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Abstract. We study torsions in the integral cohomology of a certain family

of 2n-dimensional orbifolds X with actions of the n-dimensional compact torus.
Compact simplicial toric varieties are in our family. For a prime number p, we
find a necessary condition for the integral cohomology of X to have no p-torsion.
Then we prove that the necessary condition is sufficient in some cases. We also

give an example of X which shows that the necessary condition is not sufficient
in general.

Introduction

A toric variety is a normal complex algebraic variety of complex dimension n with
an algebraic action of (C∗)n having a dense orbit. A toric variety is not necessarily
compact and may have singularity. The famous theorem of Danilov-Jurkiewicz gives
an explicit description of the integral cohomology ring of a compact smooth toric va-
riety in terms of the associated fan. It in particular says that the integral cohomology
groups are torsion-free and concentrated in even degrees.

The analogous result holds for a compact simplicial toric variety X (simplicial
means that X is an orbifold) but with rational coefficients. S. Fischli and A. Jordan
studied the integral cohomology groupsH∗(X) in their dissertations [5], [9] using spec-
tral sequences. Their results give an explicit computation of Hk(X) and H2n−k(X)
for k ≤ 3 under some conditions. Based on their results, M. Franz developed Maple
package torhom [6] to compute those cohomology groups. One can see that H∗(X)
has torsion in general while it has no torsion when X is a weighted projective space
([10]). Therefore we are naturally led to ask when H∗(X) has torsion or no torsion.

The orbit space Q of a compact simplicial toric variety X by the restricted action of
the n-dimensional compact torus T is a nice manifold with corners (sometimes called
a manifold with faces). All faces of Q (even Q itself) are contractible and Q is often
homeomorphic to a simple polytope as manifolds with corners. MacPherson showed
that X is homeomorphic to the quotient space (Q × T )/∼ under some equivalence
relation ∼ defined using the primitive vectors in the one-dimensional cones in the fan
of X (see [7]). The one-dimensional cones correspond to the facets of Q so that one
can think of the primitive vectors as a map

v : {Q1, Q2, . . . , Qm} → Zn (Qi’s are facets of Q).

The map v satisfies some linear independence condition and a map satisfying the con-
dition is called a characteristic function on Q (see Definition in Section 1). Note that
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there are many characteristic functions which do not arise from compact simplicial
toric varieties.

Bahri-Sarkar-Song [1] consider the quotient space X(Q, v) = (Q×T )/∼. Although
they restrict their concern to Q being a simple polytope, the characteristic function
v used to define the equivalence relation ∼ is arbitrary; so the quotient space do
not necessarily arise from a compact simplicial toric variety. They give a sufficient
condition for H∗(X(Q, v)) to be torsion-free in terms of Q and v.

In this paper, we also consider the quotient space X = X(Q, v) = (Q×T )/∼ where
v is arbitrary as above but our Q is a connected nice manifold with corners and not
necessarily a simple polytope. When Q has a vertex (equivalently X has a T -fixed
point), our X is a torus orbifold in the sense of [8]. We give an explicit description
of Hk(X) and H2n−k(X) for k ≤ 2 under some condition on Q. Motivated by the
explicit description of H2n−1(X), we introduce a positive integer µ(QI) depending on
the characteristic function v for each QI =

∩
i∈I Qi, where I is a subset of {1, . . . ,m}

and we understand QI = Q when I = ∅ and µ(QI) = 1 when QI = ∅. The µ(QI)’s
are all one when X has no singularity. Here is a summary of our results, which follows
from Propositions 5.1, 7.1, 7.2 and 7.4.

Theorem. Let p be a prime number and suppose that every face of Q (even Q
itself) is acyclic with Z/p-coefficient. If H∗(X(Q, v)) has no p-torsion, then µ(QI) is
coprime to p for every QI . The converse holds when the face poset of Q is isomorphic
to the face poset of one of the following:

(1) the suspension Σn of the (n − 1)-simplex ∆n−1, i.e. Σn is obtained from
∆n−1 × [−1, 1] by collapsing ∆n−1 ×{1} and ∆n−1 ×{−1} to a point respec-
tively,

(2) ∆n,
(3) ∆n−1 × [−1, 1].

Remark. The n-simplex ∆n and the prism ∆n−1 × [−1, 1] can be obtained from
the suspension Σn by performing a vertex cut once and twice respectively. So, the
reader might think that the converse mentioned in the theorem above would hold for
Q obtained from Σn by performing a vertex cut repeatedly. However, we will see in
Section 8 that this is not true for Q obtained from Σ3 by performing a vertex cut four
times.

The paper is organized as follows. In Section 1 we set up notations. In Section 2 we
compute H2n−k(X) (k ≤ 2) for the quotient space X = (Q× T )/∼ using the idea in
Yeroshkin’s paper [14]. Namely, we delete a small neighborhood of the singular set in
X to obtain a smooth manifold and investigate the relation of the cohomology groups
between X and the smooth manifold. In Section 3 we show that the quotient map
X → Q induces an isomorphism on their fundamental groups when Q has a vertex.
In Section 4 we apply the results in Sections 2 and 3 to the case when n = 2 and 3.
In Section 5 we introduce µ(QI) and find a necessary condition for H∗(X) to have
no p-torsion. In Section 6 we recall Theorem on Elementary Divisors and deduce two
facts used in Section 7. In Section 7 we prove that the necessary condition obtained
in Section 5 is sufficient for Q mentioned in the theorem above. Section 8 gives an
example mentioned in the remark above. In the appendix we will observe that a result
of Fischli or Jordan on H2n−1(X) and the torsion part of H2n−2(X) agrees with our
Proposition 2.2 when X is a compact simplicial toric variety.
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1. Setting and notation

In this section, we set up some notations and give some remarks. Let Q be a
connected manifold with corners of dimension n (see [4, p.180] for the precise definition
of a manifold with corners) Then faces are defined and a codimension-one face is
called a facet. We assume that Q is nice, which means that every codimension-k
face is a connected component of intersections of k facets. The teardrop, which is
homeomorphic to the 2-disk, is a manifold with corners but not nice (see [4, p.181]).
A simple polytope is a nice manifold with corners and any intersection of faces is
connected unless it is empty. However, intersections of faces of a nice manifold with
corners are not necessarily connected. For instance, a 2-gon, that is the suspension Σ2

in the theorem in the Introduction, is a nice manifold with corners but the intersection
of the two facets consists of two vertices.

Let S1 be the unit circle group of the complex numbers C and T be an n-
dimensional connected compact abelian Lie group. As is well-known, T is isomorphic
to (S1)n. We set

N := Hom(S1, T ) ∼= Zn.

Let Q have m facets and we denote them by Q1, . . . , Qm.

Definition. A function v : {Q1, . . . , Qm} → N is called a characteristic function on
Q if it satisfies the following two conditions:

(1) v(Qi) is primitive for each i ∈ [m] := {1, . . . ,m} and
(2) whenever QI =

∩
i∈I Qi is nonempty for I ⊂ [m], v(Qi)’s (i ∈ I) are linearly

independent over Q.

We call v(Qi)’s the characteristic vectors and abbreviate v(Qi) as vi. We denote by N̂
the sublattice of N generated by v1, . . . , vm. Condition (2) above implies that when

Q has a vertex, rank N̂ = n. It also implies that when QI ̸= ∅, the toral subgroup of
T generated by vi(S

1)’s (i ∈ I), denoted by TI , is of dimension |I| where |I| is the
cardinality of I.

To the pair (Q, v) we associate a quotient space

X(Q, v) := (Q× T )/∼

with the equivalence relation ∼ on the product Q× T defined by

(q, t) ∼ (q′, t′) if and only if q = q′ and t−1t′ ∈ TI

where I is the subset of [m] such that QI is the smallest face of Q containing q = q′.
The space X(Q, v) has a T -action induced from the natural T -action on Q× T . The
orbit space of X(Q, v) by the T -action is Q and the quotient map

π : X(Q, v) → Q = X(Q, v)/T

is induced from the projection map Q × T → Q. A T -fixed point in X(Q, v) cor-
responds to a vertex of Q, so X(Q, v) has a T -fixed point if and only if Q has a
vertex.

If vi’s (i ∈ I) are a part of a basis of N for every I with QI ̸= ∅, then X(Q, v) is a
manifold but otherwise X(Q, v) is an orbifold. The singularity of X(Q, v) lies in the
union of π−1(QI) over all I with |I| ≥ 2.

As mentioned in the Introduction, if X is a compact simplicial toric variety of
complex dimension n so that X has an algebraic action of (C∗)n having a dense orbit,
then the orbit space Q of X by the compact n-dimensional subtorus T of (C∗)n is a
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nice manifold with corners andX is homeomorphic toX(Q, v) where vi’s are primitive
edge vectors of the fan associated to X. Moreover, faces of Q (even Q itself) are all
contractible, which follows from the existence of the residual action of (C∗)n/T on
Q = X/T .

2. H2n−k(X(Q, v)) for k ≤ 2

In this section, we abbreviate X(Q, v) as X and all (co)homology groups will be
taken with Z-coefficients unless otherwise stated. When n = 1, Q is a closed interval
if Q has a vertex and a circle otherwise, and X is homeomorphic to S2 or a torus
accordingly. We will assume n ≥ 2 in this section. Remember that π : X → Q is the
quotient map.

Let Q(n−2) be the union of QI over all I with |I| ≥ 2 and we assume Q(n−2) ̸= ∅.
The singular set of X lies in π−1(Q(n−2)) as remarked in Section 1. Let Q′ be a “small
closed tubular neighborhood” of Q(n−2) of Q and set X ′ := π−1(Q′).

Lemma 2.1. H2n−k(X) ∼= Hk(X\ IntX ′) for k ≤ 2.

Proof. Note that Hr(X ′) = 0 for r ≥ 2n − 3 because X ′ is homotopy equivalent
to π−1(Q(n−2)) and dimπ−1(Q(n−2)) = 2n − 4. Therefore, the exact sequence in
cohomology for the pair (X,X ′) yields an isomorphism

(2.1) H2n−k(X,X ′) ∼= H2n−k(X) for k ≤ 2.

On the other hand,

H2n−k(X,X ′) ∼= H2n−k(X\ IntX ′, ∂X ′) by excision

∼= Hk(X\ IntX ′) by Poincaré-Lefschetz duality.
(2.2)

(Note that X\ IntX ′ is a manifold with boundary ∂X ′.) The lemma follows from
(2.1) and (2.2). □

Proposition 2.2. H2n(X) ∼= Z and H2n−1(X) ∼= H1(Q)⊕N/N̂ . If H1(Qi) = 0 for
every i, then

H2n−2(X) ∼= Zm−rank N̂ ⊕H2(Q)⊕
(
H1(Q)⊗H1(T )

)
⊕
(
∧2 N/N̂ ∧N

)
.

Remark. When Q has a vertex, rank N̂ = n as remarked in Section 1. Moreover,
when Q has a vertex and n = 2, the last term ∧2N/N̂ ∧N above is zero. Indeed, since

we may assume N = Z2 and N̂ = ⟨e1, ae2⟩ with some integer a, N̂ ∧N = ⟨e1 ∧ e2⟩ =
∧2N , where {e1, e2} denotes the standard base of Z2.

Proof. The statement for H2n(X) follows immediately from Lemma 2.1.
We shall prove the statement for H2n−1(X). Let Q0 := (IntQ) ∩ (Q\Q′) and Q1

be the intersection of (Q\Q′) and a small open neighborhood of ∂Q in Q. Since

π−1(Q0) ≃ Q× T, π−1(Q1) ≃
m⊔
i=1

(
Qi × T/vi(S

1)
)
,

π−1(Q0) ∩ π−1(Q1) ≃
m⊔
i=1

(Qi × T ), π−1(Q0 ∪Q1) = X\X ′,
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the Mayer-Vietoris exact sequence in homology for the triple (X\X ′, π−1(Q0), π−1(Q1))
yields the following exact sequence:

m⊕
i=1

H2(Qi × T )
f2−→ H2(Q× T )⊕

m⊕
i=1

H2(Qi × T/vi(S
1)) → H2(X\X ′)

→
m⊕
i=1

H1(Qi × T )
f1−→ H1(Q× T )⊕

m⊕
i=1

H1(Qi × T/vi(S
1)) → H1(X\X ′)

→
m⊕
i=1

H0(Qi × T )
f0−→ H0(Q× T )⊕

m⊕
i=1

H0(Qi × T/vi(S
1)).

(2.3)

As is easily seen, f0 is injective; so

(2.4) H1(X\X ′) ∼= coker f1.

We write f1 as (ψ1, φ1) according to the decomposition of the target space. Since

φ1 :

m⊕
i=1

H1(Qi × T ) →
m⊕
i=1

H1(Qi × T/vi(S
1)),

which is f1 composed with the projection on the second factor, is surjective, one has

(2.5) coker f1 ∼= H1(Q× T )/ψ1(kerφ1).

Since H1(Y × T ) = H1(Y ) ⊕H1(T ) for any topological space Y , elements in kerφ1

are of the form (c1v1, . . . , cmvm) with integers ci, where H1(T ) is identified with
N = Hom(S1, (S1)n) in a natural way. It follows that

(2.6) H1(Q× T )/ψ1(kerφ1) ∼= H1(Q)⊕N/N̂.

The statement for H2n−1(X) in the proposition follows from (2.4), (2.5), (2.6) and
Lemma 2.1.

The computation of H2n−2(X) is similar to that of H2n−1(X). We write f2 as
(ψ2, φ2) similarly to f1. As is easily seen, ker f1 is a free abelian group of rank

m− rank N̂ ; so it follows from (2.3) that

(2.7) H2(X\X ′) ∼= Zm−rank N̂ ⊕ coker f2.

Similarly to φ1, the map

(2.8) φ2 :
m⊕
i=1

H2(Qi × T ) →
m⊕
i=1

H2(Qi × T/vi(S
1))

is surjective; so

(2.9) coker f2 ∼= H2(Q× T )/ψ2(kerφ2).

Here,

(2.10) H2(Y × T ) = H2(Y )⊕
(
H1(Y )⊗H1(T )

)
⊕H2(T )

for any topological space Y by the Künneth formula. Therefore, since H1(Qi) = 0 by
assumption, it follows from (2.8) and (2.10) that kerφ2 is contained in

⊕m
i=1H2(T ).

We note that H2(T ) and H2(T/vi(S
1)) can be identified with ∧2N and ∧2(N/⟨vi⟩)

respectively and the kernel of the projection ∧2N → ∧2(N/⟨vi⟩) is ⟨vi⟩∧N . Therefore

coker f2 ∼= H2(Q)⊕
(
H1(Q)⊗H1(T )

)
⊕
(
∧2 N/N̂ ∧N

)



6 H. KUWATA, M. MASUDA, AND H. ZENG

This together with (2.7) and (2.9) proves the statement for H2n−2(X) in the propo-
sition. □

3. Fundamental groups

For a subset I of [m], we define

Tm
I := {(h1, . . . , hm) ∈ Tm | hj = 1 (∀j /∈ I)}.

and consider a space

ZQ := (Q× Tm)/∼e

where ∼e is the equivalence relation on the product Q× Tm defined by

(q, s) ∼e (q
′, s′) if and only if q = q′ and t−1t′ ∈ Tm

I

and I is the subset of [m] such that QI is the smallest face of Q containing q = q′.
One can check that ZQ is a manifold.

Lemma 3.1. The projection map κ : ZQ → Q induces an isomorphism κ∗ : π1(ZQ) ∼=
π1(Q) on the fundamental groups.

Remark. When Q is a simple polytope, ZQ is called a moment-angle manifold and
known to be 2-connected (see [3]).

Proof. An open tubular neighborhood of Qi in Q can be identified with Qi × R≥0.
Then κ−1(Qi×{1}) → κ−1(Qi) is a principal S1-bundle and the total space Ei of the
associated complex line bundle can be identified with an open tubular neighborhood
of Zi := κ−1(Qi) in ZQ. Therefore, if a continuous map f : S1 → ZQ meets Zi,
then we slightly push f in the fiber direction of Ei so that the deformed f does not
meet Zi. Applying this deformation to f for every i, we see that f is homotopic to a
continuous map whose image lies in κ−1(IntQ) = IntQ × Tm. This means that the
inclusion map ι : IntQ× Tm → ZQ induces an epimorphism

ι∗ : π1(IntQ× Tm) = π1(IntQ)× π1(T
m) → π1(ZQ).

Since IntQ is homotopy equivalent to Q, we may replace IntQ by Q above and we
have a sequence

(3.1) π1(Q)× π1(T
m)

ι∗−→ π1(ZQ)
κ∗−→ π1(Q),

where the composition κ∗ ◦ ι∗ agrees with the projection on the first factor, so that
the kernel of ι∗ is contained in the second factor π1(T

m).
Let Si be the i-th S

1-factor of Tm and choose a point qi ∈ (Qi×{1})∩ IntQ. Then
ι({qi} × Si) is a fiber of the principal S1-bundle κ−1(Qi × {1}) → Zi = κ−1(Qi), so
it shrinks to a point in Zi. Therefore π1(T

m) is in the kernel of the epimorphism ι∗
and this implies the lemma. □

We recall a result from Bredon’s book [2].

Lemma 3.2. [2, Corollary 6.3 in p.91]. If X is arcwise connected G-space, G compact
Lie, and if there is an orbit which is connected (e.g., G connected or XG ̸= ∅), then
the quotient map X → X/G induces an epimorphism on their fundamental groups.

The characteristic map v : {Q1, . . . , Qm} → Hom(S1, T ) defines a homomorphism

Tm → T , denoted v again. Note that v(Tm) is a subtorus of T of dimension rank N̂ ,
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in particular, v is surjective if and only if rank N̂ = rankN (this is the case when Q
has a vertex). The product map id× v : Q× Tm → Q× T induces a continuous map

V : ZQ → X = X(Q, v).

Proposition 3.3. If Q has a vertex, then π∗ : π1(X) ∼= π1(Q).

Proof. We have a sequence

κ∗ = π∗ ◦ V∗ : π1(ZQ)
V∗−→ π1(X)

π∗−→ π1(Q).

Since κ∗ is an isomorphism by Lemma 3.1, it suffices to prove that V∗ is surjective.
Since Q has a vertex, rank N̂ = rankN and the homomorphism v : Tm → T is

surjective. Then one can see that

X = ZQ/ ker v.

Since N̂ is a sublattice of N of finite index, there is a finite covering homomorphism
ρ : T̂ → T corresponding to N̂ , where T̂ is also a compact connected abelian Lie
group of dimension n (precisely speaking, ρ∗(π1(T̂ )) = N̂ when N is regarded as
π1(T )) and the characteristic function v uniquely determines a characteristic function

v̂ : {Q1, . . . , Qm} → Hom(S1, T̂ ) such that ρ∗(v̂(Qi)) = v(Qi) for any i. Then we have

X̂ := X(Q, v̂) = (Q× T̂ )/∼

and v̂ induces a homomorphism Tm → T̂ , denoted v̂ again similarly to v, and X̂ =
ZQ/ ker v̂. Moreover, we have X = X̂/ ker ρ. Namely, the quotient map V : ZQ → X
factors as the composition of two quotient maps

ZQ
α−→ ZQ/ ker v̂ = X̂

β−→ X̂/ ker ρ = X.

Theorem on Elementary Divisors (see Section 6) implies that since v̂(Qi)’s span N̂ ,

the homomorphism v̂ : Tm → T̂ composed with a suitable automorphism of Tm can
be viewed as a projection map if we take a suitable identification of T̂ with Tn ; so
ker v̂ is connected and hence α∗ : π1(ZQ) → π1(X̂) is surjective by Lemma 3.2. The

action of T̂ on X̂ has a fixed point since Q has a vertex and ker ρ is contained in T̂ ,
so the action of ker ρ on X̂ has a fixed point. Therefore β∗ : π1(X̂) → π1(X) is also
surjective again by Lemma 3.2. □

Corollary 3.4. If Q has a vertex and H1(Q) = H2(Q) = 0, then H1(X) = 0 and
H2(X) ∼= Zm−n.

Proof. By Proposition 3.3, π1(X) ∼= π1(Q) and hence H1(X) ∼= H1(Q). Therefore
H1(X) = 0 since H1(Q) = 0 by assumption and hence H1(X) = 0 and H2(X) has
no torsion by the universal coefficient theorem. On the other hand, since X is an
orbifold, Poincaré duality holds with Q-coefficients. Therefore the rank of H2(X)
is equal to that of H2n−2(X), that is m − n by Proposition 2.2 and its subsequent
remark. □

4. Low dimensional cases

A nice manifold with corners Q is called face-acyclic ([11]) if every face of Q
(even Q itself) is acyclic. We shall apply the previous results when Q is face-acyclic
and n = dimQ is 2 or 3. The following corollary follows from Proposition 2.2 and
Corollary 3.4.
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Corollary 4.1. Suppose that Q is face-acyclic and dimQ = 2, that is, Q is an m-gon
(m ≥ 2). Then we have

Hj(X) ∼=


Z (j = 0, 4)

Zm−2 (j = 2)

N/N̂ (j = 3)

0 (otherwise).

Example. Let a be a positive integer. Take Q to be a 2-simplex, N = Z2 and

v1 = (2a, 1), v2 = (0, 1), v3 = (−a,−1).

Then N̂ = ⟨ae1, e2⟩ and N/N̂ ∼= Z/a. The space X is not a weighted projective space
when a ≥ 2 since it has torsion in cohomology, where {e1, e2} denotes the standard
base of Z2 as before.

Corollary 4.2. Suppose that Q is face-acyclic and dimQ = 3. Then

Hj(X) ∼=



Z (j = 0, 6)

Zm−3 (j = 2)

0 or some torsion group (j = 3)

Zm−3 ⊕ ∧2N/(N̂ ∧N) (j = 4)

N/N̂ (j = 5)

0 (otherwise).

Proof. Since Q is face-acyclic, one can easily see that Q must have a vertex; so all
the statements except for j = 3 follows from Proposition 2.2 and Corollary 3.4. In
order to prove the statement for j = 3, it suffices to show H3(X;Q) = 0 and this is
equivalent to showing that the euler characteristic of X is 2m− 4 (note that we know
the rank of Hj(X) except for j = 3).

Since Q is face-acyclic and of dimension 3, the boundary of Q is a 2-sphere, every
2-face of Q is a 2-disk and the number of 2-faces is m by definition. Let V be the
number of vertices of Q. Then the number of edges of Q is 3V/2 and hence we obtain
an identity V − 3V/2 +m = 2 by Euler’s formula, which implies V = 2m − 4. On
the other hand, it is known that the euler characteristic of X is equal to that of the
T -fixed point set XT (see [2, Theorem 10.9 in p.163]). In our case XT is isolated and
corresponds to the vertices of Q. Therefore, the euler characteristic of X is equal to
V , that is 2m− 4. □

Example. It happens that N̂ ∧ N = ∧2N even if N̂ ̸= N . For instance, take Q to
be a 3-simplex, N = Z3 and

v1 = (0, 0, 1), v2 = (2, 0, 1), v3 = (0, 1, 1), v4 = (−2,−1,−1).

Then

N̂ = ⟨2e1, e2, e3⟩, N̂ ∧N = ⟨e1 ∧ e2, e1 ∧ e3, e2 ∧ e3⟩ = ∧2N,

where {e1, e2, e3} denotes the standard base of Z3.

Corollary 4.2 says that if N̂ = N , then Hj(X) has no torsion except j = 3.

However, H3(X) can be nontrivial (so, a nontrivial torsion group) when N̂ = N . We
shall give such an example below. One can also find many such examples using Maple
package torhom.
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Example. Let a be a positive integer and take the following five primitive vectors in
Z3:

v+ = (0, 0, 1),

v1 = (2a, 1, 0), v2 = (0, 1, 0), v3 = (−a,−1, 0),

v− = (1, 0,−1).

Then N̂ = N . We consider the complete simplicial fan ∆ having the following six
3-dimensional cones

∠v+v1v2, ∠v+v1v3, ∠v+v2v3, ∠v−v1v2, ∠v−v1v3, ∠v−v2v3
where ∠vϵvivj (ϵ ∈ {+,−}, i, j ∈ {1, 2, 3}) denotes the cone spanned by vϵ, vi and vj .
Let X be the compact simplicial toric variety associated to the fan ∆. Let ρ be the
projection of R3 on the line R corresponding to the last coordinates of R3. Then the
vectors v1, v2, v3 are in the kernel of ρ and ρ(v±) are primitive vectors and determine
the complete 1-dimensional fan. This means that we have a fibration F → X → CP 1

where the fiber F is the compact simplicial toric variety associated to the fan obtained
by projecting the fan ∆ on the plane R2 corresponding to the first two coordinates of
R3. The E2-terms of the Serre spectral sequence of the fibration are

Ep,q
2 = Hp(CP 1;Hq(F ))

and Ep,q
2 = 0 unless p = 0, 2 and q = 0, 2, 3, 4 by Corollary 4.1. Therefore all the

differentials except

d0,32 : E0,3
2 → E2,2

2 and d0,42 : E0,4
2 → E2,3

2

are trivial. Here, E0,3
2 = H0(CP 1;H3(F )) = H3(F ) is trivial or a torsion group by

Corollary 4.1 while E2,2
2 = H2(CP 1;H2(F )) = H2(F ) is a free abelian group again

by Corollary 4.1, so d0,32 must be trivial. Therefore E0,3
2 = E0,3

∞ . Since Ep,q
2 with

p+ q = 3 vanishes unless (p, q) = (0, 3), we obtain an isomorphism H3(X) ∼= H3(F ).
Here H3(F ) ∼= Z/a again by Corollary 4.1 (see Example after Corollary 4.1) and

hence we have H3(X) ∼= Z/a. On the other hand, since N̂ = N as remarked above,
Hj(X) has no torsion for j ̸= 3 by Corollary 4.2.

5. A necessary condition for no p-torsion

Let I be a subset of [m] with QI ̸= ∅. Although QI is not necessarily connected,
we understand that QI stands for a connected component of QI in this section for
notational convenience. Then the characteristic function v associates a characteristic
function vI on QI as follows. Since vi’s (i ∈ I) are linearly independent over Q, they
span a |I|-dimensional linear subspace of N ⊗R and its intersection with N is a rank
|I| sublattice of N , denoted NI . Then N(I) := N/NI is a free abelian group of rank
n − |I| and we denote the projection map from N to N(I) by πI . If QI ∩ Qj for
j ∈ [m]\I is nonempty, then its connected components are facets of QI , and any facet
of QI is of this form. The element πI(vj) ∈ N(I) is not necessarily primitive and we
define vI(QI ∩Qj) to be the primitive vector in N(I) which has the same direction as
πI(vj), where QI ∩Qj also stands for a connected component of QI ∩Qj . Then one

can see that vI is a characteristic function on QI . Similarly to N̂ , one can define a
sublattice N̂(I) of N(I) using vI . We allow I = ∅ and understand Q∅ = Q, N(∅) = N
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and N̂(∅) = N̂ . We define

µ(QI) :=

{
|N(I)/N̂(I)| when QI ̸= ∅,
1 when QI = ∅.

Here |N(I)/N̂(I)| is not necessarily finite. For instance, take Q = S1 × [−1, 1] and
assign characteristic vectors (1, 0) and (−1, 0) to the facets S1 × {1} and S1 × {−1}
respectively. Then N/N̂ is an infinite cyclic group and hence |N(I)/N̂(I)| is infinite
for I = ∅. One can easily construct a similar example such that |N(I)/N̂(I)| is infinite
for some I ̸= ∅.

Remark. When |I| = n, N(I) = {0}; so µ(QI) = 1. When |I| = n − 1, N(I) is of

rank one and N̂(I) is generated by a primitive vector; so N̂(I) = N(I) and hence
µ(QI) = 1 in this case too. Another case which ensures µ(QI) = 1 is the following.
Let q be a vertex of Q. Then there is a subset J of [m] with |J | = n such that q ∈ QJ .
If {vj}j∈J is a base of N , then µ(QI) = 1 for every subset I of J , which easily follows
from the definition of µ(QI).

We note that for a prime number p, H∗(X(Q, v);Z) has no p-torsion if and only
if Hodd(X(Q, v);Z/p) = 0, which follows from the universal coefficient theorem (see
[12, Corollary 56.4]).

Proposition 5.1. If Hodd(X(Q, v);Z/p) = 0, then H1(QI ;Z/p) = 0 and µ(QI) is
finite and coprime to p for every I.

Proof. We abbreviate X(Q, v) as X as before. Since Hodd(X;Z/p) = 0, we have
Hodd(XG;Z/p) = 0 for every p-subgroup G of TI by repeated use of [2, Theorem 2.2
in pp.376-377]. For a positive integer k, let Gk be the p-subgroup of TI consisting
of all elements of order at most pk. Then Gk ⊂ Gk′ for k ≤ k′ and the union∪∞

k=1Gk is dense in TI . Therefore XGk = XTI if k is sufficiently large.1 Since
XI = π−1(QI) is a connected component of XTI , this shows that Hodd(XI ;Z/p) = 0.

But H2(n−|I|)−1(XI) is isomorphic to H1(QI) ⊕ N(I)/N̂(I) by Proposition 2.2 and
hence the universal coefficient theorem implies the proposition. □

When Hodd(X(Q, v);Z/p) = 0, Proposition 5.1 gives a constraint on the topology
of QI , that is H1(QI ;Z/p) = 0. It is proved in [11] that if X(Q, v) is a manifold and
Hodd(X(Q, v);Z) = 0, then Q is face-acyclic. This implies that there will be more
constraints on the topology of QI when Hodd(X(Q, v);Z/p) = 0, to be more precise,
we expect that Q is face p-acyclic which means that (every component of) QI is
acyclic with Z/p-coefficients for every I. Therefore, in order to consider the converse
of Proposition 5.1, it would be appropriate to assume that Q is face p-acyclic. We will
prove in Section 7 that the converse holds in some cases while we will see in Section 8
that the converse does not hold in general.

1Detailed explanation about this assertion. Since the set of isotropy groups of X is finite, there
is a positive integer r such that XGk = XGr for every k ≥ r. Since Gr is a subgroup of TI , we have
XGr ⊃ XTI . We shall prove the opposite inclusion. Let x ∈ XGr . The isotropy subgroup Tx at x

contains Gk for every k ≥ r because XGk = XGr but since Tx is a closed subgroup of T , Tx must
contain the closure of ∪∞

k=rGk, that is TI . Therefore x ∈ XTI and hence XGr = XTI .
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6. Theorem on Elementary Divisors

We recall Theorem on Elementary Divisors which plays a role in the next section,
see [13] for the details.

Theorem 6.1 (Theorem on Elementary Divisors). Let N ′ be a submodule of rank
n′ in N = Zn. Then there are bases {u′1, . . . , u′n′} of N ′ and {u1, . . . , un} of N such
that u′i = ϵiui with some integer ϵi for i = 1, 2, . . . , n′ and ϵ1|ϵ2| . . . |ϵn′ . Moreover if
A = (a1, . . . , ak) is an n× k integer matrix whose column vectors a1, . . . , ak generate
N ′ and

δi := gcd{detB | B is an i× i submatrix of A},
then δi = δi−1ϵi for i = 1, 2, . . . , n′. In particular, if n′ = n, then δn = |N/N ′|.

We deduce two facts from Theorem 6.1.

Lemma 6.2. Let A be an n × n integer matrix of rank n and Ã : Rn/Zn → Rn/Zn

be the epimorphism induced from A. Then ker Ã ∼= cokerA.

Proof. By Theorem 6.1 we may think of A as the diagonal matrix with diagonal
entries ϵ1, . . . , ϵn. Then one easily sees that ker Ã and cokerA are both isomorphic to∏n

i=1 Z/ϵi, proving the lemma. □

Let a1, . . . , an+1 be elements of Zn which generate a sublattice ⟨a1, . . . , an+1⟩ of
rank n and set di := | det(aj)j ̸=i| for i ∈ [n+ 1]. It follows from Theorem 6.1 that

(6.1) δn = gcd(d1, . . . , dn+1) = |Zn/⟨a1, . . . , an+1⟩|.

Suppose that an+1 is primitive. Let āk (k ̸= n+ 1) be the projection image of ak on
Zn/⟨an+1⟩ and let a′k be the primitive vector in the quotient lattice Zn/⟨an+1⟩ which
has the same direction as āk when āk is nonzero and a′k be the zero vector when so is

āk. Set d
′
j := det(a′1, . . . , â

′
j , . . . , a

′
n). With this understood we have the following.

Lemma 6.3. gcd(d1, . . . , dn)
∣∣dn+1, in other words, gcd(d1, . . . , dn) = gcd(d1, . . . , dn+1).

Moreover, gcd(d′1, . . . , d
′
n)
∣∣ gcd(d1, . . . , dn+1).

Proof. Since an+1 is primitive, we may assume that an+1 = (0, . . . , 0, 1)T by Theo-
rem 6.1. We have

(6.2) dn+1 = | det(a1, . . . , an)| =
∣∣ n∑
j=1

anj ã
n
j

∣∣
where anj is the (n, j) entry of the matrix (a1, . . . , an) and ãnj is its cofactor. Since

an+1 = (0, . . . , 0, 1)T , ãnj agrees with dj = | det(a1, . . . , âj , . . . , an+1)| up to sign.
Therefore ãnj is divisible by gcd(d1, . . . , dn) for every j and this together with (6.2)
implies the former statement in the lemma.

Since an+1 = (0, . . . , 0, 1)T , Zn/⟨an+1⟩ can naturally be identified with Zn−1 and
we have

dj = |det(a1, . . . , âj , . . . , an+1)| = | det(ā1, . . . , ̂̄aj , . . . , ān)| for j = 1, 2, . . . , n

where āk (k = 1, 2, . . . , n) be the projection image of ak on Zn/⟨an+1⟩ = Zn−1. Since

āk is a positive scalar multiple of a′k, d
′
j = |det(a′1, . . . , â′j , . . . , a′n)| divides the latter

term above. This together with the former statement in the lemma implies the latter
statement in the lemma. . □
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7. Converse of Proposition 5.1 in three cases

In this section we show that the converse of Proposition 5.1 holds when Q is face
p-acyclic and has the same face poset as one of the following:

Case 1: the suspension Σn of an (n− 1)-simplex ∆n−1 (see the Introduction),
Case 2: the n-simplex ∆n,
Case 3: the prism ∆n−1 × [−1, 1].

Let q be a vertex of Q. Then q lies in QI for some I ⊂ [m] with |I| = n. We set

dQ(q) := | det(vi)i∈I |
where vi = v(Qi) as before.

Case 1. In this case Q has two vertices, say q and q′, and dQ(q) = dQ(q
′) = µ(Q).

Proposition 7.1. Suppose that Q is face p-acyclic, has the face poset as Σn and µ(Q)
is coprime to p. Then X(Q, v) has the same cohomology as S2n with Z/p-coefficients,
in particular Hodd(X(Q, v);Z/p) = 0.

Proof. Let Tn = (S1)n. Then Hom(S1, Tn) is naturally isomorphic to Zn and we
identify them. Let {ei}ni=1 be the standard basis of Zn and e : {Q1, . . . , Qn} → Zn =
Hom(S1, Tn) be the characteristic function assigning ei to Qi. Then we have a Tn-
space X(Q, e) which is actually a manifold because {ei}ni=1 is a basis of Zn.

The characteristic vectors vi ∈ N = Hom(S1, T ) define an epimorphism ṽ : Tn → T
sending (h1, . . . , hn) to

∏n
i=1 vi(hi). One can see that the surjective map from Q×Tn

to Q × T sending (q, t) to (q, ṽ(t)) descends to a ṽ-equivariant map from X(Q, e) to
X(Q, v) and further descends to a homeomorphism

X(Q, e)/ ker ṽ ≈ X(Q, v).

Here | ker ṽ| = |N/N̂ | by Lemma 6.2 and it is coprime to p by assumption. Moreover,
since ker ṽ is a subgroup of the connected group Tn acting on X(Q, e), the induced
action of ker ṽ on H∗(X(Q, e);Z/p) is trivial. Therefore we have

H∗(X(Q, e)/ ker ṽ;Z/p) ∼= H∗(X(Q, e);Z/p)
(see [2, Theorem 2.4 in p.120]) and hence it suffices to prove that X(Q, e) has the
same cohomology as S2n with Z/p-coefficients.

Since Q has the same face poset as Σn and every face of Σn is contractible, there
is a face preserving map f : Q → Σn which induces an isomorphism on the face
posets. Since Q is face p-acyclic, f induces an isomorphism on cohomology with
Z/p-coefficients at each face. Similarly to the definition of e, one has a characteristic
function on Σn, also denoted by e. Then the map from Q× Tn to Σn × Tn sending
(q, t) to (f(q), t) descends to a map

X(Q, e) → X(Σn, e)

which induces an isomorphism on cohomology with Z/p-coefficients. Since X(Σn, e)
is homeomorphic to S2n, this proves the desired result. □

Case 2. Since Q has the same face poset as the n-simplex ∆n, Q has n+ 1 facets
Q1, . . . , Qn+1 and n+1 vertices q1, . . . , qn+1. We number them in such a way that qi
is the unique vertex not contained in Qi. It follows from (6.1) and Lemma 6.3 that

µ(Q) = gcd(dQ(q1), . . . , dQ(qn+1)) = gcd(dQ(q1), . . . , d̂Q(qi), . . . , dQ(qn+1)),

µ(Qi)|µ(Q) for any i ∈ [n+ 1].
(7.1)
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Proposition 7.2. Suppose that Q is face p-acyclic, has the same face poset as ∆n

and µ(Q) is coprime to p. Then Hodd(X(Q, v);Z/p) = 0.

Proof. We abbreviate X(Q, v) as X. We prove the proposition by induction on n.
When n = 1, Q is a closed interval and X is homeomorphic to S2; so the propo-
sition holds in this case. We assume that the proposition holds for any face p-
acyclic (n − 1)-dimensional manifold with corners satisfying the assumption in the
proposition. For every i, Qi has the same face poset as ∆n−1 and µ(Qi)|µ(Q) by
(7.1), so Hodd(Xi;Z/p) = 0 by the induction assumption. On the other hand, since
µ(Q) = gcd(dQ(q1), . . . , dQ(qn+1)) is coprime to p by assumption, dQ(qi) is coprime
to p for some i. For such i, Q/Qi is face p-acyclic, has the same face poset as Σn

and µ(Q/Qi) = dQ(qi) is coprime to p, so Hodd(X/Xi;Z/p) = 0 by Proposition 7.1.
These together with the exact sequence

→ Hodd(X/Xi;Z/p) → Hodd(X;Z/p) → Hodd(Xi;Z/p) →

show Hodd(X;Z/p) = 0. □

Case 3. We denote the facets of Q corresponding to ∆n−1 ×{±1} by Q± and the
others by Q1, . . . , Qn. Accordingly, we abbreviate the characteristic vectors v(Q±) as
v± and v(Qi) as vi. We denote the vertices in Qϵ by qϵ1, . . . , q

ϵ
n for ϵ = ± in such a

way that qϵi is not contained in Qi.

Lemma 7.3. If µ(Q) is coprime to p and either µ(Q+) or µ(Q−) is coprime to p,
then there is a vertex q of Q such that dQ(q) is coprime to p.

Proof. We may assume that µ(Q+) is coprime to p. We may also assume that v+ =
(0, . . . , 0, 1)T by Theorem 6.1 through some identification of N with Zn. Suppose that

(7.2) p
∣∣dQ(q) for all vertices q of Q

and we will deduce a contradiction in the following.
By Lemma 6.3, det(v1, . . . , vn) is divisible by gcd(dQ(q

ϵ
1), . . . , dQ(q

ϵ
n)), so it follows

from (7.2) that

(7.3) p
∣∣det(v1, . . . , vn).

We write vi = (v1i , . . . , v
n
i )

T ∈ Zn for i = 1, 2, . . . , n.

Claim 1. There is an i ∈ [n] such that p
∣∣vji for all j ̸= n.

Proof. Since v+ = (0, . . . , 0, 1)T , we naturally identify the quotient lattice Zn/⟨v+⟩
with Zn−1 and then the projection image v̄i of vi on the quotient lattice Zn−1 is
(v1i , . . . , v

n−1
i ). Set si = gcd(v1i , . . . , v

n−1
i ). Then v̄i/si =: v′i is primitive. Since dQ(q)

is assumed to be divisible by p for all vertices q of Q, we have

(7.4) p
∣∣det(vi1 , . . . , vin−1 , v+) for every subset {i1, . . . , in−1} of [n].

Here, since v+ = (0, . . . , 0, 1)T , we have

(7.5) det(vi1 , . . . , vin−1 , v+) = det(v̄i1 , . . . , v̄in−1) = (
n−1∏
k=1

sik) det(v
′
i1 , . . . , v

′
in−1

).

Now suppose that si is not divisible by p for any i. Then it follows from (7.4) and
(7.5) that p

∣∣det(v′i1 , . . . , v′in−1
) for every subset {i1, . . . , in−1} of [n]. Since µ(Q+)

agrees with the greatest common divisor of all det(v′i1 , . . . , v
′
in−1

) by (6.1), this shows
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that p
∣∣µ(Q+) which contradicts the assumption that µ(Q+) is coprime to p. Therefore

p
∣∣si for some i, proving the claim.

Claim 2. p
∣∣det(vi1 , . . . , vin−2 , v−, v+) for every subset {i1, . . . , in−2} of [n].

Proof. Since v+ = (0, . . . , 0, 1)T , we have

(7.6) det(vi1 , . . . , vin−2 , v−, v+) = det(v̄i1 , . . . , v̄in−2 , v̄−)

where v̄− = (v1−, . . . , v
n−1
− )T is the projection image of v− on the quotient Zn/⟨v+⟩ =

Zn−1. We shall observe that the right hand side in (7.6) is divisible by p. Without
loss of generality we may assume that the i in Claim 1 is n, so that p

∣∣vjn for all j ̸= n.
We consider two cases.

Case a. The case where n ∈ {i1, . . . , in−2}. Since v̄n = (v1n, . . . , v
n−1
n )T and p

∣∣vjn
for all j ̸= n, the right hand side in (7.6) is divisible by p.

Case b. The case where n /∈ {i1, . . . , in−2}. In this case, we consider the expansion
of det(vi1 , . . . , vin−2 , v−, vn) with respect to the last column. Since vn = (v1n, . . . , v

n
n)

T

and p
∣∣vjn for all j ̸= n, we have

(7.7) det(vi1 , . . . , vin−2 , v−, vn) ≡ vnn det(v̄i1 , . . . , v̄in−2 , v̄−) (mod p).

Here the left hand side above is dQ(q) for q = (
∩n−2

k=1 Qik)∩Q− ∩Qn, so it is divisible
by p by (7.2). Moreover, vnn is not divisible by p because otherwise every entry of vn
is divisible by p and this contradicts vn being primitive. It follows from (7.7) that the
right hand side in (7.6) is divisible by p in this case, too.

This completes the proof of the claim.

Now (7.2), (7.3) and Claim 2 show that all n × n minors of (v1, . . . , vn, v−, v+)

are divisible by p and hence p
∣∣µ(Q)(= |N/N̂ |) by Theorem 6.1. This contradicts the

assumption that µ(Q) is coprime to p, proving the lemma. □

Proposition 7.4. Suppose that Q is face p-acyclic, has the same face poset as ∆n−1×
[−1, 1] and µ(Q), µ(Q±) are coprime to p. Then Hodd(X(Q, v);Z/p) = 0.

Proof. We abbreviate X(Q, v) as X and denote by Xϵ (ϵ = + or −) the inverse image
of Qϵ by the quotient map π : X → Q. Since Qϵ is face p-acyclic, has the same face
poset as ∆n−1 and µ(Qϵ) is coprime to p by assumption, we have

(7.8) Hodd(Xϵ;Z/p) = 0

by Proposition 7.2.
By Lemma 7.3 there is a vertex q of Q such that dQ(q) is coprime to p. Without

loss of generality we may assume q = q−n , i.e. dQ(q
−
n ) is coprime to p. Since we have

(7.8) and the exact sequence

→ Hodd(X/X+;Z/p) → Hodd(X;Z/p) → Hodd(X+;Z/p) →,

it suffices to prove

(7.9) Hodd(X/X+;Z/p) = 0.

We consider two cases.

Case a. The case where det(v1, . . . , vn) ̸= 0. In this case, the characteristic func-
tion v on Q induces a characteristic function on Q/Q+, denoted v+, and X/X+ =
X(Q/Q+, v

+). We note that Q/Q+ is face p-acyclic and has the same face poset as
∆n. Moreover, since q−n is a vertex of Q/Q+ and dQ/Q+

(q−n ) = dQ(q
−
n ) is coprime to

p, µ(Q/Q+) is coprime to p. Therefore, (7.9) follows from Proposition 7.2.
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Case b. The case where det(v1, . . . , vn) = 0.

Claim. There is a vertex q of Qn such that dQn(q) is coprime to p, so µ(Qn) is
coprime to p.

Proof. Write vi = (v1i , . . . , v
n
i )

T and v− = (v1−, . . . , v
n
−)

T . Since vn is primitive, we

may assume vn = (0, . . . , 0, 1)T by Theorem 6.1. Denote by v̄i and v̄− the projection
images of vi and v− on Zn/⟨vn⟩ and by v′i and v

′
− the primitive vectors which have

the same directions as v̄i and v̄− respectively. Then

dQn(q
−
i ) = | det(v′1, . . . , v̂′i, . . . , v

′
n−1, v

′
−)|

by definition and hence

(7.10) dQn(q
−
i )

∣∣det(v̄1, . . . , ̂̄vi, . . . , v̄n−1, v̄−).

On the other hand, since vn = (0, . . . , 0, 1)T , we have

det(v1, . . . , vn) = det(v̄1, . . . , v̄n−1)

and the left hand side above is zero by assumption. It follows that

dQ(q
−
n ) =det(v1, . . . , vn−1, v−)

=vn− det(v̄1, . . . , v̄n−1) +

n−1∑
j=1

vnj (−1)n−j det(v̄1, . . . , ̂̄vj , . . . , v̄n−1, v̄−)

=
n−1∑
j=1

vnj (−1)n−j det(v̄1, . . . , ̂̄vj , . . . , v̄n−1, v̄−)

where the second identity above is the expansion of det(v1, . . . , vn−1, v−) with respect
to the nth row. By (7.10) gcd(dQn(q

−
1 ), . . . , dQn(q

−
n−1)) divides the last term above.

Since dQ(q
−
n ) is coprime to p, this means that dQn

(q−i ) is coprime to p for some i,
proving the claim.

Now we shall prove (7.9) by induction on the dimension n of Q. When n = 1, Q is
a closed interval, X is S2 and X+ is a point; so (7.9) holds in this case. We assume
n ≥ 2 in the following. Let Xn be the inverse image of Qn by the quotient map
π : X → Q. The face poset of Qn is the same as that of ∆n−2× [−1, 1] and Qn is face
p-acyclic. The facets corresponding to ∆n−2×{±1} are Qn∩Q± and µ(Qn∩Q±) are
coprime to p by (7.1) because µ(Q±) are coprime to p by assumption. By the claim
above µ(Qn) is also coprime to p. Therefore

(7.11) Hodd(Xn/(Xn ∩X+);Z/p) = 0

by the induction assumption.
The quotient Q/(Qn ∪ Q+) := Q̃ is face p-acyclic and Q̃ has the same face poset

as Σn. The characteristic function v on Q induces a characteristic function on Q̃,
denoted ṽ, because q−n is a vertex of Q̃ and dQ̃(q

−
n ) = dQ(q

−
n ) is coprime to p, in

particular nonzero. The quotient space Xn/(Xn ∩X+) is a subspace of X/X+ and

(7.12) (X/X+)
/(
Xn/(Xn ∩X+)

)
= X(Q̃, ṽ).
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Since dQ̃(q
−
n ) = µ(Q̃) is coprime to p, Hodd(X(Q̃, ṽ);Z/p) = 0 by Proposition 7.1.

This together with (7.12), (7.11) and the exact sequence

→ Hodd((X/X+)
/(
Xn/(Xn ∩X+)

)
;Z/p) → Hodd(X/X+;Z/p)

→ Hodd(Xn/(Xn ∩X+);Z/p) →

implies (7.9). □

8. Example

In this section we shall give an example of a compact simplicial toric variety showing
that the converse of Proposition 5.1 does not hold in general.

Let Q be the 3-dimensional simple polytope with the 7 facets Q+, Q−, Q1, ..., Q5,
where Q4 and Q5 are triangles obtained by cutting two vertices of a prism, shown in
Figure 1 below. The polytope Q can be obtained from Σ3 by performing a vertex cut
four times.

Q+

Q4

Q5

Q2 Q1

Q3

Q−

Figure 1

Let d be a positive integer. To the 7 facets Q1, ..., Q5, Q+, Q−, we respectively
assign the following vectors

v1 = (1, 0, 0) v2 = (−1, d,−d) v3 = (−1,−d, 0)
v4 = (0, 1, 0) v5 = (d, 1− d,−d)
v+ = (0, 0, 1) v− = (1,−1,−1),

giving a characteristic function v on Q. There are ten vertices in Q. At each ver-
tex, there are exactly three facets meeting and the determinant of the three vectors
assigned to the facets is nonzero, indeed their absolute values are as follows:

|det(v1, v4, v+)| = |det(v2, v4, v+)| = | det(v1, v5, v−)| = 1

|det(v1, v2, v4)| = | det(v1, v3, v+)| = | det(v1, v3, v−)| = d

|det(v1, v2, v5)| = d(2d− 1) | det(v2, v5, v−)| = d+ 1

|det(v2, v3, v−)| = d(d+ 3) | det(v2, v3, v+)| = 2d.

(Precisely speaking, the vectors are regarded as column vectors here by taking trans-
pose.) Therefore, at each vertex, the cone spanned by the three vectors is 3-dimensional
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and has the origin as the apex. One can also check that

v4 = (v1 + v2 + dv+)/d v5 =
(
(d+ 1)v1 + v2 + d(2d− 1)v−

)
/2d

v+ = −(2v1 + v2 + v3)/d v− = ((d+ 3)v1 + v2 + 2v3)/d.

Since d is a positive integer, this shows that −v+ is in the cone ∠v1v2v3 and v4 is
in the cone ∠v1v2v+ while v− is in the cone ∠v1v2v3 and v5 is in the cone ∠v1v2v−
(see Figure 2), where ∠uvw denotes the cone spanned by vectors u, v, w. This implies
that the ten 3-dimensional cones have no overlap and cover the entire R3, giving a
complete simplicial fan, so that the quotient space X = X(Q, v) is homeomorphic to
a compact simplicial toric variety.

v3 v2

v−

v5

v1 v4

∞ = v+

Figure 2

We shall check that µ(QI) = 1 for each face QI of Q, where µ(QI) is defined
in Section 5. As remarked in Section 5, µ(QI) = 1 when |I| = 2 or 3. Clearly

N̂ = N(= Z3). Therefore it suffices to check µ(QI) = 1 when |I| = 1. At vertices
Q1 ∩Q4 ∩Q+, Q2 ∩Q4 ∩Q+ and Q1 ∩Q5 ∩Q−, we have

| det(v1, v4, v+)| = | det(v2, v4, v+)| = | det(v1, v5, v−)| = 1

and hence µ(QI) = 1 for every I with |I| = 1 except I = {3} again by the remark in
Section 5. In order to see µ(Q3) = 1, we note that {v3, v4, v+} is a base of N and

v1 = −v3 − dv4, v2 = v3 + 2dv4 − dv+.

Therefore, the images of v1 and v2 by the quotient map π{3} : N → N({3}) = N/⟨v3⟩
are (−d, 0) and (2d,−d) with respect to the base {π{3}(v4), π{3}(v+)}. Thus the
corresponding primitive vectors are (−1, 0) and (2,−1) which form a base of N({3}).
Hence µ(Q3) = 1.

We shall compute H3(X). Take a plane in R3 which meets the facets Q1, Q2, Q3

transversally and does not meet the other facets of Q. Cutting Q along the plane, we
divide Q into two polytopes, denoted P+ and P− containing Q+ and Q− respectively.
Let π : X → Q be the quotient map and set

Yϵ := π−1(Pϵ) for ϵ = ±, Y := Y+ ∩ Y−, P := P+ ∩ P−.
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The quotient space Pϵ/P can be regarded as a prism. The characteristic function
v on Q induces a characteristic function on Pϵ/P , denoted wϵ, and X/Y+ = Y−/Y
(resp. X/Y− = Y+/Y ) is homeomorphic to X(P−/P,w−) (resp. X(P+/P,w+)). The
same argument as above shows that µ takes 1 on all faces of the prism Pϵ/P , so

(8.1) H∗(X,Yϵ) and H
∗(Yϵ, Y ) are torsion free and vanish in odd degrees

by Proposition 7.4.
Let Q̃ be a nice manifold with corners obtained from Q by collapsing Q4 ∪Q+ and

Q5 ∪Q− to a point respectively. The Q̃ has three facets coming from Q1, Q2, Q3 and

the characteristic function v on Q induces a characteristic function ṽ on Q̃. Since

v1 = (1, 0, 0), v2 = (−1, d,−d), v3 = (−1,−d, 0),

one can see that H4(X(Q̃, ṽ)) ∼= Z/d by Corollary 4.2, and since X(Q̃, ṽ) is homeo-
morphic to the suspension of Y , we obtain

(8.2) H3(Y ) ∼= Z/d.

Now, consider the exact sequence in cohomology for the pair (Y+, Y ):

(8.3) → H3(Y+, Y ) → H3(Y+) → H3(Y ) → H4(Y+, Y ) → .

Since H3(Y+, Y ) = 0 and H4(Y+, Y ) is torsion free by (8.1) and H3(Y ) is a torsion
group by (8.2), it follows from the exact sequence (8.3) that

(8.4) H3(Y+) ∼= H3(Y ) ∼= Z/d.

Next, consider the exact sequence in cohomology for the pair (X,Y+):

(8.5) → H3(X,Y+) → H3(X) → H3(Y+) → H4(X,Y+) → .

Similarly to the above argument, H3(X,Y+) = 0 and H4(X,Y+) is torsion free by
(8.1) and H3(Y+) is a torsion group by (8.4), so it follows from the exact sequence
(8.5) that

H3(X) ∼= H3(Y+) ∼= Z/d.
Thus X = X(Q, v) is the desired example when d ≥ 2.

Appendix

In this appendix, we observe that when X is a compact simplicial toric variety of
complex dimension n, a result of Fischli [5] or Jordan [9] implies that H2n−1(X) ∼=
N/N̂ and TorH2n−2(X) ∼= ∧2N/(N̂ ∧N), where TorH2n−2(X) denotes the torsion
part of H2n−2(X). This result agrees with Proposition 2.2 since Q is contractible in
this case.

Let ∆ be a simplicial complete fan of dimension n and let X be the associated
compact simplicial toric variety. LetM is the free abelian group dual to N . According
to [5, Theorem 2.3] or [9, Theorem 2.5.5],

H2n−1(X) ∼= coker δ1, TorH2n−2(X) ∼= coker δ2,

where

(8.6) δr :
⊕

τ∈∆(1)

∧n−r(τ⊥ ∩M) → ∧n−rM (r = 1, 2)

is the sum of inclusion maps, ∆(1) denotes the set of one-dimensional cones in ∆ and
τ⊥ denotes the subspace of M ⊗ R which vanish on τ .
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We shall interpret the above in terms of N . Let σ be a cone of dimension n− k in
∆. Then we have

∧ℓ(σ⊥ ∩M) ∼= Hom(∧k−ℓ(σ⊥ ∩M),Z) (∵ rankσ⊥ ∩M = k)

∼= ∧k−ℓ(N/Nσ) (∵ N/Nσ is dual to σ⊥ ∩M)

∼= (∧n−kNσ) ∧ (∧k−ℓN)

(8.7)

where Nσ is the intersection of N with the subspace of N ⊗ R spanned by σ. The
last isomorphism above is given as follows. Choose a base ρ1, . . . , ρn−k of Nσ. Since
Nσ is of rank n− k, ∧n−kNσ is a free abelian group of rank one and ρ1 ∧ · · · ∧ ρn−k

is its generator. For w ∈ N , we denote by [w] the element of N/Nσ determined by w.
Then the following correspondence

[w1] ∧ · · · ∧ [wk−ℓ] → ρ1 ∧ · · · ∧ ρn−k ∧ w1 ∧ · · · ∧ wk−ℓ

is well defined and gives the desired isomorphism from ∧k−ℓ(N/Nσ) to (∧n−kNσ) ∧
(∧k−ℓN). This isomorphism is independent of the choice of the base ρ1, . . . , ρn−k up
to sign. Namely, the isomorphism (8.7) depends only on the choice of orientations on
M (or N) and σ.

Applying (8.7) to σ = τ ∈ ∆(1) and σ = 0, we obtain

∧n−1 (τ⊥ ∩M) ∼= Nτ , ∧n−1 M ∼= N,

∧n−2 (τ⊥ ∩M) ∼= Nτ ∧N, ∧n−2 M ∼= ∧2N.

Since δr is the sum of inclusion maps, the image of δ1 (resp. δ2) in (8.6) can be

identified with N̂ (resp. N̂ ∧N) and hence

H2n−1(X) ∼= En,n−1
2

∼= N/N̂, TorH2n−2(X) ∼= En,n−2
2

∼= ∧2N/(N̂ ∧N).
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