
ON DESCRIPTIONS OF PRODUCTS OF SIMPLICES
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Abstract. We give several new criteria to judge whether a simple convex
polytope in a Euclidean space is combinatorially equivalent to a product of
simplices. These criteria are mixtures of combinatorial, geometrical and topo-
logical conditions that are inspired by the ideas from toric topology.

1. Background

An n-dimensional convex polytope P n is the convex hull of a finite set of points
in a Euclidean space Rd. Any codimension-one face of P n is called a facet of P n.
We call P n simple if each vertex of P n is the intersection of exactly n facets of
P n. Two convex polytopes P n and Qn are combinatorially equivalent if their face
lattices are isomorphic. Topologically, combinatorial equivalence corresponds to
the existence of a (piecewise linear) homeomorphism between the two polytopes
that restricts to homeomorphisms between their facets, and hence all their faces
(see [14, Chapter 2.2]).

In this paper, we will give several new criteria to judge whether a simple convex
polytope is combinatorially equivalent to product of simplices (Theorem 2.2 and
Theorem 2.7). Some of these criteria are purely combinatorial, while others are
phrased in geometrical or topological terms. These criteria are mainly inspired
by the ideas from toric topology. So in the following we first explain some basic
constructions and facts in toric topology that are relevant to our discussion.

An abstract simplicial complex on a set [m] = {v1, · · · , vm} is a collection K
of subsets σ ⊆ [m] such that if σ ∈ K, then any subset of σ also belongs to K.
We always assume that the empty set belongs to K and refer to σ ∈ K as a
simplex of K. In particular, any element of [m] is called a vertex of K. To avoid
ambiguity in our argument, we also use V (K) and V (σ) to refer to the vertex
sets of K and any simplex σ in K.
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Any finite abstract simplicial complex K admits a geometric realization in some
Euclidean space. But sometimes we also use K to denote its geometric realization
when the meaning is clear in the context.

Given a finite abstract simplicial complex K on a set [m] and a pair of spaces
(X,A) with A ⊂ X, we can construct of a topological space (X,A)K by:

(X,A)K =
⋃
σ∈K

(X,A)σ, where (X,A)σ =
∏
vj∈σ

X ×
∏
vj /∈σ

A. (1)

Here
∏

means Cartesian product. So (X,A)K is a subspace of the Cartesian
product of m copies of X. It is called the polyhedral product or the generalized
moment-angle complex of K and (X,A). In particular, ZK = (D2, S1)K and
RZK = (D1, S0)K are called the moment-angle complex and real moment-angle
complex of K, respectively (see [3, Section 4.1]). The natural actions of (Z2)m

on (D1)m and (S1)m on (D2)m induce canonical actions of (Z2)m on RZK and
(S1)m on ZK , respectively.

When K is the boundary of the dual of a simple convex polytope P , the ZK
and RZK are closed manifolds, also denoted by ZP and RZP respectively. In
this case, ZP and RZP are called moment-angle manifold and real moment-angle
manifold of P , respectively. These manifolds can be constructed in another way
as described below (see [6, Construction 4.1]).

Let P n be an n-dimensional simple convex polytope. Let F(P n) = {F1, · · · , Fm}
be the set of facets of P n. Let {e1, · · · , em} be a basis of (Z2)m and define a map
λ : F(P n)→ (Z2)m by λ(Fi) = ei. Then we can construct a space

M(P n, λ) := P n × (Z2)m/ ∼ (2)

where (p, g) ∼ (p′, g′) if and only if p = p′ and g−1g′ ∈ Gλ
p where Gλ

p is the
subgroup of (Z2)m generated by the set {λ(Fi) | p ∈ Fi}. Let πλ : M(P n, λ)→ P n

be the quotient map. One can show that RZPn is homeomorphic to M(P n, λ)
and the canonical action of (Z2)m on RZPn can be written on M(P n, λ) as:

g′ · [(p, g)] = [(p, g′ + g)], p ∈ P n, g, g′ ∈ (Z2)m. (3)

The moment-angle manifold ZPn can be similarly constructed from P n and a
map Λ : F(P n)→ Zm where {Λ(F1), · · · ,Λ(Fm)} is a unimodular basis of Zm.

In addition, RZPn and ZPn are smooth manifolds. In fact, there is a unique
equivariant smooth structure on RZPn (or ZPn) with respect to the canonical
(Z2)m-action (or (S1)m-action) and, the orbit space RZPn/(Z2)m (or ZPn/(S1)m)
with the stratification determined by the canonical (Z2)m-action (or (S1)m-action)
is diffeomorphic to the convex polytope P n as a smooth manifold with corners
(see [9, Proposition 3.8] and [12, Theorem 5.6]). Moreover, for any proper face f
of P n, π−1

λ (f) is an embedded closed smooth submanifold of RZPn which is the
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fixed point set of the subgroup of (Z2)m generated by {λ(Fi) | f ∈ Fi} under the
canonical (Z2)m-action.

2. Descriptions of products of simplices

For any k ∈ N, let ∆k denote the standard k-dimensional simplex, which is

∆k = {(x1, · · · , xk, xk+1) ∈ Rk+1 |x1 + · · ·+ xk+1 = 1, x1, · · · , xk+1 ≥ 0}.

For any n1, · · · , nr ∈ N, consider ∆n1 × · · · ×∆nr as a product of ∆n1 , · · · ,∆nr

in the Cartesian product Rn1+1 × · · · × Rnr+1.

Next, we first list some descriptions of products of simplices that appeared in
Wiemeler’s paper [13].

Theorem 2.1 (Wiemeler [13]). Let P n be an n-dimensional simple convex poly-
tope with m facets, n ≥ 3. Then the following statements are equivalent.

(a) P n is combinatorially equivalent to a product of simplices.

(b) Any 2-dimensional face of P n is either a 3-gon or a 4-gon.

(c) There exists a quasitoric manifold M2n over P n which admits a nonneg-
atively curved Riemannian metric that is invariant under the canonical
(S1)n-action on M2n.

A quasitoric manifold M2n over P n is the quotient space of ZPn under a free
action of a rank m − n toral subgroup of (S1)m (see [6]). There is a canonical
(S1)n-action on M2n induced from the canonical action of (S1)m on ZPn , which
makes Mn a torus manifold (see [7]).

Theorem 2.1(b) is a corollary of [13, Proposition 4.5] and Theorem 2.1(c) is a
corollary of [13, Lemma 4.2]. Note that Theorem 2.1(b) is a particularly useful
description of products of simplices. Indeed, the proofs of many other descriptions
of products of simplices in this paper boil down to this one first. But the proof
of [13, Proposition 4.5] is a little long and not particularly easy to follow. We will
give a shorter proof of Theorem 2.1(b) in the appendix to make our paper more
self-contained.

Next, we give more descriptions of products of simplices from combinatorial
and topological viewpoints. For convenience let us introduce some notations first.

• For any topological space X and any field k, let

hrk(X; k) =
∞∑
i=0

dimkH
i(X; k).

• For a simplical complex K and a subset I of the vertex set V (K) of K,
let KI denote the full subcomplex of K obtained by restricting to I.
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In addition, for a simplicial complex K on [m] = {v1, · · · , vm}, we can define
a new simplicial complex L(K) from K, called the double of K, where L(K) is
a simplicial complex on the vertex set [2m] = {v1, v

′
1, · · · , vm, v′m} determined by

the following condition: ω ⊂ [2m] is a minimal (by inclusion) missing simplex of
L(K) if and only if ω is of the form {vi1 , v′i1 , · · · , vik , v

′
ik
} where {vi1 , · · · , vik} is

a missing simplex of K. Note that any minimal missing simplex in L(K) must
have even number of vertices.

The following are some basic facts about L(K) (see Ustinovsky [10, 11]).

• K1 is simplicially isomorphic to K2 if and only if L(K1) is simplicially
isomorphic to L(K2).

• dim(L(K)) = m+ dim(K) ([11, Lemma 1.2]).

• L(K1∗K2) = L(K1)∗L(K2) (here ∗ is the join of two simplical complexes).

• If K = ∂P ∗ where P ∗ is the simplicial polytope dual to a simple convex
polytope P , then L(K) = ∂L(P )∗ where L(P ) is a simple convex polytope
called the double of P (see [10] for the construction of L(P )).

• L(∂∆k) = ∂∆2k+1.

Theorem 2.2. Let P be an n-dimensional simple convex polytope with m facets
and let K be the boundary of the simplicial polytope dual to P . Then the following
statements are all equivalent.

(a) P is combinatorially equivalent to a product of simplices.

(b) K is simplicially isomorphic to ∂∆n1 ∗ · · · ∗∂∆nr for some n1 · · · , nr ∈ N.

(c) L(K) is simplicially isomorphic to ∂∆l1 ∗· · ·∗∂∆lr for some l1 · · · , lr ∈ N.

(d) For any vertex x of P , the intersection of all the facets of P that are not
incident to x is nonempty (which must be exactly one face of P ).

(e) For any (n−1)-dimensional simplex σ in K, the full subcomplex KV (K)−V (σ)

of K is a nonempty simplex.

(f) For some field k, hrk(RZK ; k) = 2m−dim(K)−1, or equivalently
hrk(RZP ; k) = 2m−n.

(g) For some field k, hrk(ZK ; k) = 2m−dim(K)−1, or equivalently
hrk(ZP ; k) = 2m−n.

Proof. The equivalence of (a) and (b) is trivial.

2.1. (b)⇔ (c). If K = ∂∆n1 ∗ · · · ∗ ∂∆nr , then

L(K) = L(∂∆n1 ∗· · ·∗∂∆nr) = L(∂∆n1)∗· · ·∗L(∂∆nr) = ∂∆2n1+1∗· · ·∗∂∆2nr+1.

Conversely, suppose L(K) = ∂∆l1 ∗ · · · ∗ ∂∆lr . Notice that for each 1 ≤ j ≤ r,
∆lj is a minimal missing simplex of L(K). So ∆lj must have even number of
vertices, which implies that lj is an odd integer. Let lj = 2nj + 1, 1 ≤ j ≤ r.
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Then we have L(K) = ∂∆2n1+1 ∗ · · · ∗ ∂∆2nr+1 = L(∂∆n1 ∗ · · · ∗ ∂∆nr). This
implies K = ∂∆n1 ∗ · · · ∗ ∂∆nr . �

2.2. (a) ⇒ (d). Let P = ∆n1 × · · · × ∆nr where n1 + · · · + nr = n. For each
1 ≤ i ≤ r, let {vi0, · · · , vini

} be the set of all vertices of ∆ni . Then the set of all
the vertices of P can be written as

{ṽj1...jr = v1
j1
× · · · × vrjr | 0 ≤ ji ≤ ni, i = 1, · · · , r}.

Note that any facet of P is the product of a codimension-one face of some ∆ni

and the remaining simplices. So the set of all the facets of P is (see [5])

F(P ) = {F i
ki
| 0 ≤ ki ≤ ni, i = 1, · · · , r}, (4)

where F i
ki

= ∆n1×· · ·×∆ni−1×f iki×∆ni+1×· · ·×∆nr and f iki is the codimension-
one face of the simplex ∆ni which is opposite to the vertex viki . So there are total
of n+ r facets in P . The n facets of P that are incident to ṽj1...jr are:

F(∆n1 × · · · ×∆nr)− {F i
ji
| i = 1, · · · , r}.

Those facets that are not incident to ṽj1...jr are F 1
j1
, · · · , F r

jr whose intersection

F 1
j1
∩ · · · ∩ F r

jr is exactly one face f 1
j1
× · · · × f rjr (of dimension n− r). �

2.3. (d) ⇔ (e). Note that K is a (n − 1)-dimensional simplicial sphere with m
vertices where each vertex x of P corresponds to a unique (n − 1)-simplex K,
denoted by σx. Let Wx be the union of those facets of P that are not incident
to x. The face poset of KV (K)−V (σx) is the reverse poset of the face poset of Wx.
Then since the polytope P is simple, if the intersection of all the facets in Wx is
nonempty, it must be exactly one face of P (which is equivalent to saying that
KV (K)−V (σx) is a simplex). So (d) is equivalent to (e). �

2.4. (d)⇒ (a). We first prove the following claim.

Claim: If the condition (d) holds for P , then (d) also holds for any facet of P .

Indeed, each facet F of P corresponds to a unique vertex vF of K. Let
StarK(vF ) and linkK(vF ) denote the star and the link of vF in K. Then linkK(vF )
is an (n−2)-dimensional simplicial sphere which is the boundary of the simplicial
polytope dual to F . For any (n−2)-simplex τ ∈ linkK(vF ), there are exactly two
(n − 1)-simplices σ1, σ2 in K that contains τ . We let V (σ1) = V (τ) ∪ {vF} and
V (σ2) = V (τ) ∪ {u} for some vertex u of K. Since the condition (d) and (e) are
equivalent, by applying (e) to K we deduce that KV (K)−V (σ2) is a simplex in K,
denoted by ξ. So

V (K) = V (ξ) ∪ V (σ2) = V (ξ) ∪ V (τ) ∪ {u}. (5)

Notice that vF /∈ σ2, so ξ contains vF and hence ξ ⊂ StarK(vF ). Let Lτ denote
the full subcomplex of linkK(vF ) restricting to V (linkK(vF ))− V (τ).
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• If dim(ξ) = 0, then ξ = {vF}. This implies that the number of vertices
of K is n + 1. So P must be an n-simplex since P is a simple convex
polytope of dimension n. In this case Lτ = {u} (See Figure 1).

• If dim(ξ) ≥ 1, then ξ∩ linkK(vF ) is a nonempty simplex in linkK(vF ) with
dimension dim(ξ)− 1. We have two possible cases as follows.

– If u /∈ linkK(vF ), the vertex set of Lτ is

V (Lτ ) = V (ξ)− {vF} = V (ξ ∩ linkK(vF )) (by (5)).

Then since Lτ is a full subcomplex of linkK(vF ) on V (Lτ ), we have
Lτ = ξ ∩ linkK(vF ) is a nonempty simplex (see the left two pictures
in Figure 2).

– If u ∈ linkK(vF ), the vertex set of Lτ is

V (Lτ ) = (V (ξ)− {vF}) ∪ {u} = V (ξ ∩ linkK(vF )) ∪ {u} (by (5)).

Note that both the simplex ξ∩linkK(vF ) and u belong to KV (K)−V (σ1).
Then since KV (K)−V (σ1) is a simplex by the condition (e), the simplex
ξ ∩ linkK(vF ) and u spans a unique simplex (of dimension dim(ξ))
which must coincide with Lτ (see the right two pictures in Figure 2).

So we have shown that the condition (e) holds for linkK(vF ). Dually it means
that the condition (d) holds for the facet F . So the above claim is proved.
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By iterating the above argument, we deduce that the condition (d) holds for all
two dimensional faces of P . This forces any 2-dimensional face of P to be either
a 3-gon or a 4-gon. Then by Theorem 2.1(b), the polytope P is combinatorially
equivalent to a product of simplices. �

2.5. (a)⇒ (f) and (g). If P = ∆n1 × · · · ×∆nr , n1 + · · ·+ nr = n, then

ZP = S2n1+1 × · · · × S2nr+1, RZP = Sn1 × · · · × Snr .

The number of facets of P is m = n+ r. It is clear that for any field k,

hrk(ZP ; k) = hrk(RZP ; k) = 2r = 2m−n.

2.6. (f) ⇒ (a). For any vertex v of K, let mv be the number of vertices in
linkK(v). According to the proof of [11, Theorem 3.2] (note that the argument
there works for any coefficient), there is a subspace X of RZK so that

hrk(RZP ; k) = hrk(RZK ; k) ≥ hrk(X; k),

and X is the disjoint union of the 2m−mv−1 copies of RZlinkK(v). So we have

2m−n = hrk(RZK ; k) ≥ 2m−mv−1hrk(RZlinkK(v); k).

Then hrk(RZlinkK(v); k) ≤ 2mv−n+1. On the other hand, [11, Theorem 3.2] tells
us that hrk(RZlinkK(v); k) ≥ 2mv−n+1 (since dim(linkK(v)) = n−2). So we obtain

hrk(RZlinkK(v); k) = 2mv−n+1.

Note if v is the vertex corresponding to a facet F of P , then RZlinkK(v) = RZF .
So we have shown that if the condition (f) holds for P , it should hold for any
facet of P as well.

By iterating the above argument, we deduce that the condition (f) holds for
all the two dimensional faces of P . It is not hard to see that the real moment-
angle manifold of a k-gon is a closed connected orientable surface with genus
1+(k−4)2k−3 (see [3, Proposition 4.1.8]). So any 2-dimensional face of P is either
a 3-gon or a 4-gon. Then by Theorem 2.1(b), the polytope P is combinatorially
equivalent to a product of simplices. �

2.7. (g)⇒ (a). First of all, [11, Lemma 2.2] says that there is a homeomorphism
ZK ∼= RZL(K). Since K has m vertices, dim(L(K)) = m+ dim(K) = m+ n− 1.
So if hrk(ZK ; k) = 2m−n, we have

hrk(RZL(K); k) = 2m−n = 22m−(m+n−1)−1 = 22m−dim(L(K))−1.

So (f) holds for the simplicial sphere L(K). Since we have already shown
(f) ⇒ (a) and (a) ⇒ (b), L(K) satisfies (b). Then K itself satisfies (b) by the
equivalence of (b) and (c). So P is combinatorially equivalent to a product of
simplices. �
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Remark 2.3. The equivalences of (b), (f) and (g) in Theorem 2.2 are stated
in [3, Section 4.8] as an exercise.

Remark 2.4. Generally speaking, the number of 2-dimensional faces in a simple
convex polytope P is a lot more than the number of vertices and facets of P .
So in practice if we write an algorithm to judge whether P is combinatorially
equivalent to a product of simplices, using Theorem 2.2(d) or (e) should be more
efficient than using Theorem 2.1(b).

Next, we give some descriptions of products of simplices in terms of geometric
conditions on real moment-angle manifolds of simple convex polytopes. We first
recall a concept in metric geometry (see [4, Definition 3.1.12]).

Definition 2.5 (Quotient Metric Space). Let (X, d) be a metric space and let R
be an equivalence relation on X. The quotient semi-metric dR is defined as

dR(x, y) = inf
{ k∑
i=1

d(pi, qi) : p1 = x, qk = y, k ∈ N
}
,

where the infimum is taken over all choices of {pi} and {qi} such that the point
qi is R-equivalent to pi+1 for all i = 1, · · · , k− 1. Moreover, by identifying points
with zero dR-distance, we obtain a metric space (X/R, d) called the quotient
metric space of (X, d).

Suppose P is a simple convex polytope in a Euclidean space Rd. Consider P
to be equipped with the intrinsic metric. More precisely, the intrinsic metric on
P defines the distance between any two points x and y in P to be the infimum
of lengths of piecewise smooth paths in P that connect x and y. Note that the
intrinsic metric on P coincides with the subspace metric on P since P is convex.

By the construction in (2), RZP = M(P, λ) is a closed manifold obtained by
gluing 2m copies of P along their facets. We can assume that the 2m copies of P
are congruent convex polytopes inside the same Euclidean space and the gluings
of their facets are all isometries. Then by Definition 2.5 we obtain a quotient
metric on RZP , denoted by dP . It is clear that the metric dP is invariant with
respect to the canonical action of (Z2)m on RZP (see (3)).

Remark 2.6. We can also call (RZP , dP ) a Euclidean polyhedral space, which
just means that it is built from Euclidean polyhedra (see [4, Definition 3.2.4]).

Note that if P ′ is another simple convex polytope combinatorially equivalent
to P but not congruent to P , the two metric spaces (RZP ′ , dP ′) and (RZP , dP )
are not isometric in general (though RZP ′ is homeomorphic to RZP ).

Theorem 2.7. Let P be an n-dimensional simple convex polytope, n ≥ 2, with
m facets. Then the following statements are all equivalent.
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(a) P is combinatorially equivalent to a product of simplices.

(b) There exists a non-negatively curved Riemannian metric on RZP that is
invariant under the canonical (Z2)m-action on RZP .

(c) There exists a simple convex polytope P ′ combinatorially equivalent to P
so that the metric space (RZP ′ , dP ′) is non-negatively curved.

(d) There exists a simple convex polytope P ′ combinatorially equivalent to P
so that all the dihedral angles of P ′ are non-obtuse.

Note that a Riemannian metric on a manifold is non-negatively curved means
that its sectional curvature is everywhere non-negative, while a metric space being
non-negatively curved is defined via comparison of triangles (see [4, Section 4]).

Proof. (a) ⇒ (b) The real moment-angle manifold of a product of simplices
∆n1 ×· · ·×∆nr is diffeomorphic to a product of standard spheres Sn1 ×· · ·×Snr

where Sk = {(x1, · · · , xk+1) ∈ Rk+1 |x2
1 + · · · + x2

k+1 = 1} for any k ∈ N. Let Sk

be equipped with the induced Riemannian metric from Rk+1. Then it is easy to
check that Sn1 × · · · × Snr is a nonnegatively curved Riemannian manifold with
respect to the product of the Riemannian metrics on Sn1 , · · · , Snr .

(b) ⇒ (a) Recall the definition of πλ : M(P, λ) = RZP → P in (2). For any
proper face f of P , let Mf = π−1

λ (f). It is easy to see the following.

• Mf is an embedded closed submanifold of RZP which has 2m+dim(f)−n−mf

connected components, where mf is the number of facets of f .

• Each connected component of Mf is diffeomorphic to RZf .
Note that Mf is the fixed point set of a rank n − dim(f) subgroup of (Z2)m

under the canonical action of (Z2)m on RZP . Then since the Riemannian metric
is (Z2)m-invariant, each component of Mf is a totally geodesic submanifold of
RZP (see [8, Theorem 5.1]), and so is non-negatively curved with respect to the
induced Riemannian metric from RZP . This implies that the condition (b) holds
for RZf as well.

In particular when dim(f) = 2, the RZf is a closed connected surface with
non-negatively curved Riemannian metric. Then by Gauss-Bonnet Theorem, the
Eular characteristic χ(RZf ) ≥ 0, which implies that f has to be a 3-gon or a
4-gon. Then by Theorem 2.1(b), the polytope P is combinatorially equivalent to
a product of simplices.

(a)⇒ (c) Suppose P is combinatorially equivalent to ∆n1 × · · · ×∆nr where
n1 + · · · + nr = n. Then the number of facets of P is m = n + r. Consider the
standard simplex ∆k as a metric subspace of Rk+1 with the intrinsic metric. Let
P ′ = ∆n1 × · · · ×∆nr be the product of the r metric spaces ∆n1 , · · · ,∆nr .
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Figure 3. Cross-polytopes of dimension 2 and 3

Claim: As a metric space (RZP ′ , dP ′) is isometric to the product of the r metric
spaces (RZ∆n1 , d∆n1 ), · · · , (RZ∆nr , d∆nr ).

Recall how we enumerate the facets of ∆n1 × · · · ×∆nr in (4). If we glue two
copies of P ′ along the facet F i

ki
= ∆n1 × · · · ×∆ni−1 × f iki ×∆ni+1 × · · · ×∆nr , we

obtain ∆n1×· · ·×∆ni−1×
(
∆ni∪f iki ∆ni

)
×∆ni+1×· · ·×∆nr . Then we decompose

the gluing procedure in the construction (2) for RZP ′ into r steps. The i-th step
only glues those facets of the form {F i

ki
, 0 ≤ ki ≤ ni} in the 2m copies of P ′, which

gives us the factor (RZ∆ni , d∆ni ), while fixing all other factors in the product. So
after the first step we obtain 2m−n1−1 copies of RZ∆n1 ×∆n2 × · · · ×∆nr . After
the second step we obtain 2m−n1−n2−2 copies of RZ∆n1 ×RZ∆n2 ×∆n3×· · ·×∆nr

and so on. Then our claim follows.

Moreover, observe that for any k ∈ N, (RZ∆k , d∆k) is isometric to the boundary
of the (k + 1)-dimensional cross-polytope Qk+1 whose vertices are

{(0, · · · , 0,
i

1, 0, · · · , 0), (0, · · · , 0,
i

−1, 0, · · · , 0) ; i = 1, · · · , k + 1}.
Recall that the n-dimensional cross-polytope is the simplicial polytope dual to
the n-dimensional cube (see Figure 3 for the case n = 2, 3).

It is well known that the intrinsic metric on any convex hypersurface (i.e. the
boundary of a compact convex set with nonempty interior) in a Euclidean space
Rn (n ≥ 3) is non-negatively curved (see [4, p.359]). Then since Qk+1 is a
convex polytope in Rk+1, (RZ∆k , d∆k) is non-negatively curved for any k ≥ 2.
When k = 1, the boundary of Q2 is a piecewise smooth simple curve in R2.
But by definition (see [4, Definition 4.1.9]), the intrinsic metric on any piecewise
smooth simple curve is non-negatively curved because any geodesic triangle on
the curve is degenerate. So we can conclude that (RZP ′ , dP ′) is non-negatively
curved because the product of non-negatively curved Alexandrov spaces is still
non-negatively curved (see [4, Chapter 10]).

(c) ⇒ (d) If the metric dP ′ on RZP ′ is non-negatively curved, we want to
show that the dihedral angle between any two adjacent facets F1 and F2 of P ′ is
non-obtuse. Otherwise, assume that the dihedral angle θ between F1 and F2 is
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Figure 4. Comparison of triangles

obtuse. Choose a point O in the relative interior of F1 ∩ F2, a point A ∈ F1 and
B ∈ F2 so that the line segments OA and OB are perpendicular to F1∩F2. Then
∠AOB = θ. Suppose the lengths of the line segaments OA, OB and AB are

|OA| = |OB| = a, |AB| = b.

In the gluing construction (2) for RZP ′ , consider two copies of P ′ glued along the
facet F1. We then have an isosceles triangle 4AB1B2 in RZP ′ (see Figure 4).
When a is small enough, the distance between B1 and B2 in (RZP ′ , dP ′) is 2a
by the definition of the quotient metric because B1O ∪OB2 is the shortest path
between B1 and B2 in (RZP ′ , dP ′). Moreover, let 4ĀB̄1B̄2 be a triangle in the
Euclidean plane R2 which have the same lengths of sides as 4AB1B2. Then since
θ is obtuse, it is clear that 4AB1B2 is strictly thinner than 4ĀB̄1B̄2, i.e.

∠AB1B2 < ∠ĀB̄1B̄2, ∠AB2B1 < ∠ĀB̄2B̄1, ∠B1AB2 < ∠B̄1ĀB̄2.

But this contradicts our assumption that the metric dP ′ on RZP ′ is non-negatively
curved (see [4, Section 4.1.5]). Therefore, θ has to be non-obtuse.

(d) ⇒ (a) Suppose F1, F2 and F3 are three facets of P ′ with F1 ∩ F2 ∩ F3 6= ∅.
Then F1 ∩ F2 and F1 ∩ F3 are codimension-one faces of F1. By our assumption,
the dihedral angles of (F1, F2), (F1, F3) and (F2, F3) are all non-obtuse. We claim
that the dihedral angle between F1 ∩ F2 and F1 ∩ F3 in F1 is non-obtuse as well.

Indeed, we can assume that P ′ sits inside Rn and let ηi ∈ Rn (i = 1, 2, 3) be a
normal vector of Fi pointing to the interior of P (see Figure 5). By choosing a
proper coordinate system of Rn, we can assume that η1 = (0, · · · , 0, 1) ∈ Rn and
F1 lies in the coordinate hyperplane {xn = 0} ⊂ Rn. Let η2 = (a1, · · · , an−1, an),
η3 = (b1, · · · , bn−1, bn). Since the dihedral angles of (F1, F2), (F1, F3) and (F2, F3)
are all non-obtuse, the inner products of η1, η2, η3 satisfy

η1 · η2 = an ≤ 0, η1 · η3 = bn ≤ 0, (η2, η3) = a1b1 + · · ·+ an−1bn−1 + anbn ≤ 0.
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Figure 5. Dihedral angles of a simple convex polytope

=⇒ a1b1 + · · ·+ an−1bn−1 ≤ 0. (6)

Note that (a1, · · · , an−1, 0) and (b1, · · · , bn−1, 0) are normal vectors of F1∩F2 and
F1 ∩ F3 inside F1 respectively. So (6) implies that the dihedral angle between
F1 ∩ F2 and F1 ∩ F3 in F1 is non-obtuse. Our claim is proved.

By iterating the above arguments, we can show that for any 2-dimensional face
f of P ′, any interior angle of f is non-obtuse. Since f is a Euclidean polygon, it
must be either a 3-gon or a 4-gon. So since P is combinatorially equivalent to
P ′, any 2-face of P is either a 3-gon or a 4-gon, too. Then by Theorem 2.1(b),
the polytope P is combinatorially equivalent to a product of simplices. �

Remark 2.8. In the statement of Theorem 2.7(b), if we do not require the
Riemannian metric on RZP to be (Z2)m-invariant, it is still likely that P has to
be combinatorially equivalent to a product of simplices (see [9, Section 5.2]). But
we do not know how to prove this so far.

3. Appendix

Here we give another proof of Theorem 2.1(b). For brevity, we say that a
simplicial complex is a sphere join if it is isomorphic to ∂∆n1 ∗ · · · ∗ ∂∆nq for
some n1 · · · , nq ∈ N. One dimensional sphere join is either ∂∆2 (boundary of a
triangle) or ∂∆1 ∗ ∂∆1 (boundary of a square). Let us first prove the following
theorem.

Theorem 3.1. Let K be a simplicial complex of dimension n. Suppose that K
satisfies the following two conditions:

(a) K is a pseudomanifold,
(b) the link of any vertex of K is a sphere join of dimension n− 1,

Then K is a sphere join.

Proof. First of all, assumption (b) implies that the link of any k-simplex in K is
a sphere join of dimension n − k − 1. We denote a simplex spanned by vertices
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v0, v1, . . . , vm by [v0, v1, . . . , vm] and its boundary complex by ∂[v0, v1, . . . , vm].
Let w be a vertex of K. By assumption (b) the link linkK w of w in K is of the
form linkK w = ∂∆n1 ∗ · · · ∗ ∂∆nq where n1 + · · · + nq = n. Denote the vertices
of ∂∆nk by vk0 , v

k
1 , . . . , v

k
nk

for k = 1, 2, . . . , q, so that

linkK w = ∂[v1
0, v

1
1, . . . , v

1
n1

] ∗ · · · ∗ ∂[vq0, v
q
1, . . . , v

q
nq

]. (7)

Let I be the set of vertices v1
1, . . . , v

1
n1
, . . . , vq1, . . . , v

q
nq

. Then [I] is a maximal

simplex in linkK w and the simplex [I, w] spanned by I and w is of dimension n.
Since K is a pseudomanifold by assumption (a), there is a unique vertex v in K
such that [I, v] ∩ [I, w] = [I]. We have two cases below.

Case 1. The case where v /∈ linkK w. In this case we claimK = ∂[v, w]∗linkK w.
The proof is as follows. Choose an element from I arbitrarily, say vij (1 ≤ i ≤ q,

1 ≤ j ≤ ni). Set Ī = (I\{vij}) ∪ {vi0}. Then [Ī] is an (n − 1)-simplex of linkK w

by (7), so there is a unique vertex v̄ of K such [Ī , v̄] ∩ [Ī , w] = [Ī] as before since
K is a pseudomanifold. Now we shall observe the link of an (n − 2)-simplex
[I ∩ Ī] = [I\{vij}] in K. By our construction, the following are four n-simplices

in K containing [I ∩ Ī]:

[I ∩ Ī , vij, w], [I ∩ Ī , vi0, w], [I ∩ Ī , vij, v], [I ∩ Ī , vi0, v̄].

Therefore the vertices vij, w, v
i
0, v, v̄ are in the link of the (n− 2)-simplex [I ∩ Ī].

But by assumption (b), this link is a sphere join of dimension one which can
have at most four vertices. Note that vij, w, v

i
0 are mutually distinct and v, v̄

are different from vij, w, v
i
0. So we must have v̄ = v. Now let vij run over all

elements of I, then Ī runs over all (n− 1)-simplices in linkK w. This shows that
∂[v, w]∗ linkK w is a subcomplex of K. However, ∂[v, w]∗ linkK w and K are both
pseudomanifolds and have the same dimension, so they must agree. This proves
the claim.

Case 2. The case where v ∈ linkK w, so v is one of v1
0, v

2
0, . . . , v

q
0. We may

assume v = v1
0 without loss of generality. Then

[v, I] = [v1
0, v

1
1, . . . , v

1
n1
, v2

1, . . . , v
2
n2
, . . . , vq1, . . . , v

q
nq

] is an n-simplex in K. (8)

We look at linkK v. Since v = v1
0, it follows from (7) that linkK v contains

∂[v1
1, . . . , v

1
n1

] ∗ ∂[v2
0, v

2
1, . . . , v

2
n2

] ∗ · · · ∗ ∂[vq0, v
q
1, . . . , v

q
nq

] (9)
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as a subcomplex. This together with assumption (b) implies that there is a vertex
w′ different from vertices in (9) such that linkK v is one of the following:

∂[w′, v1
1, . . . , v

1
n1

] ∗ ∂[v2
0, v

2
1, . . . , v

2
n2

] ∗ · · · ∗ ∂[vq0, v
q
1, . . . , v

q
nq

],

∂[v1
1, . . . , v

1
n1

] ∗ ∂[w′, v2
0, v

2
1, . . . , v

2
n2

] ∗ · · · ∗ ∂[vq0, v
q
1, . . . , v

q
nq

],

...
...

∂[v1
1, . . . , v

1
n1

] ∗ ∂[v2
0, v

2
1, . . . , v

2
n2

] ∗ · · · ∗ ∂[w′, vq0, v
q
1, . . . , v

q
nq

].

However, the fact (8) implies that none of the above occurs except the first one.
So we have

linkK v = ∂[w′, v1
1, . . . , v

1
n1

] ∗ ∂[v2
0, v

2
1, . . . , v

2
n2

] ∗ · · · ∗ ∂[vq0, v
q
1, . . . , v

q
nq

]. (10)

The simplex [I] is in linkK v by (10) and the n-simplices [I, v] and [I, w] share
[I]. We know that w is different from v2

0, . . . , v
q
0. Therefore, if w′ 6= w, then we

are in the same situation as Case 1 above (the role of v and w are interchanged).
Therefore one concludes

K = ∂[w, v] ∗ linkK v.

In particular, [w, v] is not a 1-simplex of K. But this contradicts the assumption
that v ∈ linkK w. Therefore w′ = w and by (10) we have

linkK v = ∂[w, v1
1, . . . , v

1
n1

] ∗ ∂[v2
0, v

2
1, . . . , v

2
n2

] ∗ · · · ∗ ∂[vq0, v
q
1, . . . , v

q
nq

]. (11)

Remember that v = v1
0. We claim that K contains

∂[w, v1
0, v

1
1, . . . , v

1
n1

] ∗ ∂[v2
0, v

2
1, . . . , v

2
n2

] ∗ · · · ∗ ∂[vq0, v
q
1, . . . , v

q
nq

] (12)

as a subcomplex. Indeed, any n-simplex in (12) is spanned by n + 1 vertices
which consist of n1 + 1 vertices from ∂[w, v1

0, v
1
1, . . . , v

1
n1

] and ni vertices from
∂[vi0, v

i
1, . . . , v

i
ni

] for i = 2, 3, . . . , q. Since v1
0 = v, either w or v is in the n1 + 1

vertices from ∂[w, v1
0, v

1
1, . . . , v

1
n1

]. If w (resp. v) is in the n1 + 1 vertices from
∂[w, v1

0, v
1
1, . . . , v

1
n1

], then any n-simplex formed this way is in K by (7) (resp.
(11)). This proves the claim.

Finally, since K and the subcomplex (12) are both pseudomanifolds and have
the same dimension, they must agree. So we finish the proof of the theorem. �

Proof of Theorem 2.1(b): Suppose any 2-dimensional face of P is either a
3-gon or a 4-gon. We want to show that P is combinatorially equivalent to a
product of simplices, or equivalently ∂P ∗ is a sphere join. Let us do induction
on the dimension of P . When dimP = 2, the proof is trivial. If dimP ≥ 3, we
will show that ∂P ∗ satisfies the two conditions in Theorem 3.1. Condition (a) is
obvious. By induction assumption, all facets of P are product of simplices which
means that ∂P ∗ satisfies condition (b). So we finish the induction by Theorem 3.1.

�
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