
polynomial of some complete simplicial multi-fan if and only if the following condi-
tions hold:

(1) dimAnn* ¥ > n,
(2) 0;¥ = 0 whenever I € dep(Ann® ¥).

PROOF. The necessity of these conditions is already proved. Indeed, the first
condition follows from the fact that Ann? Va contains the image of AT: V* —
(R™)* = {d4,...,0p) which has dimension n, see Remark 7.6. If I € dep(Ann? V),
then =#-condition (see subsection 2.2) implies I ¢ K, and therefore 0;Va = 0 by
Lemma 5.1.

Let us prove sufficiency. By Lemma 10.5 we may choose an n-dimensional
plane L < Ann? ¥ such that dep(L) = dep(Ann® ¥). Therefore, by assumption,
I € dep(L) implies d;% = 0. Let A: [m] — V be the characteristic function
corresponding to L € G,y . The condition I € dep(L) is equivalent to the condition
that vectors {\(¢)};es are linearly dependent.

Consider a simplicial complex M atry determined by the condition: {i1,... it} €
Matry if and only if A(i1),...,A(éx) are linearly independent. Thus Matr) =
2lm\ dep(L). In a sense, the complex Matry can be considered as a maximal sim-
plicial complex on [m] for which A is a characteristic function (this construction is
similar to the universal complexes introduced in [5]).

We have I ¢ Matry if and only if © — {0; ;e is not surjective. It is easily seen
that multi-fans having characteristic function X are encoded by the simplicial (n—1)-
cycles on Matry. As before, we have a map Qy: Z,,_1(Matry;R) — Rlcy, ..., ¢m]n
which associates a volume polynomial VAo with a multi-fan A = (wep, A) for wep, €
Zn—1(Matry;R). Let

Ann" (L, {0r}redep(r))
denote the subspace of all homogeneous polynomials of degree n which are annihi-
lated by linear differential operators from L and by the products 0y, I € dep(L) (<
I'¢ Matry). We already proved that the image of 2 lies in Ann" (L, {01} redep(z))-
We need to prove that the map

% Zn—l(Matr)\; R) — Ann" (L7 {aI}IEdeP(L))

is surjective. Since (2, is injective, it is enough to show that dimensions of the two
spaces are equal.

First of all notice that Matr) is by construction the underlying simplicial com-
plex of a linear matroid. Hence Matr) is a Cohen—Macaulay complex of dimension
n—1 (see e.g. [17]). The number dim Z,_;(Matry;R) = dim H,_;(Matry;R) is
called the type of the Cohen—Macaulay complex Matr).

Consider the Stanley—Reisner ring R[Matry] = R[01,...,0m]/(0r | I ¢ Matry),
and its quotient by a linear system of parameters L < (d1,...,0m):

R[Matry]/(L) = R[d1, ..., 0m]/(L; {01} redep(r))
Cram 10.7. dim(R[Matry]/(L))2n = dim Ann"™ (L, {01} redep(r))-
This follows from basic linear algebra. There is a non-degenerate pairing
R[01,.-.,0m]on ®R[c1, ... em]n — R
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For any subspace U < R[04, ..., Om]2n we have dimR[01,. .., 0 ]on/U = dim UL,
Taking the degree 2n part of the ideal (L, {07} redep(z)) @s U proves the claim.

Now, since Matry is Cohen—Macaulay, the socle of R[Matry]/(L) coincides
with (R[Matry]/(L))2n. On the other hand, the dimension of the socle coincides
with the type of Cohen—-Macaulay complex [16]. We have

dim Ann" (L, {07} redep(r)) = dim SocR[Matry]/(L)
= type of Matr) = dimﬁn,l(Matm;R)
which finishes the proof of the theorem. O

REMARK 10.8. Lemma 10.3 describing the general position is a particular case
of Theorem 10.6. In the case of general position the matroid complex Matr) is just
the (n — 1)-skeleton of a simplex on m vertices.

10.4. Global structure of the set of multi-fans. Let G}, denote the Grass-
maniann of all codimension n planes in R™ = R[cy, ..., ¢pl1. Obviously, Gy, can
be identified with G, by assigning L* < R™ to L < (R™)*. We have already
seen, that characteristic function A: R™ — V determines the element L € G,,
defined as the image of AT: V* — (R™)*. The corresponding element of G, is the
subspace Y = L+ = Ker A c R™.

Let S*Y denote the k-th symmetric power of Y € G%, so we have Sk¥Y <
SER™ = R[ey, ..., cm]r. We have

SPY c Ann* Yt = (U e R[ey, ..., em]r | DU = 0 for any D e Y1},

and both spaces have dimension (m_”,j k_l). This implies that the vector bundle

{(V,0) e G™ x R[e1, ... emli | ¥ e Am* Y1) — G7,

is S*v, the k-th symmetric power of the canonical bundle v over G?,. We denote
its total space by E(S*y).
Consider the set of all characteristic functions in V' up to linear automorphism
of V:
CharFunc := {A\: R™ > V | Im A = V}/GL(V).

Let MultiFans denote the set of all complete simplicial multi-fans on the set [m]

(considered up to automorphisms of V' again). We have a map MultiFans —

CharFunc which maps a multi-fan to its characteristic function. The fiber of this

map over A is the vector space MultiFansy =~ Z,,_1(Matry;R) introduced earlier.
We have a commutative square

MultiFans —— E(S™7)

isn,y

G

CharFunc

The lower map associates a codimension n subspace Y = Ker \ to a characteristic
function A. The upper map associates a volume polynomial to a multi-fan. The
upper map is linear on each fiber. The subset of characteristic functions in general
position maps isomorphically to the subset of G}, with non-zero Pliicker coordi-
nates; the fiber over a generic point maps isomorphically according to Lemma 10.3.
Exceptional fibers map injectively and their images are described by Theorem 10.6.
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11. Surgery of multi-fans and algebras

In this section we study the behavior of the dimensions d; = dim A%/ (A) under
connected sums and flips of multi-fans.

11.1. Connected sums. Recall that A*(¥) = R[d1,...,0n]/Ann(T) de-
notes the Poincare duality algebra associated with the homogeneous polynomial
¥. For a graded algebra (or a graded vector space) A* = P, A% let Hilb(A*;t) =
2., (dim AJ)tI denote its Hilbert function. Sometimes it will be convenient to use
the notation dm(A*) := (do,ds,...,d,), where d; = dim A%, and dm(A) =
dm(A*(A)).

Let A;4.A5 denote a connected sum of two Poincare duality algebras of the
same formal dimension 2n. By definition, A;#.A45 = A; @ .As/ ~ where ~ identifies
AY with AY and A?" with A%". Actually, there is an ambiguity in the choice of
the latter identification, so in fact there exists a 1-dimensional family of connected
sums of the given two algebras. We prefer to ignore this ambiguity in the following
(the statements hold for any representative in the family).

We have dm(A;#As) = dm(A;y) + dm(Az) — (1,0,...,0,1).

/

LEMMA 11.1. Let U1 € R[e1, ..., emln, Yo € R[], ..., ]n be the polynomials

» “m/!

in distinct variables. Then A* (U1 + Wq) = A*(Uq)4A*(Ts).

PRrROOF. The mixed differential operators 0;0;, vanish on ¥+ W, while 07 (¥ +
Uy) equals 07 (1) (resp. 0r(Vs)) if I < [m] (resp. I < [m/]). O

Let A;, As be two multi-fans, whose vertex sets are [m] = {1,...,n,n +
1,...,m} and [m] = {1,... o+, ,m} respectively, and let I denote the set
of common vertices: [ = {1,...,n}. Assume that the weight of I is non-zero in
both multi-fans and assume that characteristic functions of A; and Ay coincide
on I. Then we may consider A; and Ay as multi-fans with vertices [m] uy [m] =
{1,...,n,n+1,...,m, m, ...,m} and a common characteristic function. In this
case we call the cone-wise sum A + Ay a connected sum and denote it by Aq#7A,
or simply Aj#As.

REMARK 11.2. It would be natural to assume that w;(I) = —ws(I), so that
the cone spanned by I contracts in the connected sum. This is consistent with the
geometrical understanding how “the connected sum” should look like. However, we
do not need this assumption in the following proposition.

PROPOSITION 11.3. For a connected sum A1#/Ay there holds
A* (A #As) = A* (A1) #A*(Ag),
so that dm(A1#A2) = dm(Aq) + dm(Ag) — (1,0,...,0,1).
PRrOOF. We need a technical lemma

LEMMA 11.4. Let A be a multi-fan and I < [m] be a vertex set such that the
corresponding characteristic vectors {\(i)}ier are linearly independent. Let VA be
the volume polynomial and Va\; € R[c; | i € [m]\I], be the homogeneous polynomial
obtained by specializing c; = 0 in VA for each i€ I. Then A*(Va\r) = A*(Va)(=
A*(A)) as Poincare duality algebras.
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PrOOF. Using linear relations §; = >, \; ;0; = 0 in A?(A) we can exclude
the variables 0; for i € I. This proves that the set {0;};epm s spans A*(A). There-

fore the polynomial
1 n
Yaur = J A (Zie[m]\f cuzi)

determines the same Poincare duality algebra as Va. [l

By the lemma we have A*(A;) = A*(Va,\s) and A*(Az) = A*(Va,\1). Poly-
nomials VA \; and Va,\; have distinct variables, thus

A*(Vanr +Vanr) = A*(Vap o) #A* (Va, 1)

according to Lemma 11.1. It remains to note that Va,\; + Va,\s is the result of
specializing ¢; = 0 for ¢ € I in the polynomial VA, + Va,. Finally, we have

A* (Al#AQ) = 'A*(VAl#A’z) = 'A* (VAI#A2\I)
>~ A*(VAl\I + VAQ\I) x>~ .A*(Al)#.A* (AQ)
Il

11.2. Flips. In this section we assume that A is based on an oriented pseu-
domanifold K. Our goal is to define a flip in a multi-fan. Consider separately two
situations.

(1) Flips changing the number of vertices. Let us take a maximal simplex
I € K, |I| = n. Let Flipj(K) be a simplicial complex whose maximal simplices are
the same as in K except that we substitute I by Cone dI. This operation adds the
new vertex i, the apex of the cone. If A\: [m] — R™ is a characteristic function on
K, we extend it to the set [m] u {i} by adding new value A(7) such that the result
is a characteristic function on Flip}(K). This defines an operation on multi-fans
which we call the flip of type (1,n).

The inverse operation will be denoted Flip)'. It is applicable to A if lkg ¢ is
isomorphic to the boundary of a simplex and A(Vert(lkk ¢)) is a linearly independent
set. The inverse operation will be called the flip of type (n,1).

(2) Flips preserving the set of vertices. Let S be a subset of Vert(K) of cardi-
nality n + 1 such that the induced subcomplex Kg on the set S is isomorphic to
OAP™L« AT with p+ g =n+1, p,q > 2. Let Flipg(K) be the simplicial complex
whose maximal simplices are the same as in K away from S, and AP~ « A971 is
replaced by AP~! s A9~ If the set of vectors A(S) is in general position, then
this operation is defined on multi-fans. We call it the flip of type (p,q). It is easily
seen that flips of types (p, q) and (g,p) are inverse to each other.

Of course (1,n)- and (n, 1)-flips can be viewed as particular cases of this con-
struction if we allow ghost vertices and formally set 0A° to be such a ghost vertex.

The following proposition tells that dimension vectors of multi-fan algebras
change under the flips in the same way as h-vectors of simplicial complexes.

THEOREM 11.5. Let A’ be a multi-fan obtained from A by a (p, q)-flip, p,q = 1.
Then
o A B
dm(A") —dm(A) = (&;(;,_1,0, ...,0) (&;(;,_1,0, .o, 0).
q P
PrOOF. For (1,n)- and (n, 1)-flips this follows from Proposition 11.3 and Lemma
6.1, since (1,n)-flip is just the connected sum with an elementary multi-fan, and
(n, 1)-flip is its inverse.
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Now we consider the remaining cases. (p, q)-flips with p # 1 and ¢ # 1 do not
change the vertex set. Let [m] denote the vertex set of K and K’, and S < [m]
denote the set of vertices at which the flip is performed. We have |S| = n + 1 and
Kls = 0AP7 1« A1 and K'|g =~ AP~1 « 0A97L. Let [p] be the set of vertices of
AP~L Let iy, s denote the ideal in R[d1, ..., O] generated by 0;, (i € [m]\S).

CrLam 11.6. I[m]\S’ N AnnVx = I[m]\S N Ann Vas.

PROOF. In the group of multi-fans with a given characteristic function we have
a relation A’ = A + T, where T is an elementary multi-fan based on the vertex set
S. Informally, to perform a flip on a multi-fan is the same as “to add a boundary
of a simplex”, which cancels the cones from dAP~! + A9~! and adds the cones
from AP~! %« 9A9~!. Therefore Var = Va + Vi, where Vi is the polynomial which
essentially depends only on the variables c;, i € S. If D € Ann VA N Z,,p 5 then
D annihilates both VA and V. Thus it annihilates VA = VA + Vr and the claim
follows. O

We have a diagram of inclusions of graded ideals in R[d1,. .., 0n]:

Ann VA <—31[m]\s N Ann VA = I[m]\S N Ann VA/C—> Ann VA/

I[m]\g + Ann Va DI[m]\SC I[m]\g + Ann Vs

It follows that the quotients of the vertical inclusions are isomorphic as graded
vector spaces. Therefore

(11.1)  dm(A") — dm(A) = dm(R[m]/ Ann Var) — dm(R[m]/ Ann V)
= %(R[m]/(I[m]\S + AnnVa/)) — %(R[m]/(I[m]\g + AnnVa)).

Since Zj)\s is the ideal generated by 0;, (i ¢ S), the ring R[m]/(Z{p)\s + Ann Va)
coincides with some quotient ring B of the polynomials in variables ¢;, (i € S), that
is B = R[S]/Rels. The linear relations 0; = >},.,,; Ai,j0i in AnnV induce the
relations ), ¢ A ;j0; in Rels. Since the values of A on S are in general position,
these induced relations are linearly independent. We have n linear relations on
n + 1 variables, thus all variables are expressed through a single variable ¢, and we
have B = R[¢]/J. Since we are in a graded situation, and B is a finite dimensional
algebra, J is a principal ideal generated by t? for some $ > 0. Hence
dm(R[m]/(Zjmps + AnnVa)) = dmB = (1,... ,1,0,...,0).

—.
D
Now notice that there is a Stanley—Reisner relation Hie[p] 0; = 0 corresponding to
non-simplex [p] in K (recall that [p] is the set of vertices of JAP~1 inside JAP~! «
A9~1 c K). Therefore we have a relation t* = 0 in B. This implies p < p.
Applying the same arguments to A’, we get

dm(R[m]/(Zpmps + AnnVar)) = (L..-,1,0,...,0),

<
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where ¢ < q. Hence we have

B — 3 B

dm(A") —dm(A) = (&._\./._,_},O, ...,0) (&._\./._,_},O, ..., 0).
q D
Note that the vector on the left hand side is symmetric. Hence the vector on the
right hand side is symmetric. If at least one inequality p < p or § < q is strict,
the vector at the right is not symmetric. Thus p = p, ¢ = ¢, and the statement
follows. 0

12. Cohomology of torus manifolds

12.1. Multi-fans of torus manifolds. Recall that a torus manifold X is an
oriented closed manifold of dimension 2n with an effective action of n-dimensional
compact torus 1" having at least one fixed point, and prescribed orientations of
characteristic submanifolds. Any torus manifold determines a non-singular multi-
fan in the lie algebra L(T) = R™ of the torus as follows (see details in [7]).

Let X;, i € [m] be the characteristic submanifolds. Let M be a connected
component of a non-empty intersection X;, n --- n X;, for some k£ > 0 and
{i1,...,ik} < [m], and assume that M has at least one fixed point. Such sub-
manifold will be called a face submanifold. We also assume that the manifold X
itself is a face submanifold corresponding to k = 0. It easily follows from the
transversality of characteristic submanifolds that A has codimension 2|k|. Let X x
be a poset of all face submanifolds of X ordered by reversed inclusion. The basic
representation theory of a torus implies that ¥ x is a pure simplicial poset of di-
mension n — 1 on the vertex set [m]. The maximal simplices of ¥ x correspond to
the fixed points of X.

Given orientations of X and X;, i € [m], each fixed point obtains a sign. This
determines a sign function ox: Eg? — {-1,+1}.

Finally, let T; denote a circle subgroup fixing X;, for ¢ € [m]. The orientation
of X; determines the orientation of the 2-dimensional normal bundle of X;, which
in turn determines an orientation of T;. Therefore we have a well-defined primitive
element

Ax (i) € Hom(S*, T") = Z" <« R™ = L(T™).

This gives a characteristic function Ax: [m] — R™. These constructions determine
a multi-fan Ax := (Xx,0x,Ax) associated with a torus manifold X. This multi-
fan is non-singular and complete [7].

As described in subsection 2.2, we may turn the data “simplicial poset + sign
function” into the data “simplicial complex + weight function”. Let Kx and wx
denote the simplicial complex and the weight function corresponding to Ax.

In the following we assume that each non-empty intersection of characteristic
submanifolds is connected and contains at least one fixed point. The assumption
implies, in particular, that X x is a simplicial complex, and therefore Kx = Yx
and the weight function wx coincides with ox.

12.2. Face subalgebra in cohomology. Let X be a torus manifold and Ax
be the corresponding multi-fan. Let F*(X) < H*(X;R) be the vector subspace
spanned by the cohomology classes Poincare dual to face submanifolds. Since the
intersection of two face submanifolds is either a face submanifold or empty, F*(X)
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is a subalgebra. This subalgebra is multiplicatively generated by the classes of
characteristic submanifolds.

The simplices of Kx = X x correspond to face submanifolds, and there exists
a ring homomorphism R[Kx] — H¥(X) defined as follows: the element z; =
[ [ier @i € R[Kx]g)z corresponding to the simplex I € Kx maps to the equivariant
cohomology class dual to the face submanifold X; = (),.; X;. There is a natural
homomorphism H}(X) — H*(X) induced by the inclusion of a fiber in the Borel
fibration X < X xp ET 5 BT. We have a commutative square of algebra
homomorphisms

Hi(Ax) —— H*(Ax)

(12.1) l l

HX(X) —— H*(X).
Recall from the end of subsection 4.2 that H7(Ax) denotes the Stanley-Reisner
ring of the underlying simplicial complex Kx, H*(Ax) is its quotient by the linear
system of parameters, so the upper horizontal arrow in the diagram (12.1) is the

natural quotient homomorphism. By definition, 7*(X) is the image of the right
vertical map. Hence we have an epimorphism of algebras H*(Ax) — F*(X).

THEOREM 12.1. There exists a well-defined epimorphism of algebras F*(X) —
A*(Ax).

PRrROOF. The epimorphism H*(Ax) — F*(X) is compatible with the integra-
tion maps §, : H*"(Ax) — R (the multi-fan integration) and {, : F*"(X) — R
(integration over the manifold X), see [7]. Lemma 7.4 implies that the induced map
PD(H*(Ax),§5,) = PD(F*(X),{y) is an isomorphism. Thus we have a natural
epimorphism F*(X) — PD(F*(X),{,) = PD(H*(AX),SAX) = A*(Ax). O

Therefore the part of the cohomology ring generated by characteristic subman-
ifolds is clamped between two algebras defined combinatorially:

(12.2) H*(Ax) — F*(X) — A*(Ax)

H*(X)

COROLLARY 12.2. Betti numbers of a torus manifold X are bounded below by
the dimensions of graded components of A*(Ax).

REMARK 12.3. For complete smooth toric varieties and for quasitoric mani-
folds all arrows in the diagram above are isomorphisms as follows from Danilov—-
Jurkiewicz and Davis—Januszkiewicz [5] theorems respectively. If Kx is a sphere,
both horizontal maps are isomorphisms, so the face part of cohomology is com-
pletely determined by a multi-fan, while the vertical map may be non-trivial. As
an example in which such phenomena occur, take an equivariant connected sum of
a (quasi)toric manifold with a manifold on which the torus acts freely and whose
orbit space has nontrivial homology. Finally, there exist many examples of torus
manifolds for which all arrows in (12.2) are nontrivial [1].

Recall that H*(Ay) is linearly generated by the square-free monomials x;
corresponding to simplices I € K. There may exist certain linear relations on these
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elements coming from Minkowski relations: ZI:lI\:k a(I)\(I),x1, where u € AFV
and a is a function on (k — 1)-simplices of K.

CONJECTURE 12.4. As a vector space, F?*(X) is generated by the elements
{z1}iex subject to the Minkowski relations 3., 7 _y, a(I)A(I)xr = 0, where p runs
over AV and a runs over all functions such that the element

Y, al)[Xy/T]

L=k
bounds in Cp_,(X/T;R).

This question is closely related to Problem 9.6. It can be seen that when-
ever 3 p, = a(1)[X1/T] bounds in Cp, (X /T;R), the element >}, \;_, a(I)Fy is a
cycle of multi-polytopes, therefore 3, ;_y a(I)A(]), @1 vanishes in A*(Ax). How-
ever, there may be cycles of multi-polytopes such that the corresponding elements
21.11=k @(I)[X1/T] do not bound in the orbit space. This observation represents
the fact that the right arrow in (12.2) can be nontrivial.

If X is an oriented manifold with locally standard torus action, having trivial
free part and acyclic proper faces of the orbit space, the conjecture is proved in [1].
Informally, this situation corresponds to the case when the underlying simplicial
complex of Ax is an oriented homology manifold.
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