EHRHART POLYNOMIALS OF 3-DIMENSIONAL SIMPLE INTEGRAL CONVEX POLYTOPES

YUSUKE SUYAMA

Abstract

We give an explicit formula on the Ehrhart polynomial of a 3dimensional simple integral convex polytope by using toric geometry.

1. Introduction

Let $P \subset \mathbb{R}^{d}$ be an integral convex polytope of dimension d, that is, a convex polytope whose vertices have integer coordinates. For a non-negative integer l, we write $l P=\{l x \mid x \in P\}$. Ehrhart [2] proved that the number of lattice points in $l P$ can be expressed by a polynomial in l of degree d :

$$
\left|(l P) \cap \mathbb{Z}^{d}\right|=c_{d} l^{d}+c_{d-1} l^{d-1}+\cdots+c_{0}
$$

This polynomial is called the Ehrhart polynomial of P. It is known that:
(1) $c_{0}=1$.
(2) c_{d-1} is half of the sum of relative volumes of facets of $P([1$, Theorem 5.6]).
(3) c_{d} is the volume of $P([1$, Corollary 3.20$])$.

However, we have no formula on other coefficients of Ehrhart polynomials. In particular, we do not know a formula on c_{1} for a general 3-dimensional integral convex polytope. In this paper, we find an explicit formula on c_{1} of the Ehrhart polynomial of a 3-dimensional simple integral convex polytope, see Theorem 5.

Pommersheim [4] gave a method for computing the ($d-2$)-nd coefficient of the Ehrhart polynomial of a d-dimensional simple integral convex polytope P by using toric geometry. He obtained an explicit description of the Ehrhart polynomial of a tetrahedron by using this method. Our formula is obtained by using this method for a general 3-dimensional simple integral convex polytope.

The structure of the paper is as follows. In Section 2, we state the main theorem and give a few examples. In Section 3, we give a proof of the main theorem.

Acknowledgment. This work was supported by Grant-in-Aid for JSPS Fellows 15J01000. The author wishes to thank his supervisor, Professor Mikiya Masuda, for his continuing support.

2. The main theorem

Let $P \subset \mathbb{R}^{3}$ be a 3-dimensional simple integral convex polytope, and let F_{1}, \ldots, F_{n} be the facets of P. For $k=1, \ldots, n$, we denote by $v_{k} \in \mathbb{Z}^{3}$ the inward-pointing primitive normal vector of F_{k}. For an edge E of P, we denote by $\operatorname{Vol}(E)$ the relative

[^0]volume of E, that is, the length of E measured with respect to the lattice of rank one in the line containing E.

Definition 1. For each edge $E=F_{k_{1}} \cap F_{k_{2}}$ of P, we define an integer $m(E)$ and a rational number $s(E)$ as follows:
(1) We define $m(E)=\left|\left(\left(\mathbb{R} v_{k_{1}}+\mathbb{R} v_{k_{2}}\right) \cap \mathbb{Z}^{3}\right) /\left(\mathbb{Z} v_{k_{1}}+\mathbb{Z} v_{k_{2}}\right)\right|$.
(2) There exists a basis e_{1}, e_{2} for $\left(\mathbb{R} v_{k_{1}}+\mathbb{R} v_{k_{2}}\right) \cap \mathbb{Z}^{3}$ such that $v_{k_{1}}=e_{1}$ and $v_{k_{2}}=p e_{1}+q e_{2}$ for some $q>p \geq 0$. Then we define $s(E)=s(p, q)$, where $s(p, q)$ is the Dedekind sum, which is defined by

$$
s(p, q)=\sum_{i=1}^{q}\left(\left(\frac{i}{q}\right)\right)\left(\left(\frac{p i}{q}\right)\right), \quad((x))= \begin{cases}x-[x]-\frac{1}{2} & (x \notin \mathbb{Z}) \\ 0 & (x \in \mathbb{Z})\end{cases}
$$

Remark 2. We have $q=m(E)$. Although p is not uniquely determined, $s(p, q)$ does not depend on the choice of e_{1}, e_{2}. Thus $s(E)$ is well-defined.

Definition 3. For each facet F of P, we define a rational number $C(F)$ as follows. We name vertices and facets around F as in Figure 1. We denote by $v \in \mathbb{Z}^{3}$ the inward-pointing primitive normal vector of F.

Figure 1. vertices and facets around F.

For $i=1, \ldots, r$, we define

$$
\varepsilon_{i}=\operatorname{det}\left(v, v_{k_{i+1}}, v_{k_{i}}\right)>0, \quad a_{i}=\frac{\left\langle\overrightarrow{P_{i-1} Q_{i-1}}, v_{k_{i+1}}\right\rangle}{\varepsilon_{i}\left\langle\overrightarrow{P_{i-1} Q_{i-1}}, v\right\rangle}, \quad b_{i}=\frac{\left\langle\overrightarrow{P_{i} P_{i+1}}, v_{k_{i-1}}\right\rangle}{\varepsilon_{i-1}\left\langle\overrightarrow{P_{i} P_{i+1}}, v_{k_{i}}\right\rangle},
$$

where $v_{k_{0}}=v_{k_{r}}, v_{k_{r+1}}=v_{k_{1}}, \varepsilon_{0}=\varepsilon_{r}, P_{0}=P_{r}, P_{r+1}=P_{1}, Q_{0}=Q_{r}$ and $\langle\cdot, \cdot\rangle$ is the standard inner product on \mathbb{R}^{3}. Then we define

$$
C(F)=-\sum_{2 \leq i<j \leq r} a_{i}\left|\begin{array}{ccccc}
b_{i+1} & \varepsilon_{i+1}^{-1} & 0 & \cdots & 0 \\
\varepsilon_{i+1}^{-1} & b_{i+2} & \varepsilon_{i+2}^{-1} & \ddots & \vdots \\
0 & \varepsilon_{i+2}^{-1} & \ddots & \ddots & 0 \\
\vdots & \ddots & \ddots & b_{j-2} & \varepsilon_{j-2}^{-1} \\
0 & \cdots & 0 & \varepsilon_{j-2}^{-1} & b_{j-1}
\end{array}\right| \varepsilon_{i} \varepsilon_{i+1} \cdots \varepsilon_{j-1} \frac{\operatorname{Vol}\left(P_{j-1} P_{j}\right)}{m\left(P_{j-1} P_{j}\right)},
$$

where $P_{j-1} P_{j}$ is the edge whose endpoints are P_{j-1} and P_{j}, and the determinants above are understood to be one when $j=i+1$.

Remark 4. The proof of Theorem 5 below shows that $C(F)$ does not depend on the choice of $F_{k_{1}}$.

The following is our main theorem:
Theorem 5. Let $P \subset \mathbb{R}^{3}$ be a 3-dimensional simple integral convex polytope, and let E_{1}, \ldots, E_{m} and F_{1}, \ldots, F_{n} be the edges and the facets of P, respectively. Then the coefficient c_{1} of the Ehrhart polynomial $\left|(l P) \cap \mathbb{Z}^{3}\right|=c_{3} l^{3}+c_{2} l^{2}+c_{1} l+c_{0}$ is given by

$$
\sum_{j=1}^{m}\left(s\left(E_{j}\right)+\frac{1}{4}\right) \operatorname{Vol}\left(E_{j}\right)+\frac{1}{12} \sum_{k=1}^{n} C\left(F_{k}\right)
$$

Example 6. Let a, b, c be positive integers with $\operatorname{gcd}(a, b, c)=1$ and let $P \subset \mathbb{R}^{3}$ be the tetrahedron with vertices

$$
O=\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right), \quad P_{1}=\left(\begin{array}{l}
a \\
0 \\
0
\end{array}\right), \quad P_{2}=\left(\begin{array}{l}
0 \\
b \\
0
\end{array}\right), \quad P_{3}=\left(\begin{array}{l}
0 \\
0 \\
c
\end{array}\right)
$$

We put $A=\operatorname{gcd}(b, c), B=\operatorname{gcd}(a, c), C=\operatorname{gcd}(a, b)$ and $d=A B C$. Then we have the following table:

edge E	$O P_{1}$	$O P_{2}$	OP_{3}	$P_{1} P_{2}$		$P_{1} P_{3}$	$P_{2} P_{3}$
$\operatorname{Vol}(E)$	a	b	c	C		B	A
$m(E)$	1	1	1	$c C / d$		$b B / d$	$a A / d$
$s(E)$	0	0	0	$-s\left(\frac{a b}{d}\right.$,		$\left(\frac{a c}{d}, \frac{b B}{d}\right)$	$-s\left(\frac{b c}{d}, \frac{a A}{d}\right)$
facet F				$O P_{1} P_{2} \quad O P_{1} P_{3}$		$\mathrm{OP}_{2} \mathrm{P}_{3}$	$P_{1} P_{2} P_{3}$
inward-pointing primitive normal vector of F				$\left(\begin{array}{l}0 \\ 0 \\ 1\end{array}\right)$	$\left(\begin{array}{l}0 \\ 1 \\ 0\end{array}\right)$	$\left(\begin{array}{l}1 \\ 0 \\ 0\end{array}\right)$	$\left(\begin{array}{l}-b c / d \\ -a c / d \\ -a b / d\end{array}\right)$
$C(F)$				$a b / c$	$a c / b$	$b c / a$	$d^{2} /(a b c)$

Table 1. the values of $\operatorname{Vol}(E), s(E)$ and $C(F)$.

Thus we have

$$
\begin{aligned}
& \sum_{E: \text { edge }}\left(s(E)+\frac{1}{4}\right) \operatorname{Vol}(E)+\frac{1}{12} \sum_{F: \text { facet }} C(F) \\
& =\frac{a}{4}+\frac{b}{4}+\frac{c}{4}+\left(-s\left(\frac{a b}{d}, \frac{c C}{d}\right)+\frac{1}{4}\right) C+\left(-s\left(\frac{a c}{d}, \frac{b B}{d}\right)+\frac{1}{4}\right) B \\
& +\left(-s\left(\frac{b c}{d}, \frac{a A}{d}\right)+\frac{1}{4}\right) A+\frac{1}{12}\left(\frac{a b}{c}+\frac{a c}{b}+\frac{b c}{a}+\frac{d^{2}}{a b c}\right)
\end{aligned}
$$

which coincides with the formula in [4, Theorem 5].
Example 7. Let a and c be positive integers and b be a non-negative integer. Consider the convex hull $P \subset \mathbb{R}^{3}$ of the six points

$$
\begin{aligned}
& O=\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right), \quad A=\left(\begin{array}{l}
a \\
0 \\
0
\end{array}\right), \quad B=\left(\begin{array}{l}
0 \\
a \\
0
\end{array}\right) \\
& O^{\prime}=\left(\begin{array}{l}
b \\
0 \\
c
\end{array}\right), \quad A^{\prime}=\left(\begin{array}{c}
a+b \\
0 \\
c
\end{array}\right), \quad B^{\prime}=\left(\begin{array}{l}
b \\
a \\
c
\end{array}\right) .
\end{aligned}
$$

P is a 3 -dimensional simple polytope. We put $g=\operatorname{gcd}(b, c)$. Then we have the following table:

edge E	$O A$	$O B$	$A B$	$O O^{\prime}$	$A A^{\prime}$	$B B^{\prime}$	$O^{\prime} A^{\prime}$	$O^{\prime} B^{\prime}$		$A^{\prime} B^{\prime}$	
$\operatorname{Vol}(E)$	a	a	a	g	g	g	a	a		a	
$m(E)$	1	c / g	c / g	1	1	c / g	1	c / g		c / g	
$s(E)$	0	$-s\left(\frac{b}{g}, \frac{c}{g}\right)$	$s\left(\frac{b}{g}, \frac{c}{g}\right)$	0	0	$-s\left(1, \frac{c}{g}\right)$	0	$s\left(\frac{b}{g}, \frac{c}{g}\right)$		$-s\left(\frac{b}{g}, \frac{c}{g}\right)$	
facet F			$O A B$	$O A A^{\prime} O^{\prime}$		$O B B^{\prime} O^{\prime}$	$A B B^{\prime} A^{\prime}$		$O^{\prime} A^{\prime} B^{\prime}$		
inwar no	poin mal	ng primitive ctor of F	$\left(\begin{array}{l}0 \\ 0 \\ 1\end{array}\right)$			$\left(\begin{array}{c}c / g \\ 0 \\ -b / g\end{array}\right)$	$\left(\begin{array}{c}-c / g \\ -c / g \\ b / g\end{array}\right)$		$\left(\begin{array}{c}0 \\ 0 \\ -1\end{array}\right)$		
			0			g^{2} / c	g^{2} / c		0		

Table 2. the values of $\operatorname{Vol}(E), s(E)$ and $C(F)$.

Figure 2. the simple polytope P.

Thus we have

$$
\begin{aligned}
& \sum_{E: \text { edge }}\left(s(E)+\frac{1}{4}\right) \operatorname{Vol}(E)+\frac{1}{12} \sum_{F: \text { facet }} C(F) \\
& =-s\left(1, \frac{c}{g}\right) g+\frac{3 a}{2}+\frac{3 g}{4}+\frac{1}{12}\left(c+\frac{2 g^{2}}{c}\right) \\
& =-g \sum_{i=1}^{c / g-1}\left(\frac{i}{\frac{c}{g}}-\frac{1}{2}\right)^{2}+\frac{3 a}{2}+\frac{3 g}{4}+\frac{c}{12}+\frac{g^{2}}{6 c} \\
& =-g \sum_{i=1}^{c / g-1}\left(\frac{g^{2}}{c^{2}} i^{2}-\frac{g}{c} i+\frac{1}{4}\right)+\frac{3 a}{2}+\frac{3 g}{4}+\frac{c}{12}+\frac{g^{2}}{6 c} \\
& =-\frac{g^{3}}{c^{2}} \frac{\left(\frac{c}{g}-1\right) \frac{c}{g}\left(\frac{2 c}{g}-1\right)}{6}+\frac{g^{2}}{c} \frac{\left(\frac{c}{g}-1\right) \frac{c}{g}}{2}-g \frac{\frac{c}{g}-1}{4}+\frac{3 a}{2}+\frac{3 g}{4}+\frac{c}{12}+\frac{g^{2}}{6 c} \\
& =\frac{3 a}{2}+g
\end{aligned}
$$

On the other hand, since

$$
\#\left\{(x, y) \in \mathbb{Z}^{2} \mid(x, y, z) \in l P\right\}= \begin{cases}\frac{(a l+1)(a l+2)}{2} & ((c / g) \mid z) \\ \frac{a l(a l+1)}{2} & ((c / g) \nmid z)\end{cases}
$$

for $z=0,1, \ldots, c l$, we have

$$
\begin{aligned}
\left|(l P) \cap \mathbb{Z}^{3}\right| & =\frac{(a l+1)(a l+2)}{2}(g l+1)+\frac{a l(a l+1)}{2}((c l+1)-(g l+1)) \\
& =\frac{a^{2} c}{2} l^{3}+\frac{1}{2}\left(a^{2}+a c+2 a g\right) l^{2}+\left(\frac{3 a}{2}+g\right) l+1
\end{aligned}
$$

The coefficient of l is also $3 a / 2+g$.

3. Proof of Theorem 5

First we recall some facts about toric geometry, see [3] for details. Let $P \subset \mathbb{R}^{d}$ be a d-dimensional integral convex polytope. We define a cone

$$
\sigma_{F}=\left\{v \in \mathbb{R}^{d} \mid\left\langle u^{\prime}-u, v\right\rangle \geq 0 \forall u^{\prime} \in P, \forall u \in F\right\}
$$

for each face F of P. Then the set

$$
\Delta_{P}=\left\{\sigma_{F} \mid F \text { is a face of } P\right\}
$$

of such cones forms a fan in \mathbb{R}^{d}, which is called the normal fan of P. Let $X\left(\Delta_{P}\right)$ be the associated projective toric variety. We denote by $V(\sigma)$ the subvariety of $X\left(\Delta_{P}\right)$ corresponding to $\sigma \in \Delta_{P}$. Let $\operatorname{Td}_{i}\left(X\left(\Delta_{P}\right)\right) \in A_{i}\left(X\left(\Delta_{P}\right)\right)_{\mathbb{Q}}$ be the i-th Todd class in the Chow group of i-cycles with rational coefficients.

Theorem 8. Let $P \subset \mathbb{R}^{d}$ be a d-dimensional integral convex polytope and $\mid(l P) \cap$ $\mathbb{Z}^{d} \mid=c_{d} l^{d}+c_{d-1} l^{d-1}+\cdots+c_{0}$ be its Ehrhart polynomial. If $\mathrm{Td}_{i}\left(X\left(\Delta_{P}\right)\right)$ has an expression of the form $\sum_{F} r_{F}\left[V\left(\sigma_{F}\right)\right]$ with $r_{F} \in \mathbb{Q}$, then we have $c_{i}=\sum_{F} r_{F} \operatorname{Vol}(F)$, where $\left[V\left(\sigma_{F}\right)\right]$ is the class of $V\left(\sigma_{F}\right)$ in the Chow group and $\operatorname{Vol}(F)$ is the relative volume of F.

Now we assume that $d=3$ and P is simple. Then the associated toric variety $X\left(\Delta_{P}\right)$ is \mathbb{Q}-factorial and we know the ring structure of the Chow ring $A^{*}\left(X\left(\Delta_{P}\right)\right)_{\mathbb{Q}}$ with rational coefficients. Let E_{1}, \ldots, E_{m} and F_{1}, \ldots, F_{n} be the edges and the facets of P, respectively. We have

$$
\begin{equation*}
\sum_{k=1}^{n}\left\langle u, v_{k}\right\rangle\left[V\left(\sigma_{F_{k}}\right)\right]=0 \quad \forall u \in\left(\mathbb{Q}^{3}\right)^{*} . \tag{3.1}
\end{equation*}
$$

If $F_{k_{1}}$ and $F_{k_{2}}$ are distinct, then

$$
\left[V\left(\sigma_{F_{k_{1}}}\right)\right]\left[V\left(\sigma_{F_{k_{2}}}\right)\right]= \begin{cases}\frac{1}{m\left(E_{j}\right)}\left[V\left(\sigma_{E_{j}}\right)\right] & \left(1 \leq \exists j \leq m: F_{k_{1}} \cap F_{k_{2}}=E_{j}\right) \tag{3.2}\\ 0 & \left(F_{k_{1}} \cap F_{k_{2}}=\emptyset\right)\end{cases}
$$

in $A^{*}\left(X\left(\Delta_{P}\right)\right)_{\mathbb{Q}}$.
Pommersheim gave an expression of $\operatorname{Td}_{d-2}\left(X\left(\Delta_{P}\right)\right)$ for a d-dimensional simple integral convex polytope $P \subset \mathbb{R}^{d}$. In the case where $d=3$, we have the following:

Theorem 9 (Pommersheim [4]). If $P \subset \mathbb{R}^{3}$ is a 3-dimensional simple integral convex polytope, then

$$
\operatorname{Td}_{1}\left(X\left(\Delta_{P}\right)\right)=\sum_{j=1}^{m}\left(s\left(E_{j}\right)+\frac{1}{4}\right)\left[V\left(\sigma_{E_{j}}\right)\right]+\frac{1}{12} \sum_{k=1}^{n}\left[V\left(\sigma_{F_{k}}\right)\right]^{2}
$$

We use the notation in Definition 3. It suffices to show

$$
\left[V\left(\sigma_{F}\right)\right]^{2}=-\sum_{2 \leq i<j \leq r} a_{i}\left|\begin{array}{ccccc}
b_{i+1} & \varepsilon_{i+1}^{-1} & 0 & \cdots & 0 \\
\varepsilon_{i+1}^{-1} & b_{i+2} & \varepsilon_{i+2}^{-1} & \ddots & \vdots \\
0 & \varepsilon_{i+2}^{-1} & \ddots & \ddots & 0 \\
\vdots & \ddots & \ddots & b_{j-2} & \varepsilon_{j-2}^{-1} \\
0 & \cdots & 0 & \varepsilon_{j-2}^{-1} & b_{j-1}
\end{array}\right| \frac{\varepsilon_{i} \varepsilon_{i+1} \cdots \varepsilon_{j-1}}{m\left(P_{j-1} P_{j}\right)}\left[V\left(\sigma_{P_{j-1} P_{j}}\right)\right]
$$

for each facet F of P.
We put

$$
D(s, t)=\left|\begin{array}{ccccc}
b_{s} & \varepsilon_{s}^{-1} & 0 & \cdots & 0 \\
\varepsilon_{s}^{-1} & b_{s+1} & \varepsilon_{s+1}^{-1} & \ddots & \vdots \\
0 & \varepsilon_{s+1}^{-1} & \ddots & \ddots & 0 \\
\vdots & \ddots & \ddots & b_{t-1} & \varepsilon_{t-1}^{-1} \\
0 & \cdots & 0 & \varepsilon_{t-1}^{-1} & b_{t}
\end{array}\right|
$$

for $2<s \leq t<r$ and $D(s, t)=1$ for $s>t$. Define $u \in\left(\mathbb{Q}^{3}\right)^{*}$ by $\langle u, v\rangle=$ $1,\left\langle u, v_{k_{1}}\right\rangle=0,\left\langle u, v_{k_{2}}\right\rangle=0$. By (3.1) and (3.2), we have

$$
\left[V\left(\sigma_{F}\right)\right]^{2}=-\left[V\left(\sigma_{F}\right)\right] \sum_{j=1}^{r}\left\langle u, v_{k_{j}}\right\rangle\left[V\left(\sigma_{F_{k_{j}}}\right)\right]=-\sum_{j=3}^{r} \frac{\left\langle u, v_{k_{j}}\right\rangle}{m\left(P_{j-1} P_{j}\right)}\left[V\left(\sigma_{P_{j-1} P_{j}}\right)\right] .
$$

Hence it suffices to show

$$
\begin{equation*}
\left\langle u, v_{k_{j}}\right\rangle=\sum_{i=2}^{j-1} a_{i} D(i+1, j-1) \varepsilon_{i} \varepsilon_{i+1} \cdots \varepsilon_{j-1} \tag{3.3}
\end{equation*}
$$

for any $j=3, \ldots, r$.

First we claim that

$$
\begin{equation*}
\varepsilon_{j-1}^{-1} v_{k_{j-1}}+\varepsilon_{j}^{-1} v_{k_{j+1}}=a_{j} v+b_{j} v_{k_{j}} \tag{3.4}
\end{equation*}
$$

for any $j=2, \ldots, r-1$. By Cramer's rule, we have

$$
\begin{aligned}
v_{k_{j+1}} & =\frac{\operatorname{det}\left(v_{k_{j+1}}, v_{k_{j}}, v_{k_{j-1}}\right)}{\operatorname{det}\left(v, v_{k_{j}}, v_{k_{j-1}}\right)} v+\frac{\operatorname{det}\left(v, v_{k_{j+1}}, v_{k_{j-1}}\right)}{\operatorname{det}\left(v, v_{k_{j}}, v_{k_{j-1}}\right)} v_{k_{j}}+\frac{\operatorname{det}\left(v, v_{k_{j}}, v_{k_{j+1}}\right)}{\operatorname{det}\left(v, v_{k_{j}}, v_{k_{j-1}}\right)} v_{k_{j-1}} \\
& =\frac{\operatorname{det}\left(v_{k_{j+1}}, v_{k_{j}}, v_{k_{j-1}}\right)}{\varepsilon_{j-1}} v+\frac{\operatorname{det}\left(v, v_{k_{j+1}}, v_{k_{j-1}}\right)}{\varepsilon_{j-1}} v_{k_{j}}-\frac{\varepsilon_{j}}{\varepsilon_{j-1}} v_{k_{j-1}} .
\end{aligned}
$$

So we have

$$
\begin{align*}
& \varepsilon_{j-1}^{-1} v_{k_{j-1}}+\varepsilon_{j}^{-1} v_{k_{j+1}} \\
& =\varepsilon_{j-1}^{-1} \varepsilon_{j}^{-1} \operatorname{det}\left(v_{k_{j+1}}, v_{k_{j}}, v_{k_{j-1}}\right) v+\varepsilon_{j-1}^{-1} \varepsilon_{j}^{-1} \operatorname{det}\left(v, v_{k_{j+1}}, v_{k_{j-1}}\right) v_{k_{j}} \tag{3.5}
\end{align*}
$$

Taking the inner product of both sides of (3.5) with $\overrightarrow{P_{j-1} Q_{j-1}}$ gives

$$
\varepsilon_{j}^{-1}\left\langle\overrightarrow{P_{j-1} Q_{j-1}}, v_{k_{j+1}}\right\rangle=\varepsilon_{j-1}^{-1} \varepsilon_{j}^{-1} \operatorname{det}\left(v_{k_{j+1}}, v_{k_{j}}, v_{k_{j-1}}\right)\left\langle\overrightarrow{P_{j-1} Q_{j-1}}, v\right\rangle,
$$

which means $a_{j}=\xrightarrow{\varepsilon_{j-1}^{-1} \varepsilon_{j}^{-1}} \operatorname{det}\left(v_{k_{j+1}}, v_{k_{j}}, v_{k_{j-1}}\right)$. Taking the inner product of both sides of (3.5) with $\overrightarrow{P_{j} P_{j+1}}$ gives

$$
\varepsilon_{j-1}^{-1}\left\langle\overrightarrow{P_{j} P_{j+1}}, v_{k_{j-1}}\right\rangle=\varepsilon_{j-1}^{-1} \varepsilon_{j}^{-1} \operatorname{det}\left(v, v_{k_{j+1}}, v_{k_{j-1}}\right)\left\langle\overrightarrow{P_{j} P_{j+1}}, v_{k_{j}}\right\rangle
$$

which means $b_{j}=\varepsilon_{j-1}^{-1} \varepsilon_{j}^{-1} \operatorname{det}\left(v, v_{k_{j+1}}, v_{k_{j-1}}\right)$. Thus (3.4) follows.
We show (3.3) by induction on j. If $j=3$, then both sides are $a_{2} \varepsilon_{2}$. If $j=4$, then both sides are $a_{2} b_{3} \varepsilon_{2} \varepsilon_{3}+a_{3} \varepsilon_{3}$. Suppose $4 \leq j \leq r-1$. By (3.4) and the hypothesis of induction, we have

$$
\begin{aligned}
\left\langle u, v_{k_{j+1}}\right\rangle & =\left\langle u, a_{j} \varepsilon_{j} v+b_{j} \varepsilon_{j} v_{k_{j}}-\varepsilon_{j-1}^{-1} \varepsilon_{j} v_{k_{j-1}}\right\rangle \\
& =a_{j} \varepsilon_{j}+b_{j} \varepsilon_{j}\left\langle u, v_{k_{j}}\right\rangle-\varepsilon_{j-1}^{-1} \varepsilon_{j}\left\langle u, v_{k_{j-1}}\right\rangle \\
& =a_{j} \varepsilon_{j}+b_{j} \varepsilon_{j} \sum_{i=2}^{j-1} a_{i} D(i+1, j-1) \varepsilon_{i} \varepsilon_{i+1} \cdots \varepsilon_{j-1} \\
& -\varepsilon_{j-1}^{-1} \varepsilon_{j} \sum_{i=2}^{j-2} a_{i} D(i+1, j-2) \varepsilon_{i} \varepsilon_{i+1} \cdots \varepsilon_{j-2} .
\end{aligned}
$$

On the other hand,

$$
\begin{aligned}
& \sum_{i=2}^{j} a_{i} D(i+1, j) \varepsilon_{i} \varepsilon_{i+1} \cdots \varepsilon_{j} \\
& =a_{j} \varepsilon_{j}+a_{j-1} b_{j} \varepsilon_{j-1} \varepsilon_{j}+\sum_{i=2}^{j-2} a_{i} D(i+1, j) \varepsilon_{i} \varepsilon_{i+1} \cdots \varepsilon_{j}
\end{aligned}
$$

Since

$$
\begin{aligned}
& \sum_{i=2}^{j-2} a_{i} D(i+1, j) \varepsilon_{i} \varepsilon_{i+1} \cdots \varepsilon_{j} \\
& =\sum_{i=2}^{j-2} a_{i}\left(b_{j} D(i+1, j-1)-\varepsilon_{j-1}^{-2} D(i+1, j-2)\right) \varepsilon_{i} \varepsilon_{i+1} \cdots \varepsilon_{j} \\
& =b_{j} \varepsilon_{j} \sum_{i=2}^{j-2} a_{i} D(i+1, j-1) \varepsilon_{i} \varepsilon_{i+1} \cdots \varepsilon_{j-1} \\
& -\varepsilon_{j-1}^{-1} \varepsilon_{j} \sum_{i=2}^{j-2} a_{i} D(i+1, j-2) \varepsilon_{i} \varepsilon_{i+1} \cdots \varepsilon_{j-2}
\end{aligned}
$$

we have

$$
\begin{aligned}
& \sum_{i=2}^{j} a_{i} D(i+1, j) \varepsilon_{i} \varepsilon_{i+1} \cdots \varepsilon_{j} \\
& =a_{j} \varepsilon_{j}+a_{j-1} b_{j} \varepsilon_{j-1} \varepsilon_{j}+b_{j} \varepsilon_{j} \sum_{i=2}^{j-2} a_{i} D(i+1, j-1) \varepsilon_{i} \varepsilon_{i+1} \cdots \varepsilon_{j-1} \\
& -\varepsilon_{j-1}^{-1} \varepsilon_{j} \sum_{i=2}^{j-2} a_{i} D(i+1, j-2) \varepsilon_{i} \varepsilon_{i+1} \cdots \varepsilon_{j-2} \\
& =a_{j} \varepsilon_{j}+b_{j} \varepsilon_{j} \sum_{i=2}^{j-1} a_{i} D(i+1, j-1) \varepsilon_{i} \varepsilon_{i+1} \cdots \varepsilon_{j-1} \\
& -\varepsilon_{j-1}^{-1} \varepsilon_{j} \sum_{i=2}^{j-2} a_{i} D(i+1, j-2) \varepsilon_{i} \varepsilon_{i+1} \cdots \varepsilon_{j-2} \\
& =\left\langle u, v_{k_{j+1}}\right\rangle
\end{aligned}
$$

Thus (3.3) holds for $j+1$. This completes the proof of Theorem 5.

References

[1] M. Beck and S. Robins: Computing the Continuous Discretely, Undergraduate Texts in Mathematics, Springer, 2007.
[2] E. Ehrhart: Polynômes Arithmétiques et Méthode des Polyèdres en Combinatoire, Birkhäuser, Boston-Basel-Stuttgart, 1977.
[3] W. Fulton: Introduction to Toric Varieties, Annals of Mathematics Studies 131, Princeton Univ. Press, Princeton, NJ, 1993.
[4] J. E. Pommersheim: Toric varieties, lattice points and Dedekind sums, Math. Ann. 295 (1993), 1-24.

Department of Mathematics, Graduate School of Science, Osaka City University, 3-3-138 Sugimoto, SumiYoshi-ku, Osaka 558-8585 JAPAN

E-mail address: d15san0w03@st.osaka-cu.ac.jp

[^0]: Date: May 16, 2016.
 2010 Mathematics Subject Classification. Primary 52B20; Secondary 52B10, 14M25.
 Key words and phrases. integral convex polytopes, Ehrhart polynomials, toric geometry.

