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Abstract. In this article we study the Hamiltonian non-displaceability of
Gauss images of isoparametric hypersurfaces in the spheres as Lagrangian
submanifolds embedded in complex hyperquadrics.

1. Introduction

The purpose of this article is to build a bridge between submanifold theory and
symplectic geometry. Here, by submanifolds we mean the family of isoparametric
hypersurfaces, originated from geometric optics in Italy, which is systematically
developed by Élie Cartan. The latter is the Lagrangian intersection theory proposed
by A. Weinstein and V.I. Arnold. Needless to say, A. Floer’s contribution is quite
important [10]. Recently, there has been intensive progress for the Lagrangian Floer
theory of toric fibers. In order to proceed the study, we need, on one hand, a lot of
concrete examples, and on the other hand, the common properties such examples
share.

The isoparametric hypersurfaces are compact oriented hypersurfaces embedded
in the standard sphere with constant principal curvatures. They provide a rich
class containing infinitely many both homogeneous and non-homogeneous exam-
ples. Their topological and differential geometric data are well investigated, and
manageable in various calculations. Münzner shows that the number g of distinct
constant principal curvatures κ1 > · · · > κg must be 1, 2, 3, 4 or 6, and the multiplic-
ities mi of κi are related by mi = mi+2 (i mod g) [19]. Without loss of generality,
we may assume m1 ≤ m2. There are infinitely many non-homogeneous examples
with g = 4, [24], [9]. The theory has already been applied to various mathematical
problems (e.g., [28], [11], [27]).

Through the Gauss map G, isoparametric hypersurfaces Nn in Sn+1 yield a nice
class of Lagrangian submanifolds Ln = G(Nn) embedded in the complex hyper-
quadric Qn(C) (n ≥ 2), which is a rank two Hermitian symmetric space of compact
type. B. Palmer [25] pointed out the minimality of L, and the second and the fourth
authors discussed the Hamiltonian stability and related properties of L [15]–[18].

As a first step to obtain the Floer homology of L, which has been achieved in
the cases g = 1, 2 [21], [14], we investigate the Hamiltonian non-displaceability of
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L. Here, a compact Lagrangian submanifold L embedded in a symplectic mani-
fold (M,ω) is said to be Hamiltonian non-displaceable, if L ∩ φ(L) ̸= ∅ for any φ
belonging to the group Ham(M,ω) of all Hamiltonian diffeomorphisms of M .

Our main result is as follows:

Theorem 1.1. Let Nn be a compact oriented isoparametric hypersurface of the
standard sphere Sn+1(1) in Rn+2. Then its Gauss image Ln = G(Nn) is Hamilton-
ian non-displaceable in (Qn(C), ωstd) except for the following few remaining cases:

(g, n,m1,m2) = (3, 3, 1, 1), N = SO(3)
Z2+Z2

,

(g, n,m1,m2) = (4, 2k + 2, 1, k), N = SO(2)×SO(k+2)
Z2×SO(k) (k ≥ 1),

(g, n,m1,m2) = (6, 6, 1, 1), N = SO(4)
Z2+Z2

,

where ωstd denotes the standard induced Kähler form of Qn(C) ⊂ CPn+1.

Here we should mention the preceding results and a remark. We know that any
Gauss image L = G(N) is monotone. A compact monotone Lagrangian submanifold
L in (M,ω) is said to be wide if the Floer homology HF (L) satisfies

HF (L) ∼= H∗(L;Z2)⊗ Λ,

and narrow if HF (L) = 0. See Sections 2 and 3 for details. Notice here if L is wide,
then L is Hamiltonian non-displaceable. Y.G. Oh [21] showed that L is wide for
any real form L of a compact irreducible Hermitian symmetric space M (see also
[14]). In particular, all real forms of Qn(C), consisting of the Lagrangian sphere
Sn and the real quadric (Sk ×Sn−k)/Z2 (1 ≤ k ≤ n− 1), are wide. Note that they
coincide with the Gauss image of isoparametric hypersurfaces with g = 1 and 2,
respectively. Moreover, when g = 3 and n = 6, 12 or 24, the Gauss image L is wide,
although L is not a real form (Corollary 4.4). It is an interesting future problem
to decide L is wide or not in the remaining cases.

The paper is organized as follows: In Section 2, we prepare fundamental prop-
erties of the Gauss images of isoparametric hypersurfaces in the standard sphere,
especially the formula of their minimal Maslov number (Proposition 2.1). In Section
3, we recall Damian’s lifted Floer homology and its spectral sequence [7], which is
our main tool in the later sections. In Section 4, we examine the topology of Gauss
images when g = 3. As a result we obtain that the Gauss image with g = 3 is a
Z2-homology sphere, and it is wide if n = 6, 12 or 24. In Section 5 and Section 6,
we prove the Hamiltonian non-displaceability of Gauss images with g = 4 or 6 and
m1 ≥ 2, respectively. In the final section, we propose several open problems and a
conjecture.

Throughout this article any manifold is smooth and connected.

Acknowledgments. This work was done mostly during the authors’ short visits
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The authors would like to express their sincere gratitude to both institutions for
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2. Gauss images of isoparametric hypersurfaces

Let Nn be an oriented hypersurface embedded in the unit standard sphere
Sn+1(1) ⊂ Rn+2. Denote by x the position vector of points of N and n the
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unit normal vector field of N in Sn+1(1). It is a fundamental fact in differential
geometry that the Gauss map defined by

G : Nn ∋ p 7−→ x(p) ∧ n(p) ∼= [x(p) +
√
−1n(p)] ∈ G̃r2(Rn+2) ∼= Qn(C)

is always a Lagrangian immersion into the complex hyperquadric Qn(C). Here
the complex hyperquadric Qn(C) is identified with the real Grassmann manifold

G̃r2(Rn+2) of oriented 2-dimensional vector subspaces of Rn+2, which has a sym-
metric space expression SO(n+ 2)/(SO(2)× SO(n)).

It follows from [25] that the Gauss map G : Nn → Qn(C) from an isoparamet-
ric hypersurface Nn in Sn+1(1) is a minimal Lagrangian immersion into Qn(C).
Moreover, the “Gauss image”of G is a compact minimal Lagrangian submanifold
Ln = G(Nn) ∼= Nn/Zg embedded in Qn(C), where G : Nn → G(Nn) = Ln is the
covering map with the Deck transformation group Zg [15], [16], [23].

Let us briefly recall the notion of monotone Lagrangian submanifold. Given a
Lagrangian manifold L in a symplectic manifold (M,ω), two homomorphisms Iµ,L :
π2(M,L) → Z and Iω : π2(M,L) → R are defined as follows. For a smooth map
u : (D2, ∂D2) → (M,L) in the class A ∈ π2(M,L), there is a unique trivialization,
up to homotopy, of the pull-back bundle u∗TM ∼= D2×Cn as a symplectic bundle.
This gives a map ũ from S1 = ∂D2 to Λ(Cn), the set of Lagrangian vector subspaces
in Cn. By using the Maslov class µ ∈ H1(Λ(Cn),Z), one can define Iµ,L(A) := µ(ũ).
Next Iω is defined by Iω(A) :=

∫
D2 u

∗ω. Then a Lagrangian submanifold L in M
is said to be monotone, if there exists a constant λ > 0 such that

Iµ,L = λIω.

Denote by NL ∈ Z+ the positive generator of the image of Iµ,L. We call NL the
minimal Maslov number of L.

We obtain the following properties of the Gauss image:

Proposition 2.1 ([23], [17]). The Gauss image Ln = G(Nn) of an isoparametric
hypersurface Nn in Sn+1 is a compact monotone Lagrangian submanifold embedded
in Qn(C), and its minimal Maslov number NL is given by

NL =
2n

g
=

{
m1 +m2, if g is even,
2m1, if g is odd.

(2.1)

The Gauss image G(Nn) is orientable if and only if 2n/g is even.

Remark 2.1. It is well-known that 1 ≤ NL ≤ 2n for a closed monotone Lagrangian
submanifold L in Qn(C). The upper bound is sharp since the Lagrangian sphere
Sn ⊂ Qn(C) attains NL = 2n. The Gauss images of isoparametric hypersurfaces
with g = 1 and g = 2 are Sn and (Sk×Sn−k)/Z2(1 ≤ k ≤ n−1), respectively. They
provide real forms of Qn(C), which are totally geodesic. Notice that the minimal
Maslov number of (Sk × Sn−k)/Z2 (1 ≤ k ≤ n− 1) is equal to n. We observe from
(2.1) that Gauss images of isoparametric hypersurfaces with g ≥ 3 provide examples
of Lagrangian submanifolds in Qn(C) with relatively large minimal Maslov numbers
(for the case of CPn, see [13]). On the other hand, NL = 2 is taken only when
m1 = m2 = 1, and such isoparametric hypersurfaces are homogeneous [6], [26], [8].
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When g ≥ 3, all Gauss images with NL = 2 are given respectively [17] by

L =


SO(3)

(Z2+Z2)Z3
, (g,m1,m2) = (3, 1, 1),

SO(2)×SO(3)
(Z2×1)Z4

, (g,m1,m2) = (4, 1, 1),
SO(4)

(Z2+Z2)Z6
, (g,m1,m2) = (6, 1, 1).

3. Damian’s lifted Floer homology

In this section we recall necessary facts from the Floer theory for monotone
Lagrangian submanifolds.

3.1. Lagrangian Floer homology. Let (M,ω) be a closed symplectic manifold
and let L ⊂ (M,ω) be a closed connected monotone embedded Lagrangian sub-
manifold with NL ≥ 2. Consider a Hamiltonian isotopy {φt}0≤t≤1 defined by
a time-dependent Hamiltonian H : [0, 1] × M → R. The time-one map φ1 is
called a Hamiltonian diffeomorphism of M . Assume that L ⋔ φ1(L) ̸= ∅. The
Floer complex CF (L) is defined as a free module over Z2 generated by all points
of the intersection L ∩ φ1(L). Consider a time-dependent family J = {Jt}0≤t≤1

of almost complex structures on M compatible with ω. Floer’s boundary operator
∂J : CF (L) → CF (L) is defined by counting (modulo 2) the isolated J-holomorphic
strips v : R× [0, 1] → M connecting pairs of points of L ∩ φ1(L) with boundary in
L∪φ1(L). For a generic choice of (H, J), the homology HF (L) := H∗(CF (L), ∂J)
is well-defined and called the Floer homology of L with Z2-coefficient, which is
invariant under the Hamiltonian isotopies of L (see [10], [20] and [22] for more
details).

Let us regard the intersection C := L∩φ1(L) as points in L. For any two points
p, q ∈ C, consider an isolated J-holomorphic strip v : R × [0, 1] → M from p to q,
which defines a path γ in L from p to q by γ(s) := v(s, 0). We denote by Γ all
the paths γ given by this procedure. Notice that to reconstruct the Floer complex
(CF (L), ∂J) it is enough to know the above collection (C,Γ) of points and paths.

3.2. Damian’s spectral sequence. Now we recall the definition of Damian’s
lifted Floer homology for monotone Lagrangian submanifolds (see [7] for details).
Let (M,ω) be a closed symplectic manifold and L ⊂ M be a closed embedded
monotone Lagrangian submanifold with NL ≥ 3. We start with the data (C,Γ) and
fix an arbitrary covering π : L̄ → L. For any point p ∈ C, denote by {pi}i∈I the
elements of the fiber π−1(p). Consider the set Γ̄ of all the lifts of the paths of Γ to
the covering space L̄. For any points pi, qj (i, j ∈ I), the cardinality of elements in

Γ̄ which connect pi with qj is finite. We denote by n(pi, qj) its parity. Let CF L̄(L)
be the free Z2-module generated by

∪
p∈C π

−1(p). One can define the boundary

operator ∂L̄ on CF L̄(L) by the formula

∂L̄(pi) =
∑

π(qj)=q∈C

n(pi, qj)qj .

Damian [7, Proposition 2.6] proved that (CF L̄(L), ∂L̄) is a complex and its homol-

ogy HF L̄(L) := H∗(CF L̄(L), ∂L̄) is called the lifted Floer homology of L, which is
also invariant under the Hamiltonian isotopies of L.

The following spectral sequence is an adaptation of Biran’s construction (see [2,
Theorem 5.2.A]) to the lifted Floer homology, which is the main technical tool used
in the sequel sections.
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Theorem 3.1 (Damian’s spectral sequence, [7, Theorem 2.9]). Denote by Λ =
Z2[T, T

−1] the algebra of Laurent polynomials over Z2 and Λi ⊂ Λ the subspace of
homogeneous elements of degree i. There exists a spectral sequence {Ep,q

r , dr} which
satisfies the following properties:

(1) Ep,q
0 = CL̄

p+q−pNL
⊗ ΛpNL , d0 = [∂L̄

0 ]⊗ 1.

(2) Ep,q
1 = Hp+q−pNL

(L̄,Z2)⊗ ΛpNL , d1 = [∂L̄
1 ]⊗ T−NL , where

[∂L̄
1 ] : Hp+q−pNL

(L̄;Z2) → Hp+q−1−(p−1)NL
(L̄;Z2)

is induced by ∂L̄
1 .

(3) For any r ≥ 1, Ep,q
r has the form Ep,q

r = V p,q
r ⊗ΛpNL with dr = δr⊗T−rNL ,

where each V p,q
r is a vector space over Z2 and δr : V p,q

r → V p−r,q+r−1
r is a

homomorphism defined for every p, q and satisfies δr ◦ δr = 0. Moreover,

V p,q
r+1 =

Ker(δr : V p,q
r → V p−r,q+r−1

r )

Im(δr : V p+r,q−r+1
r → V p,q

r )
.

In particular, V p,q
0 = CL̄

p+q−pNL
, V p,q

1 = Hp+q−pNL
(L̄;Z2), δ1 = [∂L̄

1 ].

(4) Ep,q
r collapses at (ν + 1)-step and for any p ∈ Z, ⊕q∈ZE

p,q
∞

∼= HF L̄(L),

where ν = [dimL+1
NL

].

Back to the Gauss image, since ν = [dimL+1
NL

] = [ (n+1)g
2n ], one can easily get

Corollary 3.2. For a Gauss image Ln = G(Nn) ⊂ Qn(C), g ≥ 3 and any p, q ∈ Z,
we have

(1) Ep,q
2 = Ep,q

∞ if and only if g = 3 and (m1,m2) = (2, 2), (4, 4), (8, 8).
(2) Ep,q

3 = Ep,q
∞ if and only if g = 3, (m1,m2) = (1, 1) or g = 4.

(3) Ep,q
4 = Ep,q

∞ if and only if g = 6, (m1,m2) = (1, 1) or (2, 2).

4. Topology of Gauss images of isoparametric hypersurfaces with
g = 3

An isoparametric hypersurface with g = 3, the so called Cartan hypersurface,
is given by a tube around the standard embedding of the projective plane FP 2 in
S3d+1, where F is the division algebra R, C, H or O, and d = 1, 2, 4 or 8 [6]. The
multiplicity satisfies m = m1 = m2 = d, and n = 3m. In this section, we first
observe the topology of Gauss images of isoparametric hypersurfaces with g = 3,
then apply Biran and Cornea’s general fact to obtain their wideness except for the
case n = 3.

Lemma 4.1. The Gauss image L3 of g = 3 is a Z2-homology sphere.

Proof. Recall that all homogeneous isoparametric hypersurfaces Nn ⊂ Sn+1(1) can
be obtained as principal orbits of compact Riemannian symmetric pairs (U,K) of
rank 2, and that isoparametric hypersurfaces with g = 3 must be homogenous.
For the case when (g,m, n) = (3, 1, 3), in [15, p.780] we have a homogenous space

expression N = K/K0
∼= SO(3)

Z2⊕Z2

∼= SU(2)/K̃0, and L = K/K[a]
∼= SU(2)/K̃[a],

where K̃[a] is generated by K̃0 and

±

(
1+

√
−1

2
1+

√
−1

2
−1+

√
−1

2
1−

√
−1

2

)
=: ±A0, ±

(
−1+

√
−1

2
1+

√
−1

2
−1+

√
−1

2
−1−

√
−1

2

)
=: ±A2

0,
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with A3
0 = −

(
1 0
0 1

)
. By a direct computation, we obtain [K̃[a], K̃[a]] = K̃0.

Hence

H1(L
3;Z) ∼= π1(L

3)/[π1(L
3), π1(L

3)] ∼= K̃[a]/[K̃[a], K̃[a]] ∼= K̃[a]/K̃0
∼= Z3.

Since L3 is orientable, by the Poincaré duality and universal coefficient theorem,
we obtain

Hk(L
3;Z) ∼=

 Z if k = 0, 3,
Z3 if k = 1,
0 if k = 2.

Therefore, by the universal coefficients theorem, L3 is a Z2-homology sphere. □

Lemma 4.2. The Gauss image Ln = G(Nn) of a Cartan isoparametric hypersur-
face Nn ⊂ Sn+1(1) (i.e., g = 3 and n = 3, 6, 12, 24) is a Z2-homology sphere.

Proof. The Z2-homology of Nn is known [19] as

Hk(N ;Z2) ∼=

 Z2, for k = 0, n,
Z2 ⊕ Z2, for k = m, 2m,
0, otherwise,

where n = 3m and m ∈ {1, 2, 4, 8}. Since G : Nn → Ln is a covering map and Z3

acts on Nn as a Deck transformation, Theorem 2.4 in [5, p.120] implies

Hk(L
n;Z2) = Hk(N/Z3;Z2) ∼= Hk(N ;Z2)

Z3 = 0,

for k ̸= 0,m, 2m, 3m(= n).
On the other hand, when m ∈ {2, 4, 8}, n is even and χ(L) = χ(Nn)/3 = 6/3 = 2

holds. Putting l := dimZ2 Hm(L;Z2), we obtain 2 = χ(L) = 1 + l + l + 1 = 2 + 2l,
which yields l = 0. Hence L is a Z2-homology sphere.

Combing with Lemma 4.1, we complete the proof. □

Let us give several applications of Lemma 4.2. Firstly we recall Biran and
Cornea’s result [3] stated in [4, Proposition 1.6 (3)]:

Proposition 4.3. Let L be a closed monotone Lagrangian submanifold embedded
in a closed symplectic manifold (M,ω). If Hi(L;Z2) = 0 for any i ∈ Z with
i ≡ −1mod NL, then HF (L) ∼= H∗(L;Z2)⊗ Λ.

By Proposition 2.1, Lemma 4.2 and Proposition 4.3, we obtain

Corollary 4.4. Let Ln = G(Nn) ⊂ Qn(C) be the Gauss image of an isoparametric
hypersurface N with g = 3 and n = 6, 12, 24. Then L is wide. Hence, #(L∩φ(L)) ≥
2 for any φ ∈ Ham(Qn(C), ωstd) such that L intersects with φ(L) transversally.

Secondly, recall Biran and Khanevsky’s result:

Proposition 4.5 ([4, Corollary 1.5]). Let Ln be a closed monotone Lagrangian
submanifold embedded in Qn(C) with NL ≥ 2 and n ≥ 2. If HF (L) ̸= 0, then
L ∩ Sn ̸= ∅, where Sn denotes the totally geodesic Lagrangian sphere of Qn(C).

Combining Corollary 4.4 with Proposition 4.5, we obtain

Corollary 4.6. Let Ln = G(Nn) ⊂ Qn(C) be as in Corollary 4.4. Then φ(L) ∩
Sn ̸= ∅ for any φ ∈ Ham(Qn(C), ωstd).
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For any n-dimensional submanifold R in Qn(C), it holds∫
SO(n+2)

#(ϕ(R) ∩ Sn)dµSO(n+2)(ϕ) ≤ 2
Vol(SO(n+ 2))

Vol(Sn)
Vol(R),

where ϕ ∈ SO(n+ 2) ⊂ Ham(Qn(C), ωstd) ((6.7) in [14]). Finally, we give an esti-
mate of the volume of Gauss images deformed by Hamiltonian isotopies of Qn(C).
Namely, applying above to R = φ(L), we obtain

Corollary 4.7. For a Lagrangian submanifold L in Corollary 4.4,

1

2
Vol(Sn) ≤ Vol(φ(L))

holds for any φ ∈ Ham(Qn(C), ωstd).

Remark 4.1. (1) From Gorodski and Podesta’s classification [12] of all com-
pact tight Z2-homology Lagrangian spheres in simply connected compact
homogeneous Kähler manifolds, we know that any compact tight Z2-homology
Lagrangian sphere in Qn(C) is the standard real form Sn up to congruence.

(2) Biran and Cornea [3] proved that any even dimensional closed Lagrangian
submanifold L embedded in Qn(C) with H1(L;Z) = 0 must be a Z2-
homology sphere. Notice that the Gauss images L with g = 3 are Z2-
homology spheres with H1(L;Z) ∼= Z3.

5. Hamiltonian Non-displaceability of Gauss images of isoparametric
hypersurfaces with g = 4

Now we consider the Gauss images L of isoparametric hypersurfaces with g = 4.
Since NL = 2n

4 = n
2 , NL ≥ 3 leads to n ≥ 6. Thus except for the only one case

n = 4 when L = SO(2)×SO(3)
(Z2×1)Z4

, the argument in Subsection 3.2 can work and the

lifted Floer homology HF L̄(L) is well-defined for any covering L̄ of L.

Proposition 5.1. Let L = G(N) ⊂ Qn(C) be the Gauss image of an isoparametric

hypersurface N with g = 4 and m1 ≥ 2. Then HF L̄(L) ̸= 0 for L̄ = N .

Proof. Consider the Z4-covering L̄ = Nn over Ln. We argue by contradiction.
Assume that HF L̄(L) = 0. Since ν = [dimL+1

NL
] = 2, Damian’s spectral sequence

{Ep,q
r , dr} collapses at 3-step. Then

0 = E0,q
3 = V 0,q

3 =
Ker(δ2 : V 0,q

2 → V −2,q+1
2 )

Im(δ2 : V 2,q−1
2 → V 0,q

2 )

and thus we have the following exact sequence

V 2,q−1
2 → V 0,q

2 → V −2,q+1
2 (5.1)

for any q ∈ Z. Since

V 2,q−1
2 =

Ker([∂L̄
1 ] : Hq+1−2NL

(L̄;Z2) → Hq−NL
(L̄;Z2))

Im([∂L̄
1 ] : Hq+2−3NL

(L̄;Z2) → Hq+1−2NL
(L̄;Z2))

,

V −2,q+1
2 =

Ker([∂L̄
1 ] : Hq−1+2NL

(L̄;Z2) → Hq−2+3NL
(L̄;Z2))

Im([∂L̄
1 ] : Hq+NL

(L̄;Z2) → Hq−1+2NL
(L̄;Z2))

,
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we see that V 2,q−1
2 = V −2,q+1

2 = 0 when 2 ≤ q ≤ n− 2. Then it follows from (5.1)
that

0 = V 0,q
2 =

Ker([∂L̄
1 ] : Hq(L̄;Z2) → Hq−1+NL

(L̄;Z2))

Im([∂L̄
1 ] : Hq+1−NL(L̄;Z2) → Hq(L̄;Z2))

holds for 2 ≤ q ≤ n− 2.
Putting q = NL = m1 +m2, we have the exact sequence

H1(L̄;Z2) → Hm1+m2(L̄;Z2) → H2(m1+m2)−1(L̄;Z2). (5.2)

Recall that by Münzner’s result [19] the Z2-homology of Nn is given by

Hk(N ;Z2) ∼=

 Z2, for k = 0,m1,m2, 2m1 +m2,m1 + 2m2, n,
Z2 ⊕ Z2, for k = m1 +m2,
0, otherwise.

By the assumption that m1 ≥ 2, (5.2) leads to the exact sequence 0 → Z2⊕Z2 →
0, which is a contradiction. □
Corollary 5.2. Under the same assumption as in Proposition 5.1, the Gauss image
Ln ⊂ (Qn(C), ωstd) is Hamiltonian non-displaceable.

Remark 5.1. Note that any non-homogeneous isoparametric hypersurface in the
standard sphere satisfies the assumption of Proposition 5.1. By R. Takagi’s result
[26] we know that an isoparametric hypersurface Nn with g = 4 and m1 = 1 must

be Nn = SO(2)×SO(k+2)
Z2×SO(k) (n = 2k + 2,m2 = k), in particular homogeneous.

6. Hamiltonian Non-displaceability of the Gauss image of an
isoparametric hypersurface with g = 6

When g = 6, NL ≥ 3 implies m1 = m2 = 2 [1]. Thus we focus on the Gauss
image L12 = G(N12) of the isoparametric hypersurface N12 ⊂ S13(1) with g = 6
and m1 = m2 = 2. Compared with the case when g = 4, this case is more
complicated because {Ep,q

r , dr} collapses at 4-step.

Proposition 6.1. Let L12 = G(N12) ⊂ Q12(C) be the Gauss image of an isopara-

metric hypersurface with g = 6 and m1 = m2 = 2. Then HF L̄(L) ̸= 0 for L̄ = N .
In particular, L is Hamiltonian non-displaceable in Q12(C).

Proof. Take the Z6-covering L̄ = N12 over L12. Since ν = [ 12+1
4 ] = 3, Damian’s

spectral sequence {Ep,q
r , dr} collapses at 4-step. Assume that HF L̄(L) = 0. Then

we have

0 = E0,q
4 = V 0,q

4 =
Ker(δ3 : V 0,q

3 → V −3,q+2
3 )

Im(δ3 : V 3,q−2
3 → V 0,q

3 )

and the following exact sequence

V 3,q−2
3 → V 0,q

3 → V −3,q+2
3 (6.1)

for any q ∈ Z.
Notice that

V 3,q−2
3 =

Ker(δ2 : V 3,q−2
2 → V 1,q−1

2 )

Im(δ2 : V 5,q−3
2 → V 3,q−2

2 )
,

V 3,q−2
2 =

Ker([∂L̄
1 ] : Hq−11(L̄;Z2) → Hq−8(L̄;Z2))

Im([∂L̄
1 ] : Hq−14(L̄;Z2) → Hq−11(L̄;Z2))

.
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Consequently, V 3,q−2
3 = 0 when q ≤ 10. Similarly, from

V −3,q+2
3 =

Ker(δ2 : V −3,q+2
2 → V −5,q+3

2 )

Im(δ2 : V −1,q+1
2 → V −3,q+2

2 )
,

V −3,q+2
2 =

Ker([∂L̄
1 ] : Hq+11(L̄;Z2) → Hq+14(L̄;Z2))

Im([∂L̄
1 ] : Hq+8(L̄;Z2) → Hq+11(L̄;Z2))

,

we see that V −3,q+2
3 = 0 if q ≥ 2. Thus (6.1) leads to V 0,q

3 = 0 for 2 ≤ q ≤ 10. Due
to

0 = V 0,q
3 =

Ker(δ2 : V 0,q
2 → V −2,q+1

2 )

Im(δ2 : V 2,q−1
2 → V 0,q

2 )
,

we get the exact sequence V 2,q−1
2 → V 0,q

2 → V −2,q+1
2 for any 2 ≤ q ≤ 10. Thanks

to

V 2,q−1
2 =

Ker([∂L̄
1 ] : Hq−7(L̄;Z2) → Hq−4(L̄;Z2))

Im([∂L̄
1 ] : Hq−10(L̄;Z2) → Hq−7(L̄;Z2))

,

V −2,q+1
2 =

Ker([∂L̄
1 ] : Hq+7(L̄;Z2) → Hq+10(L̄;Z2))

Im([∂L̄
1 ] : Hq+4(L̄;Z2) → Hq+7(L̄;Z2))

,

we derive V 0,6
2 = 0. Now because

0 = V 0,6
2 =

Ker([∂L̄
1 ] : H6(L̄;Z2) → H9(L̄;Z2))

Im([∂L̄
1 ] : H3(L̄;Z2) → H6(L̄;Z2))

,

we get the exact sequence H3(L̄;Z2) → H6(L̄;Z2) → H9(L̄;Z2), which contradicts
the facts in [19] that H3(L̄;Z2) ∼= H9(L̄;Z2) = 0 and H6(L̄;Z2) ∼= Z2 ⊕ Z2. □

Therefore we complete the proof of Theorem 1.1.

7. Open problems and a conjecture

The following are open problems for further research:

(1) We cannot apply the same method above to determine the Hamiltonian
non-displaceability of Gauss images of the following isoparametric hyper-
surfaces:
(i) g = 3, (m1,m2) = (1, 1), n = 3;
(ii) g = 4, (m1,m2) = (1, k), n = 2(1 + k);
(iii) g = 6, (m1,m2) = (1, 1), n = 6.
Consider how we can do in these cases.

(2) Determine the Floer homology HF (L) of Gauss images for (g, n) = (3, 3)
and g = 4, 6.

(3) Describe H∗(L;Z2) of the Gauss images L = N/Zg for g = 4, 6 explicitly.

According to the present work and a private communication with Hajime Ono, he
and the authors give

Conjecture. Any compact connected minimal Lagrangian submanifold in an irre-
ducible Hermitian symmetric space of compact type is Hamiltonian non-displaceable.
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[12] C. Gorodski and F. Podestà, Tight Lagrangian homology spheres in compact homogeneous
Kähler manifolds, Israel J. Math. 206 (2015), no. 1, 413–429.

[13] H. Iriyeh, Symplectic topology of Lagrangian submanifolds of CPn with intermediate minimal
Maslov numbers, arXiv:1401.0777v1, 2014.

[14] H. Iriyeh, T. Sakai and H. Tasaki, Lagrangian Floer homology of a pair of real forms in
Hermitian symmetric spaces of compact type, J. Math. Soc. Japan 65 (2013), 1135–1151.

[15] H. Ma and Y. Ohnita, On Lagrangian submanifolds in complex hyperquadrics and isopara-
metric hypersurfaces in spheres, Math. Z. 261 (2009), 749–785.

[16] H. Ma and Y. Ohnita, Differential geometry of Lagrangian submanifolds and Hamiltonian
variational problems, Harmonic maps and differential geometry, Contemp. Math., 542, 115–

134 Amer. Math. Soc., Providence, RI, 2011.
[17] H. Ma and Y. Ohnita, Hamiltonian stability of the Gauss images of homogeneous isopara-

metric hypersurfaces. I, J. Differential Geom. 97 (2014), 275–348.

[18] H. Ma and Y. Ohnita, Hamiltonian stability of the Gauss images of homogeneous isopara-
metric hypersurfaces. II, Tohoku Math. J. 67 (2015), 195–246

[19] H. F. Münzner, Isoparametrische Hyperflächen in Sphären, and II, Math. Ann. 251 (1980),
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