TORIC FANO VARIETIES ASSOCIATED TO FINITE SIMPLE GRAPHS

YUSUKE SUYAMA

ABSTRACT. We give a necessary and sufficient condition for the nonsingular projective toric variety associated to a finite simple graph to be Fano or weak Fano in terms of the graph.

1. INTRODUCTION

A toric variety of complex dimension n is a normal algebraic variety X over \mathbb{C} containing the algebraic torus $(\mathbb{C}^*)^n$ as an open dense subset, such that the natural action of $(\mathbb{C}^*)^n$ on itself extends to an action on X. The category of toric varieties is equivalent to the category of fans, which are combinatorial objects.

A nonsingular projective algebraic variety is called *Fano* (resp. *weak Fano*) if its anticanonical divisor is ample (resp. nef and big). The classification of toric Fano varieties is a fundamental problem and many results are known. In particular, Øbro [3] gave an algorithm classifying all such varieties for any dimension. Sato [7] classified toric weak Fano 3-folds that are not Fano but are deformed to Fano, which are called toric *weakened Fano* 3-folds.

There is a construction of nonsingular projective toric varieties from finite simple graphs, that is, associated toric varieties of normal fans of graph associahedra [5]. We give a necessary and sufficient condition for the nonsingular projective toric variety associated to a finite simple graph to be Fano (resp. weak Fano) in terms of the graph, see Theorem 6 (resp. Theorem 7). The proofs are done by using the fact that the intersection number of the anticanonical divisor with a torus-invariant curve can be expressed by the number of connected components of a certain induced subgraph (see Proposition 4 and Lemma 5), and by using graph-theoretic arguments.

The structure of the paper is as follows. In Section 2, we review the construction of a toric variety from a finite simple graph and we prepare some propositions for our proofs. In Section 3, we give a condition for the toric variety to be Fano or weak Fano.

Acknowledgement. This work was supported by Grant-in-Aid for JSPS Fellows 15J01000. The author wishes to thank his supervisor, Professor Mikiya Masuda, for his continuing support, and Professor Akihiro Higashitani for his useful comments.

Date: May 9, 2016.

²⁰¹⁰ Mathematics Subject Classification. Primary 14M25; Secondary 14J45, 05C30. Key words and phrases. toric Fano variety, toric weak Fano variety, nested set.

YUSUKE SUYAMA

2. Toric varieties associated to graphs

We fix a notation. Let G be a finite simple graph. We denote by V(G) and E(G) its node set and edge set respectively. For $I \subset V(G)$, we denote by $G|_I$ the induced subgraph. The graphical building set B(G) of G is defined to be $\{I \subset V(G) \mid G|_I$ is connected, $I \neq \emptyset\}$.

We review the construction of a nonsingular projective toric variety from a finite simple graph G. In this paper we construct a toric variety from G directly (without using the graph associahedron). First, suppose that G is connected. A subset N of B(G) is called a *nested set* if the following conditions are satisfied:

- (1) If $I, J \in N$, then we have either $I \subset J$ or $J \subset I$ or $I \cap J = \emptyset$.
- (2) If $I, J \in N$ and $I \cap J = \emptyset$, then $I \cup J \notin B(G)$.
- (3) $V(G) \in N$.

Remark 1. The above definition of nested sets is different from the one in [5, Definition 7.3]. However, the two definitions are equivalent for the graphical building set of a finite simple connected graph [5, 8.4].

The set $\mathcal{N}(B(G))$ of all nested sets of B(G) is called the *nested complex*.

Let $V(G) = \{1, \ldots, n+1\}$. We denote by e_1, \ldots, e_n the standard basis for \mathbb{R}^n . We put $e_{n+1} = -e_1 - \cdots - e_n$ and $e_I = \sum_{i \in I} e_i$ for $I \subset V(G)$. For $N \in \mathcal{N}(B(G))$, we denote by $\mathbb{R}_{\geq 0}N$ the cone $\sum_{I \in N} \mathbb{R}_{\geq 0}e_I$, where $\mathbb{R}_{\geq 0}$ is the set of non-negative real numbers. The dimension of $\mathbb{R}_{\geq 0}N$ is |N| - 1 since $V(G) \in N$ and $e_{V(G)} = 0$. We define $\Delta(G) = \{\mathbb{R}_{\geq 0}N \mid N \in \mathcal{N}(B(G))\}$. Note that $\Delta(G)$ and $\mathcal{N}(B(G))$ are isomorphic as ordered (by inclusion) sets. $\Delta(G)$ is a nonsingular fan in \mathbb{R}^n and the associated toric variety $X(\Delta(G))$ of complex dimension n is nonsingular and projective. In fact, $\Delta(G)$ is the normal fan of the graph associahedron of G (see, for example [5, 8.4]).

If a finite simple graph G is disconnected, then we define $X(\Delta(G))$ to be the product of toric varieties associated to connected components of G.

For a nonsingular complete fan Δ in \mathbb{R}^n and $0 \leq r \leq n$, We denote by $\Delta(r)$ the set of *r*-dimensional cones of Δ . We define a map $a: \Delta(n-1) \to \mathbb{Z}$ as follows. For $\tau \in \Delta(n-1)$, we take primitive vectors v_1, \ldots, v_{n-1} such that $\tau = \mathbb{R}_{\geq 0}v_1 + \cdots + \mathbb{R}_{\geq 0}v_{n-1}$. There exist distinct primitive vectors $v, v' \in \mathbb{Z}^n$ and integers a_1, \ldots, a_{n-1} such that $\tau + \mathbb{R}_{\geq 0}v$ and $\tau + \mathbb{R}_{\geq 0}v'$ are in $\Delta(n)$ and $v + v' + a_1v_1 + \cdots + a_{n-1}v_{n-1} = 0$. Then we define $a(\tau) = a_1 + \cdots + a_{n-1}$. Note that the intersection number $(-K_{X(\Delta)}.V(\tau))$ is $2 + a(\tau)$, where $V(\tau)$ is the subvariety of $X(\Delta)$ corresponding to τ (see, for example [4]).

Proposition 2. Let $X(\Delta)$ be a nonsingular projective toric variety of complex dimension n. Then the following hold:

- (1) $X(\Delta)$ is Fano if and only if $a(\tau) \ge -1$ for every $\tau \in \Delta(n-1)$.
- (2) $X(\Delta)$ is weak Fano if and only if $a(\tau) \ge -2$ for every $\tau \in \Delta(n-1)$.

(1) follows from the fact that $X(\Delta)$ is Fano if and only if the intersection number $(-K_{X(\Delta)}.V(\tau)) = 2 + a(\tau)$ is positive for every $\tau \in \Delta(n-1)$ [4, Lemma 2.20]. In the case of toric varieties, $X(\Delta)$ is weak Fano if and only if the anticanonical divisor $-K_{X(\Delta)}$ is nef [6, Proposition 6.17]. Since $-K_{X(\Delta)}$ is nef if and only if $(-K_{X(\Delta)}.V(\tau)) = 2 + a(\tau)$ is non-negative for every $\tau \in \Delta(n-1)$, we get (2).

Proposition 3. Let $X(\Delta)$ and $X(\Delta')$ be nonsingular projective toric varieties of complex dimension m and n, respectively. Then $X(\Delta) \times X(\Delta')$ is Fano (resp. weak Fano) if and only if $X(\Delta)$ and $X(\Delta')$ are Fano (resp. weak Fano).

Proof. We have $X(\Delta) \times X(\Delta') = X(\Delta \times \Delta')$, where $\Delta \times \Delta' = \{\sigma \times \sigma' \mid \sigma \in \Delta, \sigma' \in \Delta'\}$, and any (m+n-1)-dimensional cone in $\Delta \times \Delta'$ is of the form $\tau \times \sigma'$ for some $\tau \in \Delta(m-1)$ and $\sigma' \in \Delta'(n)$, or $\sigma \times \tau'$ for some $\sigma \in \Delta(m)$ and $\tau' \in \Delta'(n-1)$. Hence the proposition follows from $a(\tau \times \sigma') = a(\tau), a(\sigma \times \tau') = a(\tau')$ and Proposition 2.

Proposition 4. Let G be a finite simple connected graph with $V(G) = \{1, ..., n+1\}$ and let $N \in \mathcal{N}(B(G))$ with |N| = n. Then the following hold:

- (1) There exists a pair $\{J, J'\} \subset B(G) \setminus N$ such that $N \cup \{J\}, N \cup \{J'\} \in \mathcal{N}(B(G))$ and $J \cup J' \in N$ [8, Corollary 7.5].
- (2) If $G|_{I_1}, \ldots, G|_{I_m}$ are the connected components of $G|_{J\cap J'}$, then we have $I_1, \ldots, I_m \in N$ and $e_J + e_{J'} e_{I_1} \cdots e_{I_m} e_{J\cup J'} = 0$ [8, Proposition 4.5 and Corollary 7.6].

The following lemma follows immediately from Proposition 4.

Lemma 5. Let G be a finite simple connected graph and let $N \in \mathcal{N}(B(G))$ with |N| = |V(G)| - 1. Then we have

$$a(\mathbb{R}_{\geq 0}N) = \begin{cases} -m & (J \cup J' = V(G)), \\ -m - 1 & (J \cup J' \subsetneq V(G)), \end{cases}$$

where $\{J, J'\} \subset B(G) \setminus N$ is the pair in Proposition 4 and m is the number of connected components of $G|_{J \cap J'}$.

3. Main results

First we characterize finite simple graphs whose associated toric varieties are Fano.

Theorem 6. Let G be a finite simple graph. Then the associated nonsingular projective toric variety $X(\Delta(G))$ is Fano if and only if each connected component of G has at most three nodes.

Proof. By Proposition 3, it suffices to show that for a finite simple connected graph G, the toric variety $X(\Delta(G))$ is Fano if and only if $|V(G)| \leq 3$.

Let $V(G) = \{1, \ldots, n+1\}$. If the toric variety $X(\Delta(G))$ is Fano, then we have $|(\Delta(G))(1)| \leq 3n$ when n is even, and $|(\Delta(G))(1)| \leq 3n-1$ when n is odd [2]. On the other hand, the lower bound for f-vectors of graph associahedra is achieved for the graph associahedron corresponding to the path graph [1]. In particular, we have $|(\Delta(G))(1)| \geq |(\Delta(L_{n+1}))(1)| = |B(L_{n+1})| - 1 = \frac{(n+1)(n+2)}{2} - 1$, where L_{n+1} is the path graph on $\{1, \ldots, n+1\}$. Thus we have the inequalities $3n \geq \frac{(n+1)(n+2)}{2} - 1$ when n is even, and $3n - 1 \geq \frac{(n+1)(n+2)}{2} - 1$ when n is odd. These hold only for $n \leq 2$, so $|V(G)| \leq 3$.

- Conversely, if $|V(G)| \leq 3$, then $X(\Delta(G))$ must be one of the following:
- (1) $V(G) = \{1\}, E(G) = \emptyset$: a point, which is understood to be Fano.
- (2) $V(G) = \{1, 2\}, E(G) = \{\{1, 2\}\}: \mathbb{P}^1.$
- (3) $V(G) = \{1, 2, 3\}, E(G) = \{\{1, 2\}, \{2, 3\}\}$: \mathbb{P}^2 blown-up at two points.

YUSUKE SUYAMA

(4) $V(G) = \{1, 2, 3\}, E(G) = \{\{1, 2\}, \{1, 3\}, \{2, 3\}\}$: \mathbb{P}^2 blown-up at three points.

Thus $X(\Delta(G))$ is Fano for every case. This completes the proof.

We characterize graphs whose associated toric varieties are weak Fano. We denote by K the diamond graph, that is, the graph obtained by removing an edge from the complete graph on four nodes.

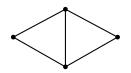


FIGURE 1. the diamond graph K.

Theorem 7. Let G be a finite simple graph. Then the associated nonsingular projective toric variety $X(\Delta(G))$ is weak Fano if and only if for any connected component G' of G and for any proper subset I of V(G'), $G'|_I$ is neither a cycle graph of length at least four nor the diamond graph K.

Example 8. (1) If G is a cycle graph or K, then the associated toric variety is weak Fano.

- (2) Toric varieties associated to trees and complete graphs are weak Fano.
- (3) The toric variety associated to the left graph in Figure 2 is weak Fano, but the toric variety associated to the right graph is not weak Fano because it has a cycle graph of length four as a proper induced subgraph.

FIGURE 2. examples.

Proof of Theorem 7. By Proposition 3, it suffices to show that for a finite simple connected graph G, the toric variety $X(\Delta(G))$ is weak Fano if and only if for any $I \subsetneq V(G), G|_I$ is neither a cycle graph of length ≥ 4 nor K.

First we show the necessity. Suppose that there exists $I \subsetneq V(G)$ such that $G|_I$ is a cycle graph of length $l \ge 4$. We may assume that

$$V(G) = \{1, \dots, n+1\}, n \ge l,$$

$$E(G|_{\{1,\dots,l\}}) = \{\{1,2\}, \{2,3\}, \dots, \{l-1,l\}, \{l,1\}\}$$

and $G|_{\{1,...,k\}}$ is connected for every $1 \le k \le n+1$. We consider the nested set $N = \{\{1\}, \{1, 2\}, \dots, \{1, \dots, l-3\}, \{l-1\}, \{1, \dots, l\}, \{1, \dots, l+1\}, \dots, \{1, \dots, n+1\}\}.$

4

The pair in Proposition 4 is $J = \{1, \ldots, l-1\}$ and $J' = \{1, \ldots, l-3, l-1, l\}$. Thus we have $J \cup J' = \{1, \ldots, l\} \subsetneq \{1, \ldots, n+1\}$ and $G|_{J \cap J'} = G|_{\{1, \ldots, l-3, l-1\}}$ has two connected components. Hence we have $a(\mathbb{R}_{\geq 0}N) = -3$ by Lemma 5. Therefore $X(\Delta(G))$ is not weak Fano by Proposition 2.

Suppose that there exists $I \subsetneq V(G)$ such that $G|_I$ is isomorphic to K. We may assume that

$$V(G) = \{1, \dots, n+1\}, n \ge 4,$$

(G|_{{1,2,3,4}}) = {{1,2}, {1,3}, {1,4}, {2,3}, {2,4}},

and $G|_{\{1,\ldots,k\}}$ is connected for every $1 \le k \le n+1$. We consider the nested set

$$N = \{\{3\}, \{4\}, \{1, 2, 3, 4\}, \{1, 2, 3, 4, 5\}, \dots, \{1, \dots, n+1\}\}.$$

The pair in Proposition 4 is $J = \{1, 3, 4\}$ and $J' = \{2, 3, 4\}$. Thus we have $J \cup J' = \{1, 2, 3, 4\} \subseteq \{1, \ldots, n+1\}$ and $G|_{J \cap J'} = G|_{\{3,4\}}$ consists of two isolated nodes. Hence we have $a(\mathbb{R}_{\geq 0}N) = -3$ by Lemma 5. Therefore $X(\Delta(G))$ is not weak Fano by Proposition 2.

We prove the sufficiency. Suppose that $X(\Delta(G))$ is not weak Fano. By Proposition 2, there exists $N \in \mathcal{N}(B(G))$ such that |N| = |V(G)| - 1 and $a(\mathbb{R}_{\geq 0}N) \leq -3$. We have the pair $\{J, J'\}$ in Proposition 4 and the number of connected components of $G|_{J\cap J'}$ is greater than or equal to two by Lemma 5. Let $G|_{I_1}, \ldots, G|_{I_m}$ be the connected components of $G|_{J\cap J'}$. We take $x \in I_1, x' \in I_2$ and simple paths $x = y_1, y_2, \ldots, y_r = x'$ in $G|_J$ and $x = z_1, z_2, \ldots, z_s = x'$ in $G|_{J'}$. Let

$$p = \max\{1 \le i \le r \mid y_i \in I_1, 1 \le \exists j \le s : y_i = z_j\},\ q = \min\{p+1 \le i \le r \mid y_i \in (I_2 \cup \dots \cup I_m) \setminus I_1, 1 \le \exists j \le s : y_i = z_j\}.$$

Then we have two simple paths between y_p and y_q . The two paths have no common nodes except y_p and y_q . Since $y_p \in I_1$ and $y_q \in (I_2 \cup \cdots \cup I_m) \setminus I_1$, we have $\{y_p, y_q\} \notin E(G)$ and the number of edges of each path is greater than or equal to two. Thus we obtain a simple cycle of length ≥ 4 containing y_p and y_q . Hence we may assume that:

(1) $V(G) = \{1, \dots, n+1\}.$

E

- (2) There exists an integer l such that $4 \le l \le n+1$ and $\{1,2\}, \{2,3\}, \ldots, \{l-1,l\}, \{l,1\} \in E(G)$.
- (3) There exists an integer k such that $3 \le k \le l-1$ and $\{1, k\} \notin E(G)$.

Moreover, we may assume that $\{i, j\} \notin E(G)$ for every

- $1 \leq i < j \leq k$ where $j i \geq 2$,
- $k \leq i < j \leq l$ where $j i \geq 2$,
- $k+1 \le i \le l-1$ and j = 1,

since if such an edge exists, then we can replace the cycle by a shorter cycle containing the edge.

We find a cycle graph of length ≥ 4 or K as an induced graph of G. The case where $\{2, l\} \notin E(G)$. We consider

$$i_{\min} = \min\{2 \le i \le k \mid k+1 \le \exists j \le l : \{i, j\} \in E(G)\},\ j_{\max} = \max\{k+1 \le j \le l \mid \{i_{\min}, j\} \in E(G)\}.$$

Then the induced subgraph by the subset

$$\{1, 2, \dots, i_{\min}, j_{\max}, j_{\max} + 1, \dots, l\} \subset V(G)$$

is a cycle graph of length ≥ 4 .

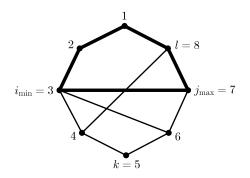


FIGURE 3. a cycle graph as an induced subgraph.

The case where $\{2, l\} \in E(G)$. If there exists an integer j such that $k + 1 \leq j \leq l - 1$ and $\{2, j\} \in E(G)$, then we have a cycle graph of length ≥ 4 or K as an induced subgraph. If $\{2, j\} \notin E(G)$ for any $k + 1 \leq j \leq l - 1$, then we consider

$$i_{\min} = \min\{3 \le i \le k \mid k+1 \le \exists j \le l : \{i, j\} \in E(G)\},\$$

 $j_{\max} = \max\{k+1 \le j \le l \mid \{i_{\min}, j\} \in E(G)\}.$

The induced subgraph by the subset

 $\{2,3,\ldots,i_{\min},j_{\max},j_{\max}+1,\ldots,l\}\subset V(G)$

is a cycle graph. If its length is at least four, then we have a desired induced subgraph. If its length is three, then we have an induced subgraph K by combining the cycle graph with two edges $\{1, 2\}$ and $\{l, 1\}$.

Thus we obtain a cycle graph of length ≥ 4 or K as an induced subgraph of G. If G is a cycle graph of length ≥ 4 or K, it can be easily checked that for any $N \in \mathcal{N}(B(G))$ such that |N| = |V(G)| - 1, the number of connected components of $G|_{J \cap J'}$ is at most two. Moreover, if the number of connected components is two, then we must have $J \cup J' = V(G)$. Hence we have $a(\mathbb{R}_{\geq 0}N) \geq -2$ by Lemma 5. So $X(\Delta(G))$ is weak Fano by Proposition 2, which is a contradiction. Thus G has a cycle graph of length ≥ 4 or K as a proper induced subgraph of G. This completes the proof.

References

- V. Buchstaber and V. Volodin, Sharp upper and lower bounds for nestohedra, Izv. Math. 75 (2011), no. 6, 1107–1133.
- [2] C. Casagrande, The number of vertices of a Fano polytope, Ann. Inst. Fourier 56 (2006), 121–130.
- [3] M. Øbro, An algorithm for the classicifation of smooth Fano polytopes, arXiv:0704.0049.
- [4] T. Oda, Convex Bodies and Algebraic Geometry. An Introduction to the Theory of Toric Varieties, Ergeb. Math. Grenzgeb. (3) 15, Springer-Verlag, Berlin, 1988.
- [5] A. Postnikov, Permutohedra, Associahedra, and Beyond, Int. Math. Res. Not. 2009, no. 6, 1026–1106.
- [6] H. Sato, Toward the classification of higher-dimensional toric Fano varieties, Tohoku Math. J. 52 (2000), 383–413.
- [7] H. Sato, The classification of smooth toric weakened Fano 3-folds, Manuscripta Math. 109 (2002), no. 1, 73–84.

[8] A. Zelevinsky, Nested Complexes and their Polyhedral Realizations, Pure Appl. Math. Q. 2 (2006), no. 3, 655–671.

Department of Mathematics, Graduate School of Science, Osaka City University, 3-3-138 Sugimoto, Sumiyoshi-ku, Osaka 558-8585 JAPAN

E-mail address: d15san0w03@st.osaka-cu.ac.jp